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Preface

For this candidature à l’habilitation à diriger des recherches I present a selection of my publi-

cations that appeared between 2005 and 2011—seven years of extraordinary adventures. After

my studies in Brussels (1994–1998) and my doctorate in Louvain-la-Neuve (1998–2005), I spent

one year as a post-doc researcher in Coimbra (2005–2006) and then three years in Antwerp

(2006–2009), to now find myself as a mâıtre de conférences in Calais (since 2009). Inbetween I

worked for several months in Sydney, and paid visits to many other countries worldwide. Each

of my travels held its surprises, but there is one constant: on each of these occasions I met and

collaborated with creative and original mathematicians, several of which I became good friends

with. I am very happy that Dirk Hofmann, Steve Lack and Fred Van Oystaeyen unhesitantly

accepted to act as rapporteurs, and Bob Coecke and Mai Gehrke as membres de jury, for this

thesis. These mathematicians represent the very best of experiences that I had during my “tour

of the world”. My post-doc years in Antwerp were particularly marked by my fruitful collabora-

tion with Hans Heymans, at the time a doctorate student of Fred Van Oystaeyen’s. If I am now

submitting this candidature à l’habilitation à diriger des recherches, then I do so too because

my co-direction of Hans’ doctoral thesis gave me a taste for more.
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41. April 2005: “Theorie des domaines en logique dynamique”, Equipe Preuves, Programmes,
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Synthesis of selected publications

As is customary for a ‘dossier de candidature à l’habilitation à diriger des recherches’, I shall

provide an introduction to, and a synthesis of, my post-doctoral research on quantaloid-enriched

categories in general, and sheaves on a quantaloid in particular. The style of this text will be

rather informal: explaining the main ideas will be of more importance than going into technical

details. I shall not necessarily respect the chronological order of my publications. Notes in this

text refer to those on page 37, and citations refer to the references on page 42.

1.

In his seminal [1973] paper, William F. Lawvere observed that a generalised metric space (X, d)

is, what we call today, a category enriched in the quantale [0,∞] of extended positive real num-

bers, and that a distance-decreasing map f : (X, d) // (Y, d) is a functor between such enriched

categories. Moreover, and more importantly, he proved that a metric space is Cauchy complete

(that is, Cauchy sequences converge) precisely when, viewed as a category, it admits all colimits

weighted by left adjoint distributors. In [2002] Lawvere commented that “[t]his connection is

more fruitful than a mere analogy, because it provides a sequence of mathematical theorems,

so that enriched category theory can suggest new directions of research in metric space theory

and conversely”; and in a message on the ‘categories’ mailing list of 28 October 2006, he puts it

more strongly: “[t]he whole general theory of enriched categories should in particular be focused

on metric spaces and relatives”.

Around the same time, Denis Higgs [1973] proved that the topos Sh(L) of sheaves on a locale

L is equivalent to the category Set(L) of so-called L-valued sets and L-valued mappings. An

L-valued set (A, [· = ·]) consists of a set A (of “local sections”) equipped with an L-valued

relation A × A //L: (x, y) 7→ [x = y] (giving the “extent to which x equals y”), satisfying a

number of axioms. Whereas such L-valued sets are thus a kind of L-enriched structure, they are

definitely not L-enriched categories: they lack in particular the unit axiom (corresponding with

the sheaf-theoretic fact that local sections are – by definition – not globally defined). However,

in [1981] Robert F. C. Walters provided an elegant solution to this problem: instead of keeping

the locale L as base for enrichment, he rather considers the quantaloid Lsi obtained by splitting

the idempotents in L (qua monoid in Sup), and proves that Sh(L) is equivalent to the category

of symmetric and Cauchy complete Lsi-enriched categories and functors. A year later, Walters

[1982] extended this result to Grothendieck topologies, proving that the topos Sh(C , J) of sheaves

on a small site (C , J) is equivalent to the category of symmetric and Cauchy complete categories
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enriched in a suitable quantaloid R(C , J) constructed from the site.

That metric spaces on the one hand, and sheaves on the other, can both be described as

enriched categories, clearly illustrates the power of expression of enriched category theory.

2.

The concept of a category enriched in a bicategory W was formulated by Jean Bénabou [1967]

(who called them “polyads”) in the same paper where he first defined bicategories themselves.

The hom of a bicategory with only one object is in fact a monoidal category V, and for a

complete and cocomplete, symmetric monoidal closed V, the theory of V-enriched categories

is well developed, as described in Max Kelly’s [1982] magnificent book. When Walters [1981,

1982] used enrichment in bicategories with several objects for his description of sheaves (see

above), Ross Street considered this “a major advance which meant that categories enriched in a

bicategory needed serious consideration” [Street, 2005], and indeed he himself further developed

the theory of W-enriched categories, soon followed by others [Street, 1981, 1983; Betti et al.,

1983; Gordon and Power, 1997, 1999].

My preferred flavour of enriched category theory is that where the base for the enrichment

is a small quantaloid Q, i.e. a small bicategory whose homs are complete lattices and in which

composition distributes on both sides over suprema. Put differently, a quantaloid is precisely a

locally posetal, locally cocomplete, closed bicategory. So whenever I speak of Q-enriched cate-

gories, functors and distributors, I mean so in the sense of categories enriched in a bicategory. To

wit, a Q-category C is given by a set C0 of ‘objects’ together with a ‘type’-function t:C0
//Q0,

and for every pair (x, y) of objects in C a ‘hom’-morphism C(y, x): tx // ty in Q, such that the

composition-inequality and the unit-inequality,

resp. C(z, y) ◦ C(y, x) ≤ C(z, x) and 1tx ≤ C(x, x),

hold for every x, y, z ∈ C0. (Identifying a quantale with a one-object quantaloid, the type-

function t:C0
//Q0 becomes obsolete, and quantale-enriched categories are then precisely cat-

egories enriched in a posetal monoidal closed category.)

In a quantaloid Q, every diagram of 2-cells commutes trivially. This greatly simplifies certain

aspects of Q-enriched categories when compared toW-enriched (or even V-enriched) categories:

there are no (or only very few) coherence issues. Indeed, already in the very definition of a

Q-category, there is no need to require associativity of composition, nor neutrality of units, let

alone coherence of its structural 2-cells, for it is all automatic. On the other hand, Q-enrichment

does present new difficulties, not addressed in V-enriched category theory (for V a symmetric

monoidal closed category), stemming from the inherent non-commutativity of the composition of

morphisms in Q. This is already illustrated by the simple fact that a Q-category C need not have

a dual: defining C∗ to have the same objects as C, but with hom-morphisms C∗(x, y) := C(y, x),

does not produce a Q-category (but rather a Qop-category).

All in all, the study of Q-enriched categories is thus justified, not only by the aforementioned

examples (metric spaces, sheaves), but also by the particular phenomena, arising from the non-

commutativity of the composition in Q, that it necessarily considers.
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3.

In ordinary category theory, one usually starts by defining categories, functors and natural

transformations, to then go on about co- and contravariant presheaves, Yoneda’s Lemma, limits

and colimits, adjoint functors, and so on (see e.g. [Borceux, 1994]). In V-enriched category

theory, a similar path can be followed if, as Kelly [1982, p. 35] underlines, “our given V is

symmetric monoidal closed” because the structure of the 2-category of V-categories, V-functors

and V-natural transformations “then becomes rich enough to permit of Yoneda-lemma arguments

formally identical to those in [ordinary category theory]”. For categories enriched in a quantaloid

Q (or, more generally, in a bicategoryW), I have come to appreciate a slightly different approach,

which elegantly avoids complications due to the non-commutativity of the composition in Q: by

introducing the notion of distributor (= module = profunctor) between Q-enriched categories

[Bénabou, 1973; Lawvere, 1973; Street, 1981] alongside the usual notion of functor, Q-category

theory (with presheaves, Yoneda’s Lemma, limits and colimits, and so on) develops from the

interplay between functors and distributors.

To illustrate this point, consider co- and contravariant presheaves on a V-category (or, taking

V = Set, on an ordinary category) C: these are defined as functors F :C //V and F :C∗ //V
respectively, and thus rely not only on V being a V-category, but also on each category C having

a dual C∗—quod non in the case of enrichment in a quantaloid. However, for Q-categories C
and C′, a distributor Φ:C c //C′ is easily defined: it consists of a collection Φ(x′, x): tx // tx′ of

morphisms in Q, one for each pair (x, x′) ∈ C0 × C′0, such that two action-inequalities,

resp. Φ(y′, y) ◦ C(y, x) ≤ Φ(y′, x) and C′(y′, x′) ◦ Φ(x′, x) ≤ Φ(y′, x),

hold for all x, y ∈ C0 and x′, y′ ∈ C′0. Further, for any object X in the base quantaloid Q, there

is a trivial one-object Q-category ∗X whose hom-arrow is 1X . And then it makes perfect sense to

define, for any Q-category C, a covariant presheaf of type X on C to be a distributor φ:C c // ∗X
and a contravariant presheaf to be a distributor φ: ∗X c //C. The appropriate application of

these definitions to V-categories gives back the “usual” definitions.

From the definition of distributor, it is easy to check that, for any two such distributors

Φ:A c //B and Ψ:B c //C, there is a third distributor Ψ⊗Φ:A c //C whose elements are given by

(Ψ⊗ Φ)(c, a) =
∨

b∈C0

Ψ(c, b) ◦ Φ(b, a).

Furthermore, parallel distributors can be ordered elementwise: for Φ:A c //B and Φ′:A c //B,

say that Φ ≤ Φ′ whenever Φ(b, a) ≤ Φ′(b, a) for all a ∈ A0 and b ∈ B0. For this composition

law and this order, Q-categories and distributors form a quantaloid Dist(Q). On the other

hand, a functor F :A //B between Q-categories is – evidently – defined to be an object-map

F :A0
//B0: a 7→ Fa which preserves types (i.e. ta = t(Fa)) and such that the action-inequality

A(a′, a) ≤ B(Fa′, Fa) holds for all a, a′ ∈ A0. Functors compose in the obvious way, giving rise

to a category Cat(Q) of Q-categories and functors between them. But each functor F :A //B
also represents an adjoint pair of distributors: let F∗:A c //B have elements F∗(b, a) := B(b, Fa),

and let F ∗:B c //A have elements F ∗(a, b) := B(Fa, b), then it is easily seen that F∗ is left adjoint
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to F ∗ in the quantaloid Dist(Q). This process is functorial, so that we end up with an inclusion

Cat(Q) //Dist(Q):
(
F :A //B

)
7→
(
A ⊥

cF∗
$$c

F ∗
ee B

)

of the category of Q-categories and functors in the quantaloid of Q-categories and distributors.

This inclusion – which is an example of a pro-arrow equipment [Wood, 1982] – is what I take

as starting point for Q-enriched category theory (as summarised in [Stubbe, 2005a]).

As a direct consequence of this take on things, I often rely on various aspects of the distributor

calculus (e.g. liftings and extensions in Dist(Q), representability of a distributor, tabulation of

a functor, and so on) to develop arguments in Q-category theory. Also the importance (and

significance) of Cauchy complete Q-categories is best illustrated from this point of view. Lawvere

[1973] defined a category B to be Cauchy complete when, for any other category A, the order-

preserving function

Cat(Q)(A,B) //Map(Dist(Q))(A,B):F 7→ F∗

from functors to left adjoint (“map”) distributors between A and B, is an equivalence of ordered

sets. This implies in particular that the inclusion Cat(Q) //Dist(Q) (co)restricts to an equiva-

lence Catcc(Q) ' Map(Dist(Q)) of the category of Cauchy complete categories and functors with

the category of (all) categories and left adjoint distributors.

4.

In this section I shall comment on my post-doctoral publications that deal with Q-enriched

category theory in general. To accord with Lawvere’s [1973] credo that “enriched categories

should in particular be focused on metric spaces and relatives”, I shall present these results

here as generalisations of metric space theory (categories enriched in [0,∞]) or poset theory

(categories enriched in the Boolean algebra 2 = {0, 1}). Where I saw fit, I have indicated open

problems for further study. In Section 5 on page 25, I shall then pick up the thread of my

non-technical exposition.

4.1. Symmetrisation and Cauchy completion. It is a matter of fact that the Cauchy

completion of an ordinary metric space (X, d) is again an ordinary metric space; that is to say,

the canonical way to mesure the distance between Cauchy sequences in (X, d) always provides for

a symmetric distance function. But this fact is false in general for quantaloid-enriched categories!

