
The canonical topology on a meet-semilattice
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Abstract. Considering the lattice of properties of a physical system, it has
been argued elsewhere that – to build a calculus of propositions having a
well-behaved notion of disjunction (and implication) – one should consider a
very particular frame completion of this lattice. We show that the pertinent
frame completion is obtained as sheafification of the presheaves on the given
meet-semilattice with respect to its canonical Grothendieck topology, an
explicit description of which is easily given. Our conclusion is that there is
an intrinsic categorical quality to the notion of “disjunction” in the context
of property lattices of physical systems.
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1 Distributive joins in a property lattice are disjunc-
tions

Following C. Piron (1972, 1976, 1990) in his operational approach to (quantum)
physics, a physical system is described by its properties, the actuality of each
property being tested by a definite experimental project. The collection of prop-
erties (actual or not) of a system forms a complete lattice (L,≤): the order
relation in L is the “implication of actuality” of properties (a ≤ b in L means
that b is actual whenever a is), and it is a matter of fact that the infimum in L is
the conjunction of properties (

∧
i ai in L is actual if and only if every ai is actual).

The state of a system is defined as the collection of all of its actual properties;
but it is easily seen that one can identify a state ε ⊂ L with pε :=

∧
ε ∈ L. When

denoting by S the set of all possible states of a given physical system, D. Aerts
(1982) put forward that S is a space rather than just a set, its structure coming
from the so-called “Cartan map”

µ : L→ P(S) : a 7→ {ε ∈ S | pε ≤ a}.

The supremum in the property lattice (L,≤) is given by the “infimum of
upper bounds”, so it is a mathematical rather than an operational ingredient. In
general it is quite different from a disjunction: a ∨ b in L can be actual without
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either a or b being actual! However, in certain situations one would like to have a
formal equivalent of “a or b”, as for instance in the phrase: were we to measure a
spin–1

2 particle, then after the measurement we would find a particle with “spin
up or spin down”. Of course, “spin up or spin down” is not a property of the
physical system (because it can not be tested!); it is rather a proposition about
the properties. It was proposed by B. Coecke (2001) to devise a new structure
containing not only all properties of the system but also all disjunctions of the
properties. Because of the operational meaning of the infimum of properties
(it is their conjunction), the embedding of (L,≤) in this new structure should
preserve all infima; and clearly, would

∨
i ai be a disjunction in L, then in the

new structure the property
∨

i ai should be identified with the disjunction of the
ai. More precisely, under some mild conditions on the Cartan map µ : L →
P(S) (satisfied in all known examples), it is shown in loc. cit. that, for a subset
A ⊆ L, the supremum

∨
A in L is a disjunction (i.e. µ(

∨
A) =

⋃
a∈A µ(a)) if

and only if for every x ∈ L one has that x ∧ (
∨

A) =
∨

(x ∧ A). That is to say,
in a property lattice (L,≤) the distributive joins are exactly the disjunctions.
Therefore, “adding to a property lattice those disjunctions that did not already
exist, and keeping the conjunction” means “to embed the lattice (L,≤) in a
frame1 such that all meets and all distributive joins are preserved”. This can
indeed be done; in the next section we go through the elementary description
of the required frame completion, in the somewhat more general case of a meet-
semilattice (P,≤) rather than a complete lattice (L,≤). The implementation of
these results in the operational approach to physics is discussed elsewhere, see
for instance (Coecke, 2001), so we do not bother to do so here.

Our thesis in this paper is that the frame completion described above can
and should be seen as an instance of the far reaching concept of “sheafification of
presheaves on a small category endowed with a Grothendieck topology”. In our
opinion, specializing general categorical principles to the case of posets is of more
than merely aesthetic interest, for categorical constructions often give a better
understanding of the main concepts, even in poset theory. But this development
also provides more evidence in favour of the viewpoint that there is an intrinsic
categorical quality to quantum logic and related fields in theoretical physics. In
fact, several recent as well as older publications indicate that category theory is
as much a tool for the the theoretical physicist as for the working mathematician
— see for instance (Moore, 1995; Coecke and Stubbe, 1999; Coecke et al., 2001;
Stubbe, 2001).