In [Heymans and Stubbe, 2011a] we analysed this situation (not only with metric spaces in mind,

but also motivated by Walters’ [1981] description of sheaves on a site as symmetric and Cauchy

complete enriched categories), and our main result is the identification of those quantaloids Q
that we call Cauchy bilateral: they have the property that the Cauchy completion of a symmetric

Q-category is again symmetric. I shall briefly explain this.

If Q is an involutive1 quantaloid, with involution f 7→ fo, then each Q-category A can be

symmetrised: define As to be the same set of objects (with the same type function) but now

16



with

As(x, y) := A(x, y) ∧ A(y, x)o

as hom-morphisms. This procedure straightforwardly determines a symmetrisation functor

(−)s:Cat(Q) //Cat(Q) on the category of Q-categories; better still, with obvious comultipli-

cation and counit this functor is a comonad. The coalgebras for this comonad are exactly the

symmetric Q-categories. On the other hand, as is well-known, each Q-category A can be Cauchy

completed, and this completion process determines a monad (−)cc:Cat(Q) //Cat(Q). The alge-

bras for this monad are precisely the Cauchy complete Q-categories. We can now elegantly state

the problem of compatiblity between Cauchy completion and symmetry: Is there a distributive

law of the Cauchy completion monad (−)cc over the symmetrisation comonad (−)s?

Because both the monad and the comonad arise from (co)reflective subcategories of Cat(Q),

there is at most one distributive law of Cauchy completion over symmetrisation. Therefore, the

existence of the distributive law is a property of Q. There are quantaloids for which it exists,

and quantaloids for which it doesn’t exist. We established a useful elementary criterion for the

existence of such a distributive law:

Theorem. Say that a quantaloid Q is Cauchy bilateral2 if it is involutive (with involution

f 7→ fo) and when for each family (fi:X //Xi, gi:Xi
//X)i∈I of morphisms in Q,

∀j, k ∈ I : fk ◦ gj ◦ fj ≤ fk
∀j, k ∈ I : gj ◦ fj ◦ gk ≤ gk

1X ≤
∨

i∈I
gi ◦ fi





=⇒ 1X ≤
∨

i∈I
(gi ∧ fo

i ) ◦ (go
i ∧ fi).

For each Cauchy bilateral quantaloid Q there is a distributive law of the Cauchy completion

monad (−)cc over the symmetrisation comonad (−)s on the category Cat(Q) of Q-enriched cat-

egories.

Given the importance of symmetry in the theory of (ordinary) metric spaces, it is remarkable

that symmetry is an apparently little-studied property for enriched categories. Even more so

because there are many interesting questions:

Problem. Prove that the sufficient condition in the above theorem is also necessary, or sharpen

it to make it a necessary-and-sufficient condition. For monads T :Cat(Q) //Cat(Q) other than

Cauchy completion, identify the T -bilateral quantaloids, i.e. those for which there exists a dis-

tributive law of the monad T over the symmetrisation comonad (−)s.

4.2. Hausdorff distance. If (X, d) is a generalised metric space, then it is possible to define

a generalised metric on the subsets of X:

δ(S, T ) :=
∨

s∈S

∧

t∈T
d(s, t)

satisfies all the axioms of a generalised metric on the powerset P(X); it is called the generalised

Hausdorff distance on P(X). Following the work of [Albert and Kelly, 1988; Kelly and Schmitt,
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2005; Schmitt, 2009] on categories enriched in a symmetric monoidal closed category, and that

of [Akhvlediani et al., 2010] for categories enriched in a commutative quantale, I analysed this

situation in the context of quantaloid-enriched categories [Stubbe, 2010]. It turns out that the

Hausdorff construction is an example of a weighted cocompletion (namely, cocompletion with

respect to the so-called conical weights, a.k.a. conical cocompletion). More precisely:

Theorem. Each saturated class C of weights defines, and is defined by, an essentially unique

KZ-doctrine3 T on the category Cat(Q) of Q-categories and functors; a class C and a doctrine T
correspond with each other if and only if the T -algebras and their homomorphisms are precisely

the C -cocomplete Q-categories and the C-cocontinuous functors between them. Moreover, the KZ-

doctrines that arise in this manner are precisely the full sub-KZ-doctrines of the free cocompletion

KZ-doctrine; they can be characterised with two simple “fully faithfulness” conditions4. As an

example one finds that conical weights form a saturated class, and the corresponding KZ-doctrine

is the ‘Hausdorff doctrine’: applied to Lawvere’s quantale of positive real numbers, it coincides

with the Hausdorff construction for generalised metric spaces.

Related to the notion of Hausdorff distance between subsets of a single metric space, is that of

Gromov distance between two metric spaces: it measures how far two such spaces are from being

isometric, by computing the infimum of their Hausdorff distance after having been isometrically

embedded into any common larger space. This turns the set of all isometry classes of metric

spaces into a metric space. Akhvlediani, Clementino and Tholen [2009] provide a generalisation

of Gromov distance for categories enriched in a commutative quantale, and insist particularly

on the fact that Gromov distance is necessarily built up from symmetrised Hausdorff distance.

As I have indicated above, symmetrisation for quantaloid-enriched categories only makes sense

when that quantaloid is involutive. This leaves many open questions:

Problem. Under which conditions on Q can we symmetrise the Hausdorff doctrine on Cat(Q),

or in other words, which quantaloids are Hausdorff-bilateral? How can we then define the Gromov

distance between two quantaloid-enriched categories? And what exactly is then the meaning of

“the Q-category of all Q-categories”?

4.3. Exponentiability. It is a mere triviality that any ordered set A = (A,≤) is exponen-

tiable in the category Ord of ordered sets and order-preserving functions: that is to say, for

any B = (B,≤) and C = (C,≤), there is an evident natural bijection between order-preserving

functions C×A //B and order-preserving maps C //Ord(A,B) (where Ord(A,B) is the set of

order-preserving functions from A to B, with pointwise order). The category Ord being precisely

the category Cat(2) of 2-enriched categories (2 being the two-element Boolean algebra), makes

one wonder if a similar result holds for other categories of quantaloid-enriched categories too.

The simple answer to this question is negative: in the category of generalised metric spaces,

which we know is Cat([0,∞]), not every object is exponentiable [Clementino and Tholen, 2006].

In [Clementino, Hofmann and Stubbe, 2009] we completely characterise, for any base quantaloid

Q, those objects and morphisms in Cat(Q) which are exponentiable:

Theorem. A functor F :A //B between Q-enriched categories is exponentiable, i.e. the functor
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“product with F”

−× F :Cat(Q)/B
//Cat(Q)/B

admits a right adjoint, if and only if the following two conditions hold:

1. for every a, a′ ∈ A and
∨
i fi ≤ B(Fa′, Fa),
(∨

i

fi

)
∧ A(a′, a) =

∨

i

(
fi ∧ A(a′, a)

)
,

2. for every a, a′′ ∈ A, b′ ∈ B, f ≤ B(b′, Fa) and g ≤ B(Fa′′, b′),

(g ◦ f) ∧ A(a′′, a) =
∨

a′∈F−1({b′})

(
(g ∧ A(a′′, a′)) ◦ (f ∧ A(a′, a))

)
.

A Q-category A is an exponentiable object of Cat(Q) precisely when the unique functor into

the terminal object5 of Cat(Q) is exponentiable in the sense of the above theorem: thus it is

necessary and sufficient that each hom-arrow A(a′, a) is exponentiable in Q(ta, ta′) and moreover

(g ◦ f) ∧ A(a′′, a) =
∨{

(g ∧ A(a′′, a′)) ◦ (f ∧ A(a′, a)) | a′ ∈ A, ta′ = Y
}

for all a, a′′ ∈ A and f : ta // Y , g:Y // ta′′ in Q. If the base of enrichment is a quantal

frame (i.e. a quantale whose underlying suplattice is a locale) in which the interchange law

(g ◦f)∧ (k ◦h) = (g∧k)◦ (f ∧h) holds, then it is not difficult to infer from the above that every

Q-enriched category is exponentiable. This is in particular true for the one-object suspension of

a locale, and a fortiori for the one-object suspension of the two-element Boolean algebra, so we

recover the initial observation that every ordered set is exponentiable.

Problem. The free quantaloid Q(C ) on a category C has the same objects as C , the hom-

suplattice Q(C )(A,B) is the powerset of C (A,B), composition in Q(C ) is done “elementwise”

and the identity on A is {1A}. (This construction provides a left adjoint to the forgetful functor

from quantaloids to categories.) The interchange law holds in any free quantaloid. Categories

enriched in a free quantaloid have been linked with automata theory and process semantics[Betti,

1980; Rosenthal, 1995]: the objects of a Q(C )-category A are the (typed) states of an automaton,

and the arrows of C are its (typed) labels or processes. To have an f ∈ A(a′, a) is then read

as “having a process f to produce a′ from a”; often this is denoted as f : a ; a′. It turns out

that A is exponentiable if and only if, for any states a and a′′ and type Y ∈ C , if f : a ; a′′

and f = h ◦ g with cod(g) = Y = dom(h) in C , then there is a state a′ of type Y together

with p: a ; a′, q: a′ ; a′′ such that f = q ◦ p. This statement is trivial when C is a one-object

category, i.e. in the case of an untyped automaton, but what role does it play in typed automata

theory or process semantics?

4.4. Tensors and cotensors. In the theory of ordered sets, complete lattices play of course

an important role. Suprema and infima being dual notions, let me single out the former: I

write Sup for the category of suplattices and supmorphisms; it is a subcategory of Ord. From a

categorical point of view, a supremum is a colimit, so it comes as no surprise that the correct Q-

categorical generalisation of a suplattice is a cocomplete Q-category, that is, one that admits all
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weigthed colimits. Similarly, supmorphisms between suplattices are generalised by the so-called

cocontinuous functors between cocomplete Q-categories, that is, those functors that preserve

all weighted colimits; I shall write Cocont(Q) for the category of cocomplete Q-categories and

cocontinuous functors.

For an ordinary category C , it is well known that C has all colimits if and only if C has

coequalisers and coproducts: every colimit in C can be constructed as a coequaliser of two mor-

phisms between coproducts. In that same spirit of decomposing a complicated notion (colimit)

to simpler ones (coequaliser and coproduct), a V-enriched (or even W-enriched) category is co-

complete (= has all weighted colimits) if and only if it is tensored and has all conical colimits

[Kelly, 1982; Gordon and Power, 1999]. Here it must be remarked that both tensors and conical

colimits are examples of weighted colimits. In the specific case of quantaloid-enriched cate-

gories, I further reduced the notion of weighted colimit to a combination of tensors, cotensors

and suprema [Stubbe, 2006], as I shall explain next.

If C is a Q-enriched category and X an object of Q, then I shall write CX for the collection

of objects of C whose type in Q is X; it is the “fibre” of C over X. For any two objects x, y ∈ CX
we can then define

x ≤ y whenever 1X ≤ C(x, y),

which makes (CX ,≤) an ordered set6. It thus makes sense to speak of suprema in these “ordered

fibres” of a quantaloid-enriched category C; so define C to be order-cocomplete whenever each

of its ordered fibres is a suplattice. And let me insist on the fact that such suprema are not

weighted colimits7.

Theorem. If C is a cotensored Q-category, then the supremum of a family (xi)i∈I ∈ CX is

also its conical colimit in C. It follows that a Q-category C is cocomplete if and only if it

has tensors, cotensors and is ordered-cocomplete. Explicitly, for a distributor Φ:A c //B and a

functor F :B //C, the Φ-weighted colimit of F is then the functor

colim(Φ, F ):A //C: a 7→
∨

b∈B0

Fb⊗ Φ(b, a).

Moreover, a functor F :C //C′ between cocomplete Q-categories is cocontinuous if and only it

preserves tensors and suprema in each of the CX .

This result indicates that certain concepts from order theory can be “lifted” to Q-category

theory (suprema are “lifted” to conical colimits), but the price to pay has to do with the existence

of (co)tensors. A similar “lifting” of adjuctions can be done:

Theorem. For any functor F :C //C′ between Q-categories and any object X of Q, the “fibre-

wise function” FX :CX //C′X :x 7→ Fx preserves the order in the “ordered fibres” of C and C′

over X. If C is tensored, then F is a left adjoint in Cat(Q) if and only if F preserves tensors

and, for all Q-objects X, F :CX //C′X is a left adjoint in Ord.

4.5. Variation and enrichment. The two previous theorems (and their corollaries, on which

I shall not comment here) now allow for a detailed study of the relation between enrichment
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in a quantaloid on the one hand, and variation over a quantaloid on the other (to paraphrase

[Betti et al., 1983; Gordon and Power, 1997]).

In the case of an ordinary category C , the phrase “variation over C ” most often refers to a

(contravariant, say) presheaf on C , i.e. a functor C op // Set; thus the category of “variable sets

over C ” is the functor category Fun(C op,Set). When C is a one-object category, thus a monoid,

a presheaf is exactly the same thing as an action of that monoid on a set. Similarly, if R is

an Ab-enriched category (a “ringoid”), “variation over R” refers to the category of Ab-enriched

contravariant presheaves on R. When R has only one object, then it is a ring, and this category

is precisely the category of R-modules, so we write it rather as Mod(R).

As for a quantaloid Q, regarding it as a category enriched in the symmetric monoidal closed

category Sup of suplattices and supmorphisms, it is completely in line with the two previous ex-

amples to define Mod(Q) to be the Sup-enriched presheaf category on Q. By general V-enriched

category theory, a V-enriched presheaf category is always a V-category; for a quantaloid Q,

this means that Mod(Q) too is a quantaloid. Explicitly, its objects are the quantaloid ho-

momorphisms (= Sup-enriched functors) from Qop to Sup, its morphisms are the Sup-natural

transformations, and its 2-cells are given by the pointwise ordering of the natural transforma-

tions.

However, and this is an important subtlety, besides the straightforward notion of modules

on Q, there are many “weaker” flavours of variation over Q, which I shall now briefly explain.

If A and B are locally ordered 2-categories, then a pseudofunctor F :A //B is an action on

objects and morphisms that respects the local order and such that functoriality holds up to

local isomorphism. For two such pseudofunctors F ,F ′:A //B, a lax natural transformation

ϕ:F +3 F ′ is a family of B-morphisms (ϕX :FX //F ′X)X∈A0 satisfying, for any f :X // Y

in A, F ′f ◦ ϕX ≤ ϕY ◦ Ff in B(FX,F ′Y ). Such a transformation is pseudonatural when

these inequalities are isomorphisms. Lax natural transformations are ordered componentwise.

There are locally ordered 2-categories Psdlax(A,B), resp. Psd(A,B), with pseudofunctors as

objects and lax natural transformations, resp. pseudonatural transformations, as arrows. Now

let B = Cat(2); a pseudofunctor F :A //Cat(2) is closed when, for every X,Y in A and x ∈ FX,

F(−)(x):A(X,Y ) //FY : f 7→ F(f)(x)

is a left adjoint in Cat(2). ClPsdlax(A,Cat(2)) and ClPsd(A,Cat(2)) are the full sub-2-categories

of Psdlax(A,Cat(2)) and Psd(A,Cat(2)) determined by the closed pseudofunctors.

To spell out properly the close relationship between (pseudo)functors on Q on the one hand,

and Q-enriched categories on the other hand, I must introduce some notations concerning Q-

categories. I shall write Cat⊗(Q) for the full sub-2-category of Cat(Q) whose objects are ten-

sored categories, and Tens(Q) for its sub-2-category whose objects are tensored categories and

morphisms are tensor-preserving functors. Similarly I use Cat〈〉(Q) for the full sub-2-category

of Cat(Q) whose objects are cotensored categories, and moreover the obvious combination

Cat⊗,〈〉(Q). As usual I write Map(K) for the category of left adjoints (“maps”) in any given

2-category K. Recall also that Cocont(Q) denotes the locally completely ordered 2-category

whose objects are cocomplete Q-categories and morphisms are cocontinuous functors. Now I

can state the result from [Stubbe, 2006]:
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Theorem. A tensored Q-category C determines a closed pseudofunctor

FC:Qop //Cat(2):
(
f :X // Y

)
7→
(
−⊗f :CY //CX

)
,

and a functor F :C //C′ between tensored Q-categories determines a lax natural transformation

ϕF :FC +3 FC′ with components ϕFX :CX //C′X :x 7→ Fx.

The action (F :C //C′) 7→ (ϕF :FC +3 FC′) determines the following biequivalences:

1. Cat⊗(Q) ' ClPsdlax(Qop,Cat⊗(2)),

2. Tens(Q) ' ClPsd(Qop,Tens(2)),

3. Map(Cat⊗,〈〉(Q)) ' ClPsd(Qop,Map(Cat⊗,〈〉(2))),

4. Cocont(Q) ' ClPsd(Qop,Cocont(2)),

5. Cocont(Q) ' Mod(Q).

In much of what follows (not only in the following subsection but also in Section 7), the

equivalence of cocomplete Q-categories with Q-modules will play a central role.

4.6. Continuity and algebraicity for categories. On any suplattice L one may define the

so-called way-below relation: a � b holds when for every directed downset D ⊆ L, b ≤ ∨D
implies a ∈ D. A suplattice is said to be continuous when every element is the supremum of all

elements way-below it. As a (stronger) variant, one may also define the totally-below relation

on a suplattice L: a≪ b holds when for any downset D ⊆ L, b ≤ ∨D implies a ∈ D. Of course

L is now said to be totally continuous when every element is the supremum of all elements

totally-below it; in this case L is also continuous. Robert Rosebrugh and Richard Wood [1994]

studied the categorical aspects of the latter notion; let me recall some of its features:

(a) A suplattice L is totally continuous if and only if any supmorphism f :L //M factors

through any surjective supmorphism g:K // //M , i.e. it is a projective object in Sup.

(b) Totally continuous suplattices are precisely those suplattices for which the map sending

a downset to its supremum has a left adjoint: the left adjoint to
∨

:Dwn(L) //L:D 7→ ∨
D

is namely the map a 7→ {x ∈ L | x ≪ a}. In other words, the supremum-map is required to

preserve all infima; and so such a suplattice is also said to be completely distributive.

(c) Given a set equipped with an idempotent binary relation (X,≺), the subsets S ⊆ X

such that x ∈ S if and only if there exists a y ∈ S such that x ≺ y, form a totally continuous

suplattice, denoted R(X,≺). In fact, every totally continuous suplattice L is isomorphic to such

an R(X,≺).

(d) Given any ordered set (X,≤), the construction in (c) implies that the set Dwn(X) of

downsets of (X,≤) is a totally continuous suplattice. But it distinguishes itself in that every

element of Dwn(X) is the supremum of totally compact elements, i.e. elements that are totally

below themselves. Such a suplattice is said to be totally algebraic; and in fact all totally algebraic

suplattices are of the form Dwn(X) for some ordered set (X,≤).
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In [Stubbe, 2007] I proved that the crucial aspects of the theory of totally continuous su-

plattices recalled above all generalise neatly to cocomplete Q-categories: it is possible to make

sense of such notions as ‘projectivity’, ‘complete distributivity’, ‘total continuity’ and ‘total al-

gebraicity’ in the context of cocomplete Q-categories. By way of illustration, let me spell out

how the totally-below relation is defined on an arbitrary cocomplete Q-category A.

First, consider the Yoneda embedding YA:A //PA; it induces a right adjoint distributor

PA(YA−,−):PA c //A. Because A is cocomplete, we can compute for any φ ∈ PA the φ-

weighted colimit of the identity functor on A; this provides for a functor supA:PA //A, which

in turn determines a left adjoint distributor A(−, supA−):PA c //A. In the quantaloid Dist(Q)

of Q-categories and distributors we can then define a new distributor ΘA:A c //A as the right

extension of A(−, supA−) through PA(YA−,−):

PA cPA(YA−,−)
//

cA(−, supA−)

��

A

A

c
ΘA =

{
A(−, supA−),PA(YA−,−)

}
.

>>

Explicitly, this extension in Dist(Q) can be reduced to an infimum of extensions in Q: it turns

out that the elements of ΘA:A c //A are, for x, y ∈ A,

ΘA(x, y) =
∧

φ∈PA
{A(y, supAφ), φ(x)}.

It is precisely this distributor which is the Q-categorical analogue of the “totally-below” relation;

indeed, when puttingQ = 2, thus working with ordered sets, the above formula encodes precisely

the phrase that

x≪ y ⇐⇒ for all downclosed subsets φ: y ≤ sup(φ) implies x ∈ φ,

that is, we recover the “classical” definition of the totally below relation.

The following theorems give an idea of the many interesting things that can be said about

continuity and algebraicity for Q-categories:

Theorem. For a cocomplete Q-category A, the following are equivalent:

1. A is totally continuous, i.e. supA(ΘA(−, x)) ∼= x for every x ∈ A,

2. A is a projective object in Cocont(Q),

3. A is completely distributive, i.e. the functor supA:PA // //A has a left adjoint,

4. A is equivalent to the category of regular presheaves8 on a regular Q-semicategory B.

Mapping a regular Q-semicategory B to the cocomplete Q-category R(B) of regular presheaves

on B extends to a biequivalence RSDist(Q) ' Coconttc(Q) between the quantaloid of regular Q-

semicategories and regular semidistributors and the full subcategory of Cocont(Q) determined by

the totally continuous cocomplete Q-categories.
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Theorem. Let A be a cocomplete Q-category. Say that an object a ∈ A is totally compact when

1ta ≤ ΘA(a, a); let Ac be the full subcategory of totally compact objects of A. As particular case

of the above theorem, the following are equivalent:

1. A is totally algebraic, i.e. the left Kan extension of i:Ac
//A along itself is the identity,

2. A is equivalent to the category of presheaves on a Q-category C.

Mapping a Q-category C to the cocomplete Q-category P(C) of presheaves on C extends to a

biequivalence Dist(Q) ' Cocontta(Q) between the quantaloid of Q-categories and distributors and

the full subcategory of Cocont(Q) determined by the totally algebraic cocomplete Q-categories.

In the context of theoretical computer science, [Abramsky and Jung, 1994] argue that a

mathematical structure deserves to be called a “domain” when it is an algebraic structure that

unites aspects of convergence and of approximation. A totally continuous cocompleteQ-category

does exactly that: it is cocomplete (“every presheaf converges”) and is equipped with a well-

behaved totally-below relation (“approximations from below”). So this result has the flavour of

“quantaloid-enriched domain theory”—or “dynamic domains”, as I call them.

Problem. Totally continuous (or algebraic) cocomplete Q-categories are very strong structures,

because in the definition we abandonned the notion of “directedness” (which itself is related

to “finiteness”). How can a notion of “directedness” be brought back in again? How should

“directed (or filtered) colimits” be defined for categories enriched in a quantaloid? Can we

then define (non-totally) continuous and algebraic Q-categories? And how about a quantaloid-

enriched setting for recursive domain equations then?

4.7. Continuity and algebraicity for modules. Previously I pointed out that Cocont(Q),

the 2-category of cocomplete Q-categories and cocontinuous functors, is biequivalent to Mod(Q),

the quantaloid of modules on Q. Under this equivalence, the projective objects in Cocont(Q)

correspond of course with the projective objects in Mod(Q). But, somewhat surprisingly, more

can be said [Stubbe, 2007]:

Theorem. Let A be a cocomplete Q-category and F a Q-module that correspond with each other

under the equivalence Cocont(Q) ' Mod(Q). The following statements are equivalent:

1. A is totally continuous,

2. F is projective,

3. F is a retract of a direct sum of representable Q-modules,

4. F is small-projective9.

In [Heymans and Stubbe, 2009a] we similarly express the total algebraicity of a cocomplete

Q-category A in terms of its associated Q-module F . To explain this, it is useful to introduce

some new terminology first. Consider a Q-module F :Qop // Sup and an element x ∈ F(X) (for

some X ∈ Q). By the Sup-enriched Yoneda Lemma, x corresponds with a module morphism
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τx:Q(−, X) +3 F . If τx is a left adjoint in Mod(Q), then x is, by definition, a principal element

of F . The set of principal elements of F is thus

Fpr =
{
τ(1X) | X ∈ Q and τ :Q(−, X) +3 F is a left adjoint

}
,

and we say that F is principally generated if

idF =
∨{

τ ◦ τ∗
∣∣∣ X ∈ Q and τ :Q(−, X) +3 F is a left adjoint

}
.