1A frame is a complete lattice in which finite meets distribute over arbitrary joins; see
(Johnstone, 1982).
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2 Elementary description of the pertinent universal
frame completion

Throughout this text, the phrase “meet-semilattice” refers, as usual, to a com-
mutative monoid (P,∧, 1) in which each element is idempotent. Put differently,
it is a partial order (P,≤) in which all finite (thus also empty) meets exist. A ho-
momorphism of such objects is simply a homomorphism of monoids: it preserves
all finite (and empty) meets; an obvious category MSLat results. Of course, every
homomorphism is monotonic, but in general a monotonic mapping need not be
a homomorphism. We will use the notation Monot for the category of monotonic
maps between meet-semilattices.

Definition 1 Given a (possibly infinite) family {xi}i∈I of elements in a meet-
semilattice P , it is said to have a distributive join (and, for short, the family is
said to be distributive) if

(a) its join
∨

i xi exists in P ,

(b) for every x ∈ P one has that x ∧ (
∨

i xi) =
∨

i(x ∧ xi) (so in particular the
join on the right hand side must exist).

A mapping between two meet-semilattices, say f : P → Q, is said to preserve dis-
tributive joins if, whenever a family {xi}i∈I is distributive in P , then {f(xi)}i∈I

is distributive in Q and moreover f(
∨

i xi) =
∨

i f(xi).

Clearly, such a morphism f : P → Q is always monotonic; it suffices to notice
that x ≤ y in P implies that {x, y} has a distributive join in P , such that
f(y) = f(

∨
{x, y}) =

∨
{f(x), f(y)} which implies that indeed f(x) ≤ f(y).

Therefore, as we use the notation Monot for the category of monotonic maps
between meet-semilattices, we will use Monotdis for the subcategory determined
by morphisms that preserve distributive joins. In the same vein, MSLatdis will
denote the subcategory of MSLat determined by those morphisms that preserve
(finite meets and) distributive joins.

A meet-semilattice in which all joins exist and are distributive is by defini-
tion a frame. The category Frm of frames is the full subcategory of MSLatdis

determined by those meet-semilattices that are frames. Clearly Frm is also a
subcategory of MSLat — however not fully so.

The following result can be found in any standard reference on frame theory,
see for instance (Johnstone, 1982).

Proposition 1 Frm is a monoreflective subcategory of MSLat.

In other words, for every meet-semilattice P there exists a frame HP (necessarily
unique up to isomorphism) and an embedding iP : P ↪→ HP in the category
MSLat (so, in particular, iP is an injection that preserves finite meets) enjoying
the universal property that for any other frame H and any other MSLat–morphism
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g : P → H there exists a unique Frm–morphism gext : HP → H that extends g
along iP : gext ◦ iP = g.

A subset D of a poset P is said to be a downset if, whenever x ≤ y in P and
y ∈ D, also x ∈ D. Clearly P can be embedded in Dwn(P ) – the latter denoting
the poset of downsets of P , ordered by inclusion – simply by sending each x ∈ P
to the principal downset ↓x = {t ∈ P | t ≤ x}:

↓(−) : P ↪→ Dwn(P ) : x 7→↓x. (1)

The poset Dwn(P ) is a frame: meet is given simply by intersection and join by
union, so it is obvious that finite meets distribute over arbitrary joins. And the
inclusion ↓(−) : P ↪→ Dwn(P ) clearly preserves all meets that happen to exist in
P .

In particular if P is a meet-semilattice then (1) is a morphism in MSLat, and
it is easily seen to be the universal frame completion in MSLat, cf. proposition 1.