Theorem. Let A be a cocomplete Q-category and F a Q-module that correspond with each other

under the equivalence Cocont(Q) ' Mod(Q). The following statements are equivalent:

1. A is totally algebraic10,

2. F is principally generated,

3. F is an adjoint retract of a direct sum of representable Q-modules11.

It follows trivially that the biequivalence Mod(Q) ' Cocont(Q) restricts to a biequivalence

between the category Modpg(Q) of principally generated modules and module morphisms and the

category Cocontta(Q) of totally algebraic cocomplete Q-categories and cocontinuous functors.

From the previous subsection it follows furthermore that Cocontta(Q) is equivalent to Dist(Q), so

taking left adjoints we end up with the equivalence Map(Modpg(Q)) ' Map(Dist(Q)) ' Catcc(Q).

This observation will be useful in Section 7.

5.

As recalled in Section 1, Higgs [1973] described a sheaf on L as an L-valued set, whereas Walters

[1981] described a sheaf as a symmetric and Cauchy complete category enriched in Lsi, the

split-idempotent completion of L. In the article [Stubbe, 2005c], drawn from my doctoral thesis,

I analysed this situation for a quantaloid Q instead of a locale L. I shall present a very brief

overview of my findings, for it plays an essential role in my post-doctoral research too.

Whereas [Higgs, 1973] presents the equivalence of Sh(L) with the category of L-valued sets

and L-valued functions, Francis Borceux and Rosanna Cruciani [1998] gave a similar presentation

of ordered objects and order-preserving maps in Sh(L): they prove that Ord(Sh(L)) is equivalent

to the category of L-valued posets and L-valued order-preserving maps. An L-valued poset

(A, [· ≤ ·]) consists of a set A equipped with an L-valued relation A× A //L: (x, y) 7→ [x ≤ y],

satisfying a number of axioms. When studying this notion, replacing the locale L by a quantaloid

Q, and trying to make sense of the axioms, I realised that the correct, general definition is that

of a ‘totally regular Q-semicategory’ [Stubbe, 2005c].

Precisely, a Q-enriched totally regular semicategory A is a set A0 of ‘objects’ together with a

‘type’-function t:A0
//Q0, and a ‘hom’-morphism A(y, x): tx // ty in Q for each pair (x, y) of

objects such that the composition-inequality and two total-regularity-equalities hold:

A(z, y) ◦ A(y, x) ≤ A(z, x) and A(y, y) ◦ A(y, x) = A(y, x) = A(y, x) ◦ A(x, x).
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This notion lies between that of Q-category and that of regular Q-semicategory: every Q-

category is a totally regularQ-semicategory and every totally regularQ-semicategory is a regular

semicategory, but neither of the converses are true. However, much like for Q-categories, there

are appropriate notions of regular semidistributor and regular semifunctor between totally reg-

ular Q-semicategories, making for a quantaloid TRSDist(Q) of totally regular Q-semicategories

and regular semidistributors between them, and a locally ordered category TRSCat(Q) with

the same objects but now with regular semifunctors as morphisms. There is an inclusion

TRSCat(Q) //TRSDist(Q) (mapping a semifunctor onto its ‘graph’), giving rise to the notion

of a Cauchy complete totally regular Q-semicategory B: one such that, for each A,

TRSCat(Q)(A,B) //Map(TRSDist(Q))(A,B)

is an equivalence of posets. Writing TRSCatcc(Q) for the full sub-2-category of TRSCat(Q)

whose objects are Cauchy complete, it thus follows that TRSCatcc(Q) ' Map(TRSDist(Q)).

The point is then that, for a locale L viewed as a one-object quantaloid, Map(TRSDist(L))

is exactly the category of L-valued posets à la [Borceux and Cruciani, 1998]; it follows that this

category is equivalent to Ord(Sh(L)). Furthermore, it makes perfect sense to define a totally

regular L-semicategory A to be symmetric whenever A(y, x) = A(x, y) for any two objects x

and y, since both A(y, x) and A(x, y) are elements of L. These symmetric totally regular L-

semicategories (i.e. ‘L-valued symmetric posets’) are the objects of a full coreflective subcategory

Map(TRSDistsym(L)) of Map(TRSDist(L)), which is precisely the category of L-valued sets in the

sense of [Higgs, 1973]; so it is equivalent to Sh(L).

Now, the very definition of a totally regular Q-semicategory A already hints at the important

role that idempotents in Q play: putting x = y = z in either of the two total-regularity-equations

shows that each endo-hom-morphism A(x, x): tx // tx in A is an idempotent in Q. In fact, each

totally regular Q-semicategory A can be “reshuffled” to obtain a category Â enriched in Qsi,

the split-idempotent completion of Q: Â0 = A0 is the set of objects, t̂: Â0
// (Qsi)0:x 7→ A(a, a)

is the type-function, and Â(y, x) := A(y, x) is the hom-arrow for a pair (x, y) of objects. A

similar “reshuffle” applies to regular distributors between totally regular Q-semicategories too,

determining an equivalence TRSDist(Q) ' Dist(Qsi). Taking left adjoints in these equivalent

quantaloids produces equivalent locally ordered categories TRSCatcc(Q) ' Map(TRSDist(Q)) '
Map(Dist(Qsi)) ' Catcc(Qsi).

Applying the latter equivalence of locally ordered categories to a locale L viewed as a one-

object quantaloid, we find as many equivalent descriptions of Ord(Sh(L)), the locally ordered

category of ordered objects and order-preserving maps in the topos of sheaves on L; in particu-

lar can an ordered sheaf on L be described as a Cauchy complete category enriched in Lsi, the

split-idempotent completion of L. For an Lsi-category C it makes moreover sense to say that it

is symmetric whenever C(y, x) = C(x, y) holds for any two objects x and y, because both C(y, x)

and C(x, y) are elements of L. The symmetric Cauchy complete Lsi-categories determine a full

subcategory Catcc,sym(Lsi), which by its equivalence to Map(Distsym(Lsi) ' Map(TRSDistsym(L))

is further equivalent to the topos Sh(L) of sheaves on L. That is to say, Walters’ [1981] descrip-

tion of sheaves on a locale L, as symmetric and Cauchy complete Lsi-categories, follows here

from the equivalence TRSCatcc(L) ' Catcc(Lsi) by singling out the symmetric objects.
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Incidentally, for Lawvere’s [1973] quantale [0,∞] of extended positive real numbers, it is not

difficult to prove that TRSCatcc([0,∞]) ' Catcc(R([0,∞])) is further equivalent to Catcc([0,∞]),

thus to the category of Cauchy complete metric spaces and distance decreasing maps.

6.

To borrow a phrase from [Reyes, 1977], sheaf theory is all about “algebraic logic”. In the case

of a locale L, it is indeed very well understood that the internal logic of the topos Sh(L) is an

intuitionistic higher-order predicate logic with L as object of truth values; in other words, Sh(L)

is a “set theory” gouverned by L-valued logic. A sheaf on a locale L can be described in many

different ways (as a Set-valued functor on L, or as a set with an L-valued equality, or as an

Lsi-enriched category, or as a local homeomorphism into L), and each of these formulations puts

the versatile concept of “sheaf” in a different perspective.

In the light of developments in algebra, geometry and logic, which tend to get more and more

non-commutative (or non-cartesian, or “fuzzy” as some say, or “quantum” as others say), it is

natural to study non-commutative topological phenomena too, particularly in connection with

sheaf theory. Quantales, and a fortiori quantaloids, are a non-commutative generalisation of

locales, so they may be regarded as “non-commutative topologies”. As a step in the direction of

a full-blown theory of “sheaves on a non-commutative topology” (or “non-commutative algebraic

logic”), it is thus natural to investigate possible notions of “sheaves” on a quantaloid.

There are about as many different definitions of a “sheaf on a quantale (or quantaloid)” as

there are authors writing about them, see e.g. [Borceux and Van den Bossche, 1986; Van den

Bossche, 1995; Mulvey and Nawaz, 1995; Ambler and Verity, 1996; Höhle, 1998; Gylys, 2001;

Coniglio and Miraglia, 2001; Garraway, 2005; Resende, 2011]. In each of these papers, the pro-

posed definition depends on its author’s favourite example (ring theory, linear logic, groupoids),

mathematical background (enriched categories, module theory, locale theory), and applies often

only to a particular class of quantales or quantaloids (right-sided, involutive, modular). Mainly

motivated by the analysis of the localic example in section 5, and aiming at a definition that

applies to any quantaloid Q, I proposed [2005c] to define the category of ordered sheaves on Q
(Q-orders for short) to be (either of) the equivalent categories

Ord(Q) := TRSCatcc(Q) ' Map(TRSDist(Q)) ' Map(Dist(Qsi)) ' Catcc(Qsi).

Several of my post-doc publications are devoted to a further study of the category Ord(Q):

to prove further equivalent formulations, to get a better grip on the concept of “sheaf on a

quantaloid” itself, to compare this particular definition with other definitions and examples in

the literature, and - hopefully - to have learned something about “non-commutative algebraic

logic” in the end.

7.

In this section I shall comment in more detail on the various aspects of sheaves on a quantaloid

that I studied in my post-doctoral publications. Most of the results are geared towards a
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generalisation of localic sheaf theory, but I shall indicate how sheaves on a site fit in the picture

too. As before I shall mention some open problems for further study.

7.1. Quantaloids of closed cribles. As briefly mentioned in Section 1, Walters [1982] proved

that the topos of sheaves on a site (C , J) is equivalent to the category of symmetric and Cauchy

complete categories enriched in a suitable quantaloid R(C , J). This quantaloid is constructed

as follows: First, for any small category C and objects X and Y in C , a crible R:X // Y is a

set of spans (f, g):X // Y in C such that (f, g) ∈ R =⇒ (fh, gh) ∈ R. If J is a Grothendieck

topology on C , define the closure of a crible R to be R = {(f, g) | ∃S ∈ J : ∀s ∈ S, (fs, gs) ∈ R}.
The closed cribles are then the morphisms of a small quantaloid, denoted by R(C , J)12.

By definition, a small quantaloid of closed cribles is one that is equivalent toR(C , J), for some

small site (C , J)13. We sought to give an elementary axiomatisation of this notion [Heymans

and Stubbe, 2011b]:

Theorem. A small quantaloid Q is a small quantaloid of closed cribles if and only if

J(X) :=
{
S is a sieve on X in Map(Q)

∣∣∣ 1X =
∨

s∈S
ss∗
}

defines a topology J on Map(Q) for which Q ∼= R(Map(Q), J), if and only if Q has the following

properties:

1. locally localic: each Q(X,Y ) is a locale,

2. map-discrete: for left adjoints, f ≤ g implies f = g,

3. weakly tabular: for every morphism q, q =
∨{fg∗ | f, g are left adjoints and fg∗ ≤ q},

4. weakly modular14: for every parallel pair of spans of left adjoints, say (f, g):X // Y and

(m,n):X // Y , fg∗ ∧mn∗ ≤ f(g∗n ∧ f∗m)n∗.

In this case, Q carries an involution, sending a morphism q:Y //X to

qo :=
∨{

gf∗
∣∣∣ (f, g):Y //X is a span of left adjoints such that fg∗ ≤ q

}
,

which makes Q a modular quantaloid. Moreover, the Grothendieck topology J on Map(Q) is

always subcanonical, and if coreflexives split in Q, then J is the canonical topology.

The theorem thus spells out how two, at first sight quite different, generalisations of locales,

namely Grothendieck topologies on the one hand, and quantaloids on the other, relate: the

former can be understood to form an axiomatically described subclass of the latter. Having this

correspondence between small sites and small quantaloids of closed cribles, it is natural to ask

for:

Problem. Determine the “correct” notion of morphism between small quantaloids of closed

cribles to establish an equivalence between the category of small sites and the category of small

quantaloids of closed cribles. Study the “Morita equivalence” of sites via the associated quan-

taloids of closed cribles.
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A locale L carries a canonical topology15, so determines a small site (L, Jcan), and the

quantaloid of closed cribles R(L, Jcan) turns out to be precisely the split-idempotent completion

Lsi of L. Ordered sheaves on L are precisely the same thing as Cauchy complete Lsi-categories,

and the symmetric such categories correspond with the (“symmetrically ordered”) sheaves on L.

In fact, Lsi is a Cauchy bilateral quantaloid (cf. subsection 4.1), so that there is a distributive

law of the Cauchy completion monad over the symmetrisation comonad on the category of

Lsi-categories. This in turn implies a right adjoint to the inclusion,

Sh(L) ' Catcc,sym(Lsi) > 88

yy
Catcc(Lsi) ' Ord(Sh(L)),

so that the topos Sh(L) is precisely the category of coalgebras for the induced (“symmetrisation”)

comonad on Ord(Sh(L)).

It can be verified, either with an explicit computation or from the axiomatic description,

that any quantaloid of closed cribles Q = R(C , J) is Cauchy bilateral; and so we get the more

general picture

Sh(C , J) ' Catcc,sym(Q) > 88

yy
Catcc(Q)

of a right adjoint to the inclusion, inducing a (“symmetrisation”) comonad on Catcc(Q) whose

category of algebras is the topos Sh(C , J). This suggests:

Problem. Prove that Catcc(R(C , J)) is the category of ordered objects in Sh(C , J) and that there

is a symmetrisation comonad on Ord(R(C , J)) whose category of coalgebras is (equivalent to)

Sh(C , J). Give such a description for any small quantaloid of closed cribles, without reference

to its underlying site, and see which part of it can be extrapolated to more general involutive

quantaloids (see also subsection 7.5 further on).

Currently I am writing up a preprint, in collaboration with Hans Heymans, addressing this

problem (and other things too). We will submit it for publication in December 2011.

7.2. Suplattices. A result of C. J. Mikkelsen’s [1976] states that an ordered object in an

elementary topos E is cocomplete, i.e. it is an internal suplattice, if and only if the “principal

downset embedding” from that object to its powerobject has a left adjoint in Ord(E). In the case

of a localic topos, it turns out that the internal suplattices in Sh(L) are precisely the L-modules,

and supmorphisms are just the module morphisms [Joyal and Tierney, 1984; Pitts, 1988]. This

actually holds in the generality of Q-orders [Stubbe, 2007]:

Theorem. The forgetful functor U :Cocont(Q) //Catcc(Q) is right adjoint to the functor, writ-

ten P:Catcc(Q) //Cocont(Q), which sends a (Cauchy complete) Q-category A to the cocomplete

Q-category P(A) of contravariant presheaves on A. Composing left and right adjoint produces a

KZ-doctrine on Catcc(Q), called the ‘presheaf doctrine’, whose category of algebras is equivalent

to Cocont(Q). Applying this to Qsi instead of Q, and reckoning that Cocont(Qsi) ' Mod(Qsi)

(as indicated in subsection 4.5) and Mod(Qsi) ' Mod(Q) (because idempotents split in Sup), the

diagram

Mod(Q) ' Mod(Qsi) ' Cocont(Qsi) ⊥
U
88

P
yy

Catcc(Qsi) ' Ord(Q)
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exhibits the quantaloid Mod(Q) as the category of algebras for the presheaf doctrine on Ord(Q).

For a locale L, consider an ordered object (F,≤) in the topos Sh(L); it corresponds, under

the equivalence of Ord(Sh(L)) with Catcc(Lsi), with a Cauchy complete Lsi-category A. The

presheaf doctrine sends A to the cocomplete Lsi-category P(A), which corresponds in turn with

the ordered sheaf of the downclosed subobjects of (F,≤). Now (F,≤) is an internal suplattice

in Sh(L) if and only if the “principal downset inclusion” F //LF has a left adjoint [Mikkelsen,

1976; Johnstone, 2002, B2.3.9], which is constructively equivalent with the existence of a left

adjoint to its factorization over the (object of) downsets of F . This is the case if and only if

the Yoneda embedding YA:A 7→ P(A), which is the unit at A of the presheaf doctrine, has a left

adjoint; in other words, A is a cocomplete Lsi-category. So an ordered sheaf (F,≤) is an internal

suplattice in Sh(L) if and only if the associated Lsi-category A is cocomplete. Cocomplete Lsi-

categories being equivalent to L-modules, this provides an independent proof of the fact that

L-modules are precisely the internal cocomplete objects of Ord(Sh(L)).

Problem. If (C , J) is a small site, are the R(C , J)-modules the internal suplattices in Sh(C , J)?

Earlier, in subsection 4.6, I used the term “dynamic domain theory” for a generalisation of

notions from classical domain theory (total continuity and total algebraicity of suplattices) to

cocomplete Q-categories; and I indicated in subsection 4.7 how these notions can be transported

over to Q-modules via the equivalence Mod(Q) ' Cocont(Q). In the current subsection I

just showed that, in fact, Q-modules (and thus also cocomplete Q-categories) are precisely the

‘suplattices’ in Ord(Q): in hindsight it is thus correct to say that “dynamic domain theory” is

a study of convergence and approximation in the world of ordered sheaves on Q.

Problem. Can notions from classical domain theory, that do not require the completeness of the

underlying ordered set, be generalised to Ord(Q)? Can this lead to a better understanding and

further development of “dynamic domains”, so that applying general results to either a locale L

or the quantale [0,∞] gives interesting results for “constructive domains” or “metric domains”?

7.3. Locally principally generated modules. The well-known adjunction between the cat-

egory Ord of ordered sets and order-preserving functions on the one hand, and the category Sup

of complete lattices and supremum-preserving functions on the other,

Ord ⊥
F

((

U

hh Sup,

has the feature that both functors involved are embeddings. This allows us to view Sup as a

part of Ord, but also Ord as a part of Sup. The first viewpoint corresponds to the common

understanding that a complete lattice is an ordered set in which all suprema exist and that a

supmorphism is an order-preserving function that preserves suprema. The second point of view

corresponds with the fact that the replete image of the left adjoint in the above adjunction is

precisely the subcategory of Sup of totally algebraic objects and left adjoint morphisms.
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In the previous subsection I indicated a generalisation to Q-orders: there is a biadjunction

Ord(Q) ⊥
F

((

U

hh Mod(Q)

that splits the presheaf construction on Ord(Q), and Mod(Q) is the category of algebras for that

doctrine. This describes Mod(Q) as part of Ord(Q), and for Q = 2 we thus recover exactly

half of the situation described in the first paragraph above. An obvious question is whether we

can also intrinsically characterise Ord(Q) as part of Mod(Q): can we give a module-theoretic

condition on objects and morphisms of Mod(Q) to describe the image of F?

In [Heymans and Stubbe, 2009a] we obtained such a module-theoretic description of Ord(Q)

by “tweaking” the equivalence Catcc(Q) ' Modpg(Q) (that I explained in subsection 4.7).

Since we can equate Ord(Q) with Catcc(Qsi), it follows that that Ord(Q) ' Map(Modpg(Qsi)).

Furthermore, a Q-module F :Qop // Sup determines a Qsi-module Fsi:Qop
si

// Sup, essentially

by the splitting of idempotents in Sup, and this correspondence extends to an equivalence

Mod(Q) ' Mod(Qsi). So it remains to find out what it means for a Q-module F to have

as counterpart Fsi a principally generated Qsi-module. This is what I shall explain next.

First I must introduce some terminology. If e:X //X is an idempotent in Q, then the

representable module morphism Q(−, e):Q(−, X) +3Q(−, X) is an idempotent in Mod(Q). All

idempotents in Mod(Q) split, so this one does too. I shall write the splitting as

Fe
σe +3 Q(−, X),
πe

ks

where Fe:Qop // Sup sends an object A of Q to the suplattice {f :A //X | e ◦ f = f}; for the

obvious reason, I shall call such a module Fe a fixpoint module (for the idempotent e).

Now let F :Qop // Sup be a Q-module, and consider an element x ∈ F(X); by the Sup-

enriched Yoneda Lemma it corresponds with a module morphism τx:Q(−, X) +3 F . This ele-

ment x ∈ F is a locally principal element (at an idempotent e:A //A in Q)16 if (there is an

idempotent e:X //X in Q such that) F(e)(x) = x and τx ◦ σe:Fe +3 F is a left adjoint in

Mod(Q). Thus, the set of locally principal elements is

Flpr =
{
ζ(e)

∣∣∣ e is an idempotent in Q and ζ:Fe +3 F is a left adjoint in Mod(Q)
}
.

Finally, a Q-module F is said to be locally principally generated if

idF =
∨{

ζ ◦ ζ∗
∣∣∣ e is an idempotent in Q and ζ:Fe +3 F is a left adjoint in Mod(Q).

}
.

With these notions we proved:

Theorem. For a Q-module F :Qop // Sup, the following statements are equivalent:

1. the corresponding Qsi-module Fsi:Qop
si

// Sup is principally generated,

2. F is locally principally generated,
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3. F is an adjoint retract of a direct sum of fixpoint modules.

Writing Modlpg(Q) for the full subquantaloid of Mod(Q) whose objects are the locally prin-

cipally generated Q-modules, it follows trivially that the biequivalence Mod(Qsi) ' Mod(Q)

restricts to a biequivalence Modpg(Qsi) ' Modlpg(Q). Furthermore, as indicated in subsection

4.7, we also know that Modpg(Qsi) ' Catcc(Qsi). All this makes the following diagram – in which

P:Catcc(Qsi) //Cocont(Qsi) is the presheaf functor – commute:

Cocont(Qsi)
∼ // Mod(Qsi)

∼ // Mod(Q)

Catcc(Qsi)
∼ //

P
88

Map(Cocontta(Qsi))
∼ //?�

OO

Map(Modpg(Qsi))
∼ //?�

OO

Map(Modlpg(Q))
?�

OO

Up to the identification of Ord(Q) with Catcc(Qsi), the composition of the 2-functors

Ord(Q) = Catcc(Qsi)
P //Cocont(Qsi)

∼ //Mod(Qsi)
∼ //Mod(Q)

is precisely the left biadjoint F :Ord(Q) //Mod(Q) to the forgetful U :Mod(Q) //Ord(Q). Its

factorisation over Map(Modlpg(Q)) gives the sought-after characterisation of Q-orders in terms

of Q-modules:

Theorem. The locally ordered category Ord(Q) of ordered sheaves on a small quantaloid Q
is biequivalent to Map(Modlpg(Q)), the locally ordered category of locally principally generated

Q-modules and left adjoint Q-module morphisms between them.

7.4. Skew local homeomorphisms. As is well known, a sheaf on a locale L can be described

as a local homeomorphism into L. In the context of my work on ordered sheaves on a quantaloid,

it is natural to seek for a description of L-orders in terms of some kind of locale morphism into L:

this is what the notion of ‘skew local homeomorphism’ achieves [Heymans and Stubbe, 2009a].

As I shall explain next, this is an application of the notion of locally principally generated

module.

In what follows, Loc denotes the (2-)category of locales: objects are locales, a locale morphism

f :Y //X is an adjoint pair

Y ⊥
f∗

44 X

f∗
tt

in the 2-category of partially ordered sets such that the left adjoint preserves finite infima, and

for f, g:Y //
//
X in Loc we define17 that f ≤ g if f∗ ≤ g∗. Given an f :Y //X in Loc, it is easily

seen that

Y ×X // Y : (y, x) 7→ y ◦f x := y ∧ f∗(x)

is in an action18 of the monoid (X,∧,>) on Y in Sup. In other words, from f :Y //X in Loc
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we get an object (Y, ◦f ) ∈ Mod(X). Moreover, suppose that

Y
h //

f   

Z

g~~

X

commutes in Loc, then h∗:Z // Y is a morphism in Sup satisfying h∗(z ◦f x) = h∗(z) ◦g x, for

all x ∈ X, z ∈ Z. That is to say, h∗: (Z, ◦g) // (Y, ◦f ) is a morphism in Mod(X). All this adds

up to an injective and faithful (but not full) 2-functor (Loc/X )coop //Mod(X).

The general theory for Q-orders says that the locally ordered category Ord(Q) can be de-

scribed as Map(Modlpg(Q)), that is, as locally principally generated Q-modules and left adjoint

module morphisms between them. This applies of course to a locale X, so our task is to char-

acterise, in elementary terms, those objects and morphisms of (Loc/X )coop which correspond,

under the action of the 2-functor (Loc/X )coop //Mod(X), to Map(Modlpg(X)).