But – alas! – the embedding in diagram (1) is not a morphism in MSLatdis:
should P have distributive joins, then these are not necessarily preserved by
the downset inclusion! This defect is, however, easily repaired as shown by the
following theorem that was first proved in a somewhat different setting in (Bruns
and Lakser, 1970).

Proposition 2 Frm is a full monoreflective subcategory of MSLatdis.

The only – but crucial! – difference with the previous theorem is the word full.
As we already observed, Frm is indeed a full subcategory of MSLatdis. Thus this
theorem says that for every poset P with finite meets there exists a universal
frame completion iP : P ↪→ HP in the category MSLatdis — so, in particular,
HP is a frame and iP is an injection that not only preserves finite meets but also
those distributive joins that happen to exist in P .

For an elementary description of the required universal completion for propo-
sition 2, one can use the technique of congruences. Suppose H is a frame; an
equivalence relation R ⊆ H × H is a congruence if (x, y), (x′, y′) ∈ R implies
(x∧x′, y∧y′) ∈ R and {(xk, yk)}k∈K ⊆ R implies (

∨
k xk,

∨
k yk) ∈ R. The collec-

tion of congruences on a given frame H is a complete lattice — in particular, the
smallest congruence containing a given relation R ⊆ H ×H (i.e. the congruence
“generated by R”) exists.

Consider now, for a meet-semilattice P , the following binary relation on
Dwn(P ):

whenever {xk}k∈K is a family with distributive join in P ,
we declare that

⋃
k ↓xk is in relation with ↓(

∨
k xk).

The quotient of Dwn(P ) by the congruence generated by this relation will be
denoted by Dwndis(P ); its elements can be identified by those downsets that are
closed under distributive joins: whenever {xi}i∈I is a family with distributive
join in P whose elements xi are in D ∈ Dwndis(P ), then also

∨
i xi is in D. The
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universal frame completion in MSLatdis is now the factorization of the embedding
P ↪→ Dwn(P ) : x→↓x over this Dwndis(P ).

Remark that Dwndis(P ) being a quotient of Dwn(P ) in Frm means in particular
that there exist an embedding and a surjection as in

Dwndis(P ) ←←↪→ Dwn(P ) (2)

forming a Galois pair, the surjection being left adjoint to the injection, thus
the former preserving suprema and the latter infima; moreover, the surjection
preserves finite (and empty) meets.

3 Intrinsic categorical quality of disjunctions

The rest of this paper is concerned with a categorical analysis of the key concepts
behind the frame completion described above; it turns out that this is all about
Grothendieck topologies on a (small) category and toposes of (pre)sheaves on the
resulting site. Our references on category theory are (Borceux, 1994; MacLane,
1971), or (Borceux and Stubbe, 2000) for a concise introduction to the subject;
for the more specific subject of toposes, the reader may consult (MacLane and
Moerdijk, 1992).

To establish our notions, we shall briefly recall some definitions and results
from category theory. A (contravariant) presheaf on a category C is a functor
F : Cop → Set from the opposite of the category C into the category Set of sets and
functions. Taking such presheaves on C as objects and natural transformations as
arrows, gives the topos PreSh(C) of presheaves on C. Any object X of the category
C determines a representable presheaf YX : Cop → Set: it sends a morphism f :A→
B in C to the function

− ◦ f : C(B,X)→ C(A,X): g 7→ g ◦ f

in Set. (As usual, C(B,X) stands for the set of morphisms in C with domain
B and codomain X; likewise for C(A,X).) The so-called Yoneda lemma asserts
that for any category C, any presheaf F : Cop → Set and any object X ∈ C, there
is a bijection between on the one hand the set of natural transformations from
YX to F and on the other hand the set FX. For a small category C, i.e. one that
has a set of objects, this implies that C can be fully faithfully embedded in the
topos of presheaves on C:

Y : C ↪→ PreSh(C).

Moreover, this Yoneda embedding preserves all limits that happen to exist in C,
but not so for colimits: it does map cocones onto cocones, but in general “with
loss of eventual universality”. Still, one can try to describe a restriction of the
codomain of the embedding, aiming at a preservation of (certain types of) colimits
(that may or may not exist) in C. Moreover, one might want such a restriction
to inherit (some or all of the) nice properties of the ambient topos PreSh(C).
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The theory of Grothendieck toposes provides an answer to this question: for
every Grothendieck topology J on the category C, the sheaves on the site (C, J)
form a topos, and the inclusion functor Sh(C, J) ↪→ PreSh(C) from the topos of
sheaves on the site (C, J) to the topos of presheaves on C has a left adjoint that
preserves finite limits. Such a topology J on a (small) category C is said to be
subcanonical if all representable presheaves are in fact sheaves. So saying that J is
subcanonical, is saying that the Yoneda embedding Y : C → PreSh(C) corestricts
to an embedding C → Sh(C, J) — i.e. C is a subcategory of the Grothendieck topos
Sh(C, J). As it can be proven that the collection of topologies on a category form a
complete lattice, one can consider the finest topology for which all representable
presheaves are sheaves, which is called the canonical topology. Intuitively it is
clear that “the finer the topology J , the fewer the sheaves on the site (C, J)”,
so that J being the canonical topology on C will produce the “smallest” topos
Sh(C, J) in which C can be embedded by (a corestriction of) the Yoneda functor.
Whereas the existence of a canonical topology is evident, it is in general quite
hard to write down an explicit description.

In this section we adapt this essentially categorical insight to the situation
at hand. Any poset (P,≤) can be thought of as a category: its objects are the
elements of P , and there is an arrow x → y precisely when x ≤ y. This means
in particular that there is at most one arrow from x to y, and therefore such
a category may be called “thin”. To say that the poset has finite (and empty)
meets, is to say that as a category it has finite limits (and a terminal object).
Clearly a functor between two posets-seen-as-categories, is just a monotonic map.
Therefore, working with the category Monot and its derivatives such as Monotdis

and Frm and so on, can be considered as “doing thin category theory”. This idea
of looking at the theory of ordered structures as a “thin category theory” can be
made precise by means of enriched category theory. Indeed, when taking 2 to be
the poset {0 ≤ 1} viewed as category, the theory of (small) 2-enriched categories
is precisely the theory of preordered sets and monotonic mappings. Crucial to
this point of view is that the hom-sets of a thin category (i.e. a poset-seen-as-
category) are objects of 2: for any x, y ∈ P there is either 0 or 1 arrow from
x to y. For an ordinary category C, the hom-sets are sets, that is, objects of
the category Set. Therefore, when adapting (or restricting) ordinary category
theory to the theory of (pre)ordered sets, one must not only replace “category”
by “poset”, and “functor” by “monotonic map”, but also “Set” by “2”!

Our program is to explicitly describe the “topology of distributive covers” on
a given poset P with finite meets, viewed as a thin category, and then to prove
that it is the canonical topology in the sense explained above. Whereas the “thin
presheaves” on P coincide with its downsets, the “thin sheaves with respect to
the canonical topology” on P coincide with those downsets that are closed under
distributive joins, such that eventually the construction of the quotient frame
Dwndis(P ) ↪→ Dwn(P ) is revealed to be an instance of the much more general
sheafification Sh(P, J) ↪→ PreSh(P ).

Let us begin with the beginning; throughout, P will stand for a meet-semi-
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lattice even though some notions still make sense for more general kinds of posets.

Definition 2 A thin presheaf2 on P is a monotonic mapping ϕ:P op → 2.

The category (which is actually just a poset, order being given pointwise) of thin
presheaves on P is thus Monot(P op, 2); in the following it will be denoted as
2-PreSh(P ). Referring to the terminology of the previous section, we have that

2-PreSh(P ) ∼= Dwn(P ).

This isomorphism is like the assignment of characteristic maps: for any ϕ ∈
2-PreSh(P ), ϕ−1(1) ∈ Dwn(P ); and given a downset D of P , define ϕD : P op → 2
by putting ϕD(x) = 1 iff x ∈ D.