First, say that a morphism h: f // g in Loc/X is skew open if the corresponding order-

preserving function h∗:Z // Y has a left adjoint h!:Y //Z satisfying the “balanced Frobenius

identity19”:

for all y ∈ Y and x ∈ X, h!(y ∧ f∗(x)) = h!(y) ∧ g∗(x).

Clearly the identity morphisms in Loc/X are skew open, and the composition of skew open

morphisms is again skew open; it thus makes sense to speak of the sub-2-category (Loc/X )o of

Loc/X with the same objects but only its skew open morphisms. Upon inspection it is easily

seen that, for any two locale morphisms f :Y //X and g:Z //X, there is an isomorphism of

ordered sets

(Loc/X )o(f, g) ∼= Map(Mod(X))((Y, ◦f ), (Z, ◦g))

given by sending a skew open morphism h to the X-module morphism h! with right adjoint h∗.

Sending skew open morphisms in Loc/X to their utmost left adjoints (i.e. h 7→ h!) thus gives

rise to an injective and fully faithful 2-functor (Loc/X )o //Map(Mod(X)). In the codomain

category of this functor we are now interested in the locally principally generated objects.

As is customary, for any u ∈ X we generically write i: ↓u // //X for the corresponding open

sublocale of X; it is also skew open in Loc/X as (unique) morphism from i: ↓u // //X to the

terminal object 1X :X //X. For f :Y //X in Loc, we put So
f (u) := (Loc/X )o(i, f) and call

its elements the skew open sections of f at u. Now we define f :Y //X to be a skew local

homeomorphism20 if

1Y =
∨
{s! ◦ s∗ | u ∈ X, s ∈ So

f (u)}.

The formal resemblance between this condition and the condition characterising locally princi-

pally generated Q-modules (cf. the previous subsection) already hints at:

Theorem. An f :Y //X in Loc is a skew local homeomorphism if and only if (Y, ◦f ) is a

locally principally generated X-module21. Conversely, if (M, ◦) is a locally principally generated

X-module, then the locale morphism f :M //X with inverse image f∗(x) = >M ◦ x is a skew

local homeomorphism that satisfies (M, ◦) = (M, ◦f ). As a result, writing (Loc/X )o
slh for the full
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subcategory of (Loc/X )o whose objects are the skew local homeomorphisms, it follows that the

full embedding (Loc/X )o //Map(Mod(X)) (co)restricts to an isomorphism

(Loc/X )o
slh
∼= Map(Modlpg(X))

of locally ordered categories, both of which are thus equivalent to the category Ord(X) of ordered

sheaves on X.

Problem. Is there a notion of “skew local homeomorphism” for quantales (or quantaloids)?

That is to say, can a Q-order be described as some kind of quantale morphism into Q?

7.5. Étale modules. Any local homeomorphism is necessarily a skew local homeomorphism,

and any open locale morphism is necessarily skew open too. Writing LH for the category of locales

and local homeomorphisms, it follows that LH/X is a full subcategory of (Loc/X )o
slh. Whereas

LH/X is a well-known equivalent of the topos Sh(X), the previous subsection proved (Loc/X )o
slh

to be isomorphic to Map(Modlpg(X)). Thus it makes sense to determine those locally principally

generated X-modules which, under this isomorphism, correspond to local homeomorphisms.

The pertinent definition is the following [Heymans and Stubbe, 2009a]: an étale X-module

(M, ◦) is a locally principally generated X-module such that, for every u ∈ X, every left adjoint

X-module morphism ζ: (↓u,∧) // (M, ◦) is open in the sense that

ζ(v ∧ ζ∗(m)) = ζ(v) ∧m

holds for all v ∈ ↓u and m ∈M . With this notion we proved:

Theorem. A skew local homeomorphism f :Y //X is a local homeomorphism if and only if

(Y, ◦f ) is an étale X-module. Letting Modét(X) stand for the full sub-2-category of Modlpg(X)

consisting of étale X-modules, the isomorphism (Loc/X )o
slh
∼= Map(Modlpg(X)) restricts to an

isomorphism LH/X
∼= Map(Modét(X)) of categories, both of which are thus equivalent to the

topos Sh(X) of sheaves on X.

A sheaf on a locale X is thus the same thing as an étale X-module; and an étale X-module

is a locally principally generated X-module satisfying an extra openness condition. It turns

out (but this is not straightforward) that the openness condition is equivalent to a symmetry

condition, which in turn can be generalised to principally generated Q-modules whenever Q is

an involutive quantaloid [Heymans and Stubbe, 2009b].

Precisely, suppose that Q is an involutive quantaloid, whose involution I shall write as

f 7→ fo, and let E = {e:A //A in Q | eo = e = e2} be the class of symmetric idempotents in

Q. An E-principal element of a Q-module F :Qop // Sup is, by definition, a principal element

of F at an idempotent in E ; so the set of E-principal elements of F is

FEpr =
{
ζ(e)

∣∣∣ e ∈ E and ζ:Fe +3 F is a left adjoint in Mod(Q)
}
.

Naturally, a Q-module F :Qop // Sup is said to be E-principally generated when it is generated

by its elements which are E-locally principal:

idF =
∨{

ζ ◦ ζ∗
∣∣∣ e ∈ E and ζ:Fe +3 F is a left adjoint in Mod(Q)

}
.
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And F is said to be E-principally symmetric whenever, for any two left adjoint module morphisms

ζ:Fe +3 F and η:Ff +3 F with e, f ∈ E (and adjoints written as ζ a ζ∗ and η a η∗), we have

(ζ∗(η(f)))o = η∗(ζ(e)).

In general not every idempotent in an involutive quantaloid Q is symmetric, so a Q-module

F has fewer E-principal elements than it has locally principal elements. Each E-principally

generated module is therefore necessarily locally principally generated: there is a subquantaloid

ModEpg(Q) ⊆ Modlpg(Q) of the former in the latter. Among the objects of ModEpg(Q) we can

single out the E-principally symmetric modules, making a further subquantaloid ModEpg,Esym(Q).

Regarding a locale X as a one-object quantaloid with identity involution, each idempotent

in X is evidently symmetric, so an X-module is E-principally generated if and only if it is locally

principally generated. And an E-principally symmetric X-module is referred to as, simply, a

locally principally symmetric one. We then have:

Theorem. For a locale X, an X-module (M, ◦) is étale if and only if it is locally principally

generated and locally principally symmetric. Thus the topos Sh(X) is further equivalent to the

category Map(Modlpg,sym(X)) of locally principally generated, locally principally symmetric X-

modules and left adjoint module morphisms.

This result suggests that, for any involutive quantaloid Q (and E the set of its symmetric

idempotents), the category of E-principally generated, E-principally symmetric Q-modules, with

left adjoint module morphisms between them, is a natural candidate to be “the category of

(symmetrically ordered) sheaves on Q”.

Problem. For an involutive (and probably also Cauchy bilateral) quantaloid Q, identify the

subcategories of “symmetric Q-orders” within each of the equivalent descriptions of Ord(Q), viz.

TRSCatcc(Q) ' Catcc(Qsi) ' Map(Modlpg(Q)). For Q = R(C , J), show how this then gives back

the sheaves on (C , J) (see also subsection 7.1).

In the preprint that I already alluded to at the end of subsection 7.1, Hans Heymans and I

address aspects of this problem.

7.6. Hilbert modules. Let Q be an involutive quantale (with involution f 7→ fo); I shall

think of a Q-module (M, ◦) as a suplattice M with an action M × Q //M : (m, f) 7→ m ◦ f
(satisfying the obvious conditions). Jan Paseka [1999] defined a pre-inner product on (M, ◦)
to be a map M × M //Q: (m,n) 7→ 〈m,n〉 such that, for all m,n ∈ M , 〈m,−〉:M //Q is

a module morphism and 〈m,n〉o = 〈n,m〉; it is an inner product if moreover 〈−,m〉 = 〈−, n〉
implies m = n. Slightly generalising a notion that appeared in [Resende and Rodrigues, 2010]

in the context of modules on a locale, we further say that a subset Γ ⊆M is a Hilbert basis (for

a given pre-inner product on M) if it satisfies, for all m ∈ M , m =
∨
s∈Γ s ◦ 〈s,m〉. It is trivial

to check that, if M is a Q-module with a pre-inner product 〈−,−〉 admitting a Hilbert basis Γ,

then 〈−,−〉 is in fact an inner product. If a Q-module M bears a (pre-)inner product admitting

a Hilbert basis, then we speak of its Hilbert structure; the couple (M, 〈−,−〉) is a Hilbert module.

For starters we proved [Heymans and Stubbe, 2009b]:
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Theorem. The quantaloid Hilb(Q), whose objects are Q-modules with Hilbert structure and

whose morphisms are module morphisms, is equivalent to the quantaloid Proj(Q) of projection

matrices22 with elements in Q.

Now let E ⊆ Q be the set of symmetric idempotents inQ. It is a trivial but crucial observation

that the formula

〈m,n〉can :=
∨{

(ζ∗(m))o ◦ ζ∗(n)
∣∣∣ e ∈ E , ζ:Qe //M left adjoint in Mod(Q)

}

defines a pre-inner product, called the canonical pre-inner product, on M . It allows us to make a

link between Hilbert modules and locally principally generated modules [Heymans and Stubbe,

2009b]:

Theorem. Let Q be an involutive quantale, E ⊆ Q the set of symmetric idempotents, and M a

Q-module. The following are equivalent:

1. M is E-principally generated and E-principally symmetric,

2. the set Γcan := {all elements of M which are locally principal at some e ∈ E} is a Hilbert

basis for the canonical pre-inner product on M , called the canonical Hilbert basis.

In this case, it follows that the canonical pre-inner product is an inner product; we speak of

the canonical Hilbert structure on M . In general a Q-module M may be equipped with several

different Hilbert structures, but if Q is a modular quantal frame23, then the only possible Hilbert

structure is the canonical one. Therefore, for a modular quantal frame Q there is an equivalence

of quantaloids Hilb(Q) ' ModEpg,Esym(Q).

For a locale L, the above result together with the results in the previous subsection implies

in particular that

Sh(L) ' Map(Hilb(L)).

More generally, any small quantaloid of closed cribles R(C , J) is Morita-equivalent to a modular

quantal frame Q, and there is in fact an equivalence

Sh(C , J) ' Map(Hilb(Q)).

And from Pedro Resende’s results [2007, 2008]24 it follows that the classifying topos BG of

sheaves on an étale groupoid G is equivalent to a category Hilbert modules,

BG ' Map(Hilb(O(G))),

where O(G) is the so-called inverse quantal frame associated with G (which, in the case of

a topological groupoid, is the topology of the space of the groupoid arrows, equipped with

pointwise multiplication of arrows). These three examples seem to indicate that, at least for a

modular quantal frame Q, the category Map(Hilb(Q)) ought to be (equivalent to) “the category

of (symmetrically ordered) sheaves on Q”.

Problem. Is there a “quantaloidal version” of André Joyal and Myles Tierney’s [1984] theorem

saying that any Grothendieck topos is the category of continuous G-sets for some localic groupoid

G? That is to say, can we pass back and forth between small quantaloids of closed cribles on the

one hand, and the inverse quantal frames on the other hand, in a purely quantaloid-theoretical

manner?
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Notes

1. An involution on a quantaloid Q is a homomorphism (−)o:Qop //Q which is the identity on

objects and satisfies foo = f for any morphism f in Q. An involution thus associates to any

morphism f :A //B inQ a morphism fo:B //A such that in particular the following conditions

hold: (f ◦ g)o = go ◦ fo, if f ≤ g then fo ≤ go, and foo = f . Actually, these three conditions

are also sufficient for f 7→ fo to be a homomorphism. Clearly, a quantale is commutative if

and only if the identity mapping is an involution; in that sense, an involutive quantaloid is “as

symmetric a quantaloid as it gets”.

2. It is noteworthy that many an example satisfies a stronger condition. Say that a quantaloid Q
is strongly Cauchy bilateral when it is involutive (with involution f 7→ fo) and for any family

(fi:X //Xi, gi:Xi
//X)i∈I of morphisms in Q,

1X ≤
∨

i

gi ◦ fi =⇒ 1X ≤
∨

i

(fo
i ∧ gi) ◦ (fi ∧ go

i ).