For every element x ∈ P there is a representable thin presheaf (it is “repre-
sented by x”)

ϕx : P op → 2 : y 7→ 1 iff x ≤ y,

and by the Yoneda embedding of a poset (P,≤) is meant the monotonic injection

Y : P ↪→ 2-PreSh(P ) : x 7→ ϕx. (3)

In other words, the representable presheaves are the characteristic maps of the
principal downsets of P , and the Yoneda embedding in diagram (3) is the same
thing as the inclusion of the elements of the poset P into its downsets, as principal
ideals, see diagram (1).

Consider next a function Jdis which assigns to each x ∈ P the collection of
“distributive covers of x” in P :

Jdis(x) = {{xi}i∈I | {xi}i∈I is a family in P that happens
to have x as its distributive join}.

This is an example of a “topology” on the meet-semilattice P , in the following
sense.

Definition 3 A topology J on a meet-semilattice P is a function assigning to
each x ∈ P a collection J(x) of families {xi}i∈I (such families are referred to as
“J-covering families of x”) satisfying the following conditions:

(o) if {xi}i∈I ∈ J(x) then xi ≤ x for all xi;

(i) for every x ∈ P , the singleton {x} is an element of J(x);

(ii) if {xi}i∈I ∈ J(x) and y ≤ x, then {xi ∧ y}i∈I ∈ J(y);

(iii) if {xi}i∈I ∈ J(x) and, for every i ∈ I, {xik}k∈Ki
∈ J(xi),

then {xik}i∈I,k∈Ki
∈ J(x).

2These “thin presheaves” and the “thin sheaves” encountered further on, can be considered
as examples of “enriched (pre)sheaves” (Borceux and Quinteiro, 1996).
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The couple (P, J) is said to be a site.

Given a site (P, J), we are now interested in the “J-continuous” presheaves on
P ; they are called “sheaves”.

Definition 4 A thin sheaf on a site (P, J) is a presheaf ϕ : P op → 2 such that
for every x ∈ P and every {xi}i∈I ∈ J(x), whenever ϕ(xi) = 1 for all i ∈ I then
also ϕ(x) = 1.

The obvious poset of thin sheaves will be written as 2-Sh(P, J), and clearly it
is a subposet of 2-PreSh(P ). The topology J is said to be subcanonical if every
representable presheaf is in fact a sheaf. In this case, the meet-semilattice P can
be embedded in the poset 2-Sh(P, J) by sending x ∈ P to ϕx ∈ 2-Sh(P, J); this
embedding is thus a corestriction of the Yoneda embedding.

The topology Jdis on P is easily seen to be subcanonical, and

2-Sh(P, Jdis) ∼= Monotdis(P op, 2) ∼= Dwndis(P ).

It can already be observed that the isomorphisms 2-Sh(P ) ∼= Dwndis(P ) and
2-PreSh(P ) ∼= Dwn(P ) and the quotient diagram (2) exhibit the frame completion
that we are interested in as corestriction of the Yoneda embedding:

P
Y

↪→ 2-Sh(P, Jdis) ←←↪→ 2-PreSh(P ), (4)

this corestriction P ↪→ 2-Sh(P, Jdis) thus preserving not only all meets but also all
distributive joins that happen to exist in P . We can interpret that this corestric-
tion is obtained by “sheafifying” the thin presheaves with the aid of the topology
of distributive covers on P .

The distinctive feature of the topology Jdis among all topologies that may
exist on P , is that it is the canonical (i.e. finest subcanonical) topology on P ;
this proves the universality of the frame completion in diagram (4). We proceed
with two simple lemmas, before proving this result.

Lemma 1 Condition (ii) in the definition of “topology” is equivalent to the def-
inition of “distributive family”, in the following sense: a family {xi}i∈I in P
has a distributive join iff (a) its join exists and (b) for every y ≤

∨
i xi in P ,

y =
∨

i(xi ∧ y) (so in particular the right hand side of this equation is required to
exist).