For a so-called integral quantaloid – i.e. when the top element of each Q(X,X) is 1X – Cauchy

bilaterality and strong Cauchy bilaterality are equivalent notions, but in general the latter is

strictly stronger than the former. This condition is satisfied by the integral and commutative

quantale Q = ([0,∞],
∧
,+, 0) with its trivial involution: for any family (ai, bi)i∈I of pairs of

elements of [0,∞], if
∧
i(ai + bi) ≤ 0 is assumed then

∧

i

(max{ai, bi}+ max{ai, bi}) = 2 ·
∧

i

max{ai, bi} ≤ 2 ·
∧

i

(ai + bi) ≤ 0.

This “explains” the well known fact that the Cauchy completion of a symmetric generalised

metric space is again symmetric.

3. A Kock-Zöberlein-doctrine (or KZ-doctrine, for short) T on a locally ordered category K is a

2-functor T :K //K for which there are a multiplication µ: T ◦ T +3 T and a unit η: 1K +3 T
making (T , µ, η) a 2-monad, and satisfying moreover the “KZ-inequation”: T (ηK) ≤ ηT (K) for

all objects K of K. The notion was invented independently by Volker Zöberlein [1976] and

Anders Kock [1972] in the more general setting of 2-categories; see [Kock, 1995] for details. A

straightforward example is the following. Let Ord denote the locally ordered 2-category whose

objects are ordered sets, morphisms are order-preserving functions, and 2-cells are given by

pointwise order. The functor D:Ord //Ord that sends an ordered set (X,≤) to the orderd set

(D(X),⊆) of down-closed subsets of X is a KZ-doctrine. In fact, D(X) is the free complete

suplattice on X. In the context of Q-enriched categories, for Q any quantaloid, this is exactly

generalised by the free cocompletion functor P:Cat(Q) //Cat(Q), sending a Q-category A to

the category P(A) of contravariant presheaves on A. However, one may be interested, not

in computing the free cocompletion by adding all colimits to a given Q-category A, but in a

cocompletion that only adds colimits of a certain type. This can be achieved by setting up a

so-called (saturated) class of weights, say C , and computing the weighted cocompletion C(A) of

a given Q-category A.
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4. Precisely, a KZ-doctrine (T , µ, η) on Cat(Q) is a full sub-KZ-doctrine of the free cocompletion

doctrine P (whose unit is formed by the Yoneda embeddings YA:A //P(A)) if and only if all

ηA:A // T (A) are fully faithful and all left Kan extensions 〈YA, ηA〉: T (A) //P(A) are fully

faithful.

5. The terminal Q-category T has as objects precisely the objects of Q, and for two such objects,

say X and Y , the hom-arrow T(Y,X) is the top element of the complete lattice Q(X,Y ). The

unique functor from a Q-category A into T is !:A //T: a // ta, that is to say, it associates to

any object a of A its type-object in Q.

6. More generally, for two objects x, y in a Q-category C, it makes perfect sense to define x ≤ y

to mean that x and y have the same type-object in Q, say X, and that moreover 1X ≤ C(x, y);

this defines an order relation on the set C0 of objects of C. However, precisely because two

elements in the order relation are necessarily of the same type, there can never be a supremum

of two (or more) objects of different type. Thus, it makes little sense to require that (C0,≤) be

a suplattice, for this requires that all objects of C be of the same type. That is essentially why

suprema can only exist “fibrewise”.

7. That is to say, the universal property of a supremum in CX is not expressed by a weighted

colimit. To illustrate this, consider a family of elements (xi)i∈I in CX . Next, let I be the free

Q(X,X)-enriched category on the ordered set (I,≤), where by definition i ≤ j holds precisely

when xi ≤ xj holds in (CX ,≤). There is then an obvious functor F : I //C: i // xi, but to

compute its “colimit”, we must first append a weight to F . The only reasonable choice is to

take the distributor φ: ∗X c // I whose elements are φ(i) = 1X for all i (it is the “trivial” weight).

The φ-weighted colimit of F : I //C (which may or may not exist) is called the conical colimit

of F , or – because the construction of F is canonical – simply the conical colimit of the (xi)i. If

the conical colimit of the (xi)i exists, then it turns out to be the supremum of the (xi)i in the

order (CX ,≤); but the supremum of the (xi)i may exist even though the conical colimit does

not.

8. Let me recall the definitions of regular semicategory and regular presheaf [Stubbe, 2005b]. A reg-

ularQ-semicategory B consists of a set B0 of ‘objects’ together with a ‘type’-function t:B0
//Q0,

and for any couple (x, y) of objects a ‘hom’-morphism B(y, x): tx // ty in Q, such that the sat-

urated composition inequality holds:

∨

y∈B0

B(z, y) ◦ B(y, x) = B(z, x)

for all x, z ∈ B0. A regular semidistributor Φ:B c //B′ between regular semicategories consists

of Q-morphisms Φ(x′, x): tx // tx′, one for each (x, x′) ∈ B0 × B′0, such that two saturated

action-inequalities hold:

∨

x′∈B′0

B′(y′, x′) ◦ Φ(x′, x) = Φ(y′, x) =
∨

y∈B0

Φ(y′, y) ◦ B(y, x)
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for all (x, y′) ∈ B0×B′0. RegularQ-semicategories and regular semidistributors from a quantaloid

RSDist(Q) (composition of regular semidistributors is done with the usual “matrix”-formula),

which contains the quantaloid Dist(Q) of Q-categories and distributors. A regular contravariant

presheaf of type X on a regular Q-semicategory B is, by definition, a regular semidistributor

φ: ∗X c //B (where, as before, ∗X is the one-object Q-category whose hom-arrow is 1X). The

collection of such presheaves on B is written as R(B); endowed with canonical ‘hom’-morphisms,

it turns out to be a cocomplete Q-category.

9. A Q-module F is projective if and only if the representable homomorphism

Mod(Q)(F ,−):Mod(Q) // Sup

preserves epimorphisms; this is really a straightforward reformulation of the definition of pro-

jectivity. A related notion is of much importance in the theory of V-enriched categories [Kelly,

1982]: a V-enriched presheaf on a V-category C , say F : C op //V, is small-projective when the

representable V-functor

V-Fun(C op,V)(F,−):V-Fun(C op,V) //V

preserves all small weighted colimits. This definition applies of course to the particular case

V = Sup, so that we can speak of small-projective Q-modules. Clearly a small-projective Q-

module is also projective (because a morphism is an epimorphism if and only if its pushout with

itself consists of identities); so the surprise here is that the converse also holds.

10. Recall from the equivalence between Cocont(Q) and Mod(Q) that the objects of A are precisely

precisely the elements of F . An element x of F is principal if and only if, as an object of A, it

is totally compact. Thus, F is principally generated (“generated by its principal elements”) if

and only if A is totally algebraic (“generated by its totally compact objects”).

11. This implies that the principally generated modules on Q form a closed class of colimit weights

in the sense of [Albert and Kelly, 1988; Kelly and Schmitt, 2005]; in fact, this class is the closure

of the class of (weights for) direct sums and adjoint retracts. The general theory explained for

V-enriched categories in the cited references implies that, for any small quantaloid Q, Modpg(Q)

is precisely the free cocompletion of Q for direct sums and adjoint retracts, or equivalently,

the free cocompletion of Q for all colimits weighed by a principally generated module. Since

Dist(Q) ' Modpg(Q), this at once describes the universal property of the distributor quantaloid

too. In [Stubbe, 2005a] it is shown that Dist(Q) is the universal “direct sum and split monad”

completion of Q; but it is trivial that, in a quantaloid, splitting monads are the same thing

as adjoint retracts. In the latter reference it is moreover shown that direct sums and splitting

monads suffice to admit all lax limits and all lax colimits. Combining all this, it thus follows that

the principally generated modules, as a class of weights, describe precisely the lax (co)completion

of Q.

12. With the benefit of hindsight [Betti and Carboni, 1983; Rosenthal, 1996], we can summarise

Walters’ [1982] construction as follows: (i) R(C ) ⊆ Rel(SetC
op

) is the full subquantaloid whose
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objects are the representables, (ii) giving a topology J on C is equivalent to giving a locally left

exact nucleus j on R(C ):

j(R) =
{

(f, g)
∣∣∣ ∃S ∈ J : ∀s ∈ S, (fs, gs) ∈ R

}
,

J(X) =
{
S ⊆ C (−, X)

∣∣∣ idX ≤ j
(
{(s, s) | s ∈ S}

)}
,

and (iii) R(C , J) is the quotient quantaloid R(C )j of j-closed morphisms in R(C ).

13. Walters originally called R(C , J) the ‘bicategory of relations’ in (C , J), wrote it as Rel(C , J),

and called its arrows ‘relations’. To avoid confusion with the ‘bicategories of relations’ that

[Carboni and Walters, 1987] and others have since then worked on, I prefer to stick closer to the

actual construction and speak of a ‘quantaloid of closed cribles’.

14. Weak tabularity and weak modularity are new notions which inherited their name from the

stronger notions of tabularity and modularity introduced in [Freyd and Scedrov, 1990].

15. Incidentally, every meet-semilattice M carries a canonical Grothendieck topology which can be

described explicitly as follows [Stubbe, 2005]: for x ∈M ,

J(x) =

{
(xi)i∈I

∣∣∣ x =
∨

i

xi and for all y ∈M , y ∧
∨

i

xi =
∨

i

y ∧ xi
}

is the set of covers of x. In words, the covering families are precisely the distributive suprema.

16. Thus, a locally principal element of F :Qop // Sup at an identity of Q is the same thing as, simply,

a principal element of F (as in subsection 4.7): idempotents in Q are viewed as localities (or

“opens”). It follows that a principally generated Q-module is necessarily also locally principally

generated; but the converse is not true in general.

17. Here I follow the notational convention of [Johnstone, 1982, p. 40] for morphisms in Loc, but I do

not follow the convention of [Johnstone, 1982; Mac Lane and Moerdijk, 1992] when it comes to

defining an order on the hom-sets in Loc. That is to say: here we have that Loc ∼= Frmcoop as 2-

categories, whereas the cited references have Loc ∼= Frmop. The reason for this preference is in the

first place notational convenience, especially for the 2-functors considered further on. However,

there is maybe a deeper reason why this different ordering of locale morphisms is natural here.

In the cited references locale morphisms are studied as inducing geometric morphisms between

toposes of sheaves; the ordering of locale morphisms is chosen to correspond with the usual

notion of natural transformation between geometric morphisms. We however shall study locale

morphisms (or rather, morphisms in the slice category Loc/X ) as inducing order-preserving

morphisms between the (ordered) sheaves themselves; and the ordering of the locale morphisms

is chosen to correspond with the natural ordering of those morphisms between sheaves.

18. Considering a locale X as a monoid (X,∧,>) in Sup it makes sense to write Mod(X) for the

quantaloid of modules on the locale. Instead of writing these modules as contravariant Sup-

enriched presheaves on the one-object suspension of the locale, we rather consider them as
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objects of Sup on which (X,∧,>) acts on the right: we write (M, ◦) for a Sup-object M together

with the action (m,x) 7→ m ◦ x. In the same vein, an X-module morphism α: (M, ◦) // (N, ◦)
is a Sup-morphism α:M //N which is equivariant for the respective actions.

19. Putting Z = X and g = 1X this reduces to what is called the “Frobenius identity” in [Mac Lane

and Moerdijk, 1992, p. 500]; we call this generalisation “balanced” because we get the (“unbal-

anced”) Frobenius identity by plugging in a terminal object. Precisely, an h:Y //Z in Loc is

open (according to the “usual” definition of openness as in e.g. [Mac Lane and Moerdijk, 1992,

p. 500]) if and only if for any f :Y //X and g:Z //X in Loc such that g ◦h = f , the morphism

h: f // g in Loc/X is skew open, if and only if for h:Y //Z and 1Z :Z //Z as objects in Loc/Z ,

the (unique) morphism h:h // 1Z in Loc/Z is skew open.

20. If f :Y //X is in Loc then the elements of the set Sf (u) := Loc/X (i, f) are the sections of

f at u [Mac Lane and Moerdijk, 1992, p. 524]. This defines a sheaf Sf :Xop // Set, and this

construction extends to a functor Loc/X
// Sh(X) whose restriction to local homeomorphisms

is an equivalence of categories. A particular feature of local homeomorphisms is that, whenever

f = g ◦ h in Loc, if f and g are local homeomorphisms then so is h; recall also that a local

homeomorphism is always open in Loc. Thus, if f :Y //X is a local homeomorphism then

every s ∈ Sf (u) is an open section in the sense that s: ↓u // Y is an open locale morphism. A

morphism f :Y //X in Loc is a local homeomorphism if and only if (the top element of) Y can

be covered by its open sections [Johnstone, 2002, vol. 2, p. 503], i.e.