Proof: Easy calculation. 2

Lemma 2 Let J ′ be a subcanonical topology on P . Then {xi}i∈I ∈ J ′(x) implies
that x =

∨
i xi (and in particular the right side of this equation exists).

Proof: Let {xi}i∈I ∈ J ′(x), then xi ≤ x for all xi, so surely x is an upper bound
of its covering family. Suppose that x is not the smallest upper bound, then
there must exist y < x in P such that xi ≤ y for all xi. But the topology J ′ is
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subcanonical, so in particular the representable ϕy is a sheaf. This implies, since
ϕy(xi) = 1 for all xi, that ϕy(x) = 1. This is in contradiction with the hypothesis
that y < x. 2

Proposition 3 The topology of distributive covers, Jdis, is the finest subcanonical
topology on P (and therefore it is “canonical”).

Proof: It was already observed that Jdis is indeed subcanonical. Suppose that J ′

is another subcanonical topology on P . Lemma 2 shows that the J ′-covers of an
element x are necessarily families {xi}i∈I whose join (exists and) is equal to x.
But lemma 1 then says that the join of such a covering family is necessarily dis-
tributive! And therefore we must have that J ′(x) ⊆ Jdis(x) for every x, meaning
that the topology of distributive covers Jdis is finer than any such subcanonical
topology J ′. 2

The topology of distributive covers on a meet-semilattice is thus canonical with
respect to thin sheaves, i.e. monotonic maps ϕ : P op → 2. But in fact this
topology is canonical even with respect to sheaves into Set, i.e. functors F :
P op → Set, in the appropriate topos-theoretic sense. (There exist different – but
equivalent! – definitions for the notion of topology on a category. According
to some references the definition we use here means that J is only a basis for a
topology. But, as can be expected from that terminology, every basis defines a
unique topology, so that no real confusion can arise.)

Theorem 1 The topology of distributive covers is the canonical Grothendieck
topology on a meet-semilattice (viewed as small category).

Proof: First of all, our definition 3 of (basis for a) topology on a meet-semilattice
is a precise translation of the pertinent definition of (basis for a) Grothendieck
topology on a small category with pullbacks, so the couple (P, Jdis) is really a
site in the topos-theoretic sense. Next, one has to convince oneself of the fact
that the representable presheaves on P , because P is a thin category, take as
their values in Set either the empty set ∅ or the typical singleton {∗}. That is to
say, the image of a representable presheaf is contained in a category equivalent
to 2. Asking for a representable presheaf, say P (−, x) : P op → Set, to be a sheaf
with respect to the topology Jdis, is to ask for a unique amalgamation for each
compatible family of elements in the sets in the image. But this notion coincides,
modulo an equivalence of the image category, with our definition 4 of thin sheaf,
in the following sense: P (−, x) : P op → Set is a sheaf on the site (P, Jdis) iff
ϕx : P op → 2 is a thin sheaf on that site. Therefore the lemmas 1 and 2 prove
our claim. 2

Let us denote by Sh(P, Jdis), resp. PreSh(P ), the topos of sheaves on the site
(P, Jdis), resp. that of presheaves on P . The topology Jdis being canonical implies
that the topos Sh(P, Jdis) is the smallest corestriction of the Yoneda embedding
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Y : P ↪→ PreSh(P ) of which P can still be considered a subcategory; the core-
striction itself is given by the “sheafification” of presheaves, i.e. an inclusion func-
tor Sh(P, Jdis) ↪→ PreSh(P ) that has an essentially surjective left adjoint which
itself preserves (besides all colimits also) finite limits:

P
Y

↪→ Sh(P, Jdis) ←←↪→ PreSh(P ). (5)

Diagram 4 is the “localic reflection” of diagram 5, in the terminology of (MacLane
and Moerdijk, 1992).
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