>Y =
∨{

s!(u)
∣∣∣ u ∈ X, s ∈ Sf (u) and s is open in Loc

}
.

In this case, every y ∈ Y can be covered by open sections of f , by taking the restrictions of

the open sections of f to y. In fact, every open section s: ↓u // Y of a locale map f :Y //X

is necessarily skew open too; but the converse need not hold. However, if f :Y //X is a lo-

cal homeomorphism then Sf (u) = So
f (u) for all u ∈ X. It is immediately clear that every

local homeomorphism is a skew local homeomorphism. A skew local homeomorphism is a local

homeomorphism if and only if its (skew open) sections are all open.

21. If s ∈ So
f (u) is a skew open section of f at u ∈ X then s!(u) ∈ Y is a locally principal element of

the X-module (Y, ◦f ) at the idempotent u ∈ (X,∧,>X). This actually determines a bijection.

22. A Q-matrix Λ:S // T is an indexed set of elements of Q, (Λ(y, x))(x,y)∈S×T ∈ Q. Matrices

compose straightforwardly with a “linear algebra formula”, and this makes for a quantaloid

Matr(Q). This construction makes sense for any quantale (and even quantaloid), and whenever

Q is involutive then so is Matr(Q): the involute of a matrix is computed elementwise. It then

makes sense to define a projection matrix with elements in Q to be a symmetric idempotent in

Matr(Q). If Σ:S //S is such a projection matrix, then

R(Σ) := {f :S //Q | ∀s ∈ S : f(s) =
∨

s∈S
Σ(s, x) ◦ f(x)}
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is a Q-module with inner product and Hilbert basis respectively

〈f, g〉 :=
∨

s∈S
(f(s))o ◦ g(s) and Γ := {fs:S //Q:x 7→ Σ(x, s) | s ∈ S}.

This object correspondence Σ 7→ R(Σ) extends to a Sup-functor from Proj(Q) to Hilb(Q) (in

fact, it is the restriction to symmetric idempotent matrices of the embedding of the Cauchy

completion of Q qua one-object Sup-category into Mod(Q)). Conversely, a module M with

inner product 〈−,−〉 and Hilbert basis Γ obviously determines a projection matrix Σ: Γ //Γ

with elements Σ(s, t) := 〈s, t〉; this easily extends to a Sup-functor from Hilb(Q) to Proj(Q).

These two functors set up the equivalence. A notable consequence of this equivalence is the

existence of an involution on Hilb(Q), induced by the obvious involution on Proj(Q): the involute

of a morphism φ:M //N in Hilb(Q) is the unique module morphism φo:N //M characterised

by

〈φ(s), t〉 = 〈s, φo(t)〉
for all basis elements s of M and t of N .

23. A modular quantale Q is an involutive quantale which satisfies Freyd’s modular law [Freyd and

Scedrov, 1990]. Resende [2007] speaks of a quantal frame Q whenever it is a quantale whose

underlying lattice is a frame (= locale). The term modular quantal frame then speaks for itself.

It is a matter of fact that modular quantal frames are precisely the one-object locally complete

distributive allegories of Peter Freyd and Andre Scedrov [1990].

24. Meanwhile, Resende’s [2008] preprint has been superseded by the article [Resende, 2011] which

fixes a couple of imperfections from the original preprint. It contains in particular a complete

proof of the equivalence BG ' Map(Hilb(O(G))) [Resende, 2011, p. 62–65], acknowledging the

importance of our contributions [Heymans and Stubbe, 2009b, Theorem 4.1, Example 4.7(3)].

Resende [2011, Lemma 4.26, Theorem 4.29] also gives exactly the same proof of the equivalence

Hilb(Q) ' Proj(Q) as we did in [Heymans and Stubbe, 2009b, Example 3.7(4)] (whereas [Re-

sende, 2008] had noted the object correspondence, but not the morphism correspondence, thus

not the equivalence of quantaloids.)
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66. [Volker Zöberlein, 1976] Doctrines on 2-categories, Math. Z. 148, pp. 267–279.

46



Selected publications

Hereafter I provide copies of my publications that I referred to in the previous chapter. In

chronological order they are:

1. Categorical structures enriched in a quantaloid: categories, distributors and functors, p. 49,

2. Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories,

p. 51,

3. Categorical structures enriched in a quantaloid: orders and ideals over a base quantaloid,

p. 53,

4. The canonical topology on a meet-semilattice, p. 55,

5. Categorical structures enriched in a quantaloid: tensored and cotensored categories, p. 57,

6. Towards ‘dynamic domains’: totally continuous cocomplete Q-categories, p. 59,

7. Q-modules are Q-suplattices, p. 61,

8. Exponentiable functors between quantaloid-enriched categories, p. 63,

9. On principally generated Q-modules in general, and skew local homeomorphisms in partic-

ular, p. 65,

10. Modules on involutive quantales: canonical Hilbert structure, applications to sheaves, p. 67,

11. ‘Hausdorff distance’ via conical cocompletions, p. 69,

12. Symmetry and Cauchy completion of quantaloid-enriched categories, p. 71,

13. Elementary characterisation of quantaloids of closed cribles, p. 73.

47





Theory and Applications of Categories, Vol. 14, No. 1, 2005, pp. 1–45.

CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID:
CATEGORIES, DISTRIBUTORS AND FUNCTORS

ISAR STUBBE

Abstract. We thoroughly treat several familiar and less familiar definitions and re-
sults concerning categories, functors and distributors enriched in a base quantaloid Q. In
analogy with V-category theory we discuss such things as adjoint functors, (pointwise)
left Kan extensions, weighted (co)limits, presheaves and free (co)completion, Cauchy
completion and Morita equivalence. With an appendix on the universality of the quan-
taloid Dist(Q) of Q-enriched categories and distributors.

1. Introduction

The theory of categories enriched in a symmetric monoidal closed category V is, by now,
well known [Bénabou, 1963, 1965; Eilenberg and Kelly, 1966; Lawvere, 1973; Kelly, 1982].
For such a V with “enough” (co)limits the theory of V-categories, distributors and functors
can be pushed as far as needed: it includes such things as (weighted) (co)limits in a
V-category, V-presheaves on a V-category, Kan extensions of enriched functors, Morita
theory for V-categories, and so on.

Monoidal categories are precisely one-object bicategories [Bénabou, 1967]. It is thus
natural to ask how far V-category theory can be generalized to W-category theory, for W a
general bicategory. But, whereas in V-category theory one usually assumes the symmetry
of the tensor in V (which is essential for showing that V is itself a V-category with hom-
objects given by the right adjoint to tensoring), in working over a general bicategory W
we will have to sacrifice this symmetry: tensoring objects in V corresponds to composing
morphisms in W and in general it simply does not make sense for the composition g ◦ f
of two arrows f, g to be “symmetric”.

On the other hand, we can successfully translate the notion of closedness of a monoidal
category V to the more general setting of a bicategory W : ask that, for any object X of
W and any arrow f : A !! B in W , both functors

− ◦ f : W(B,X) !! W(A,X) : x #→ x ◦ f, (1)

f ◦ − : W(X,A) !! W(X,B) : x #→ f ◦ x (2)

have respective right adjoints

{f,−} : W(A,X) !! W(B,X) : y #→ {f, y}, (3)

Received by the editors 2004-05-13 and, in revised form, 2004-01-14.
Transmitted by Jiri Rosicky. Published on 2005-01-18.
2000 Mathematics Subject Classification: 06F07, 18B35, 18D20.
Key words and phrases: Quantales and quantaloids, enriched categories.
c© Isar Stubbe, 2004. Permission to copy for private use granted.
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CATEGORICAL STRUCTURES ENRICHED IN A

QUANTALOID: REGULAR PRESHEAVES,
REGULAR SEMICATEGORIES

by Isar STUBBE

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL VI-2 (2005)

Risum6. On étudie les préfaisceaux sur des semicategories enrichies dans un
quantaldfde: cela donne lieu a la notion de pr6faisceau r6gulier. Une semi-
cat6gorie est régulière si tous les préfaisceaux repr6sentables sont r6guliers,
et ses pr6faisceaux r6guliers forment alors une (co)localisation essentielle de
la cat6gorie de tous ses pr6faisceaux. La notion de semidistributeur r6gulier
permet d’6tablir 1’equivalence de Morita des semicategories régulières. Les
ordres continus et les n-ensembles foumissent des exemples.
Mots cl6s: quantaldfde, semicat6gorie, pr6faisceau, r6gularit6, equivalence de
Morita, ordre continu, S2-ensemble
Keywords: quantaloid, semicategory, presheaf, regularity, Morita equiva-
lence, continuous order, n-set
AMS Subject Classification (2000): 06F07, 18B35, 18DO5, 18D20

1 Introduction

In [Moens et al., 2002] the theory of regular modules on an R-algebra without unit,
for R a commutative ring, was generalized to a theory of regular presheaves on a
V-enriched semicategory, for V a symmetric monoidal closed base category. As a
monoidal category V is a one-object bicategory, it is natural to ask in how far in
the above the base V can be replaced by a bicategory W (thus necessarily loosing
symmetry of the tensor). Here we present such a theory of regular presheaves on a
Q-enriched semicategory, where now Q is any (small) quantaloid.

A quantaloid is a Sup-enriched category; it is thus in particular a bicategory.
There is a theory of categories enriched in a quantaloid Q, as particular case of
categories enriched in a bicategory. A presentation thereof is given in [Stubbe,
2004a] which is our reference for all the basic notions and results concerning Q-
categories that we may need further on. A Q-semicategory is then simply a "Q-
category without unit-inequalities".

A presheaf on a Q-semicategory A is formally the same thing as a presheaf on
the free Q-category on A. Thus the presheaves on A constitute a Q-category PA.
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Categorical Structures Enriched in a Quantaloid:
Orders and Ideals over a Base Quantaloid

ISAR STUBBE
Département de Mathématique, Université de Louvain, Chemin du Cyclotron 2, 1348,
Louvain-la-Neuve, Belgique. e-mail: i.stubbe@math.ucl.ac.be

(Received: 12 August 2004; accepted: 9 December 2004)

Abstract. Applying (enriched) categorical structures we define the notion of ordered sheaf on a
quantaloid Q, which we call ‘Q-order’. This requires a theory of semicategories enriched in the
quantaloid Q, that admit a suitable Cauchy completion. There is a quantaloid Idl(Q) of Q-orders and
ideal relations, and a locally ordered category Ord(Q) of Q-orders and monotone maps; actually,
Ord(Q) = Map(Idl(Q)). In particular is Ord(!), with ! a locale, the category of ordered objects in
the topos of sheaves on !. In general Q-orders can equivalently be described as Cauchy complete
categories enriched in the split-idempotent completion of Q. Applied to a locale ! this generalizes
and unifies previous treatments of (ordered) sheaves on ! in terms of !-enriched structures.

Mathematics Subject Classifications (2000): 06F07, 18B35, 18D05, 18D20.

Key words: quantaloid, quantale, locale, ordered sheaf, enriched categorical structure, Cauchy
completion.

1. Introduction

An “ordered set” is usually thought of as a set equipped with a reflexive and
transitive relation; that is to say, it is an ordered object in Set. But one can also
treat an order (A, ≤) by means of the classifying map for its order relation, say
[· ≤ ·] : A×A → 2, where now 2 is the object of truth values. This takes us into the
realm of enriched categorical structures, for the reflexivity and transitivity axioms
on the order relation translate into unit-inequalities and composition-inequalities
for the enrichment [· ≤ ·] of A over 2. So order theory is then a matter of applied
(enriched) categorical structures.

More generally, an “ordered sheaf on a locale !” is an ordered object in the
topos Sh(!) of sheaves on the locale. Here too one may attempt at describing
such an !-order (A, ≤) in terms of enriched categorical structures. There are two
approaches: Walters [8] (implicitly) treats such !-orders as categories enriched in
Rel(!); whereas Borceux and Cruciani [2] prefer to work with semicategories en-
riched in !. The first option has the advantage that it speaks of categories enriched
in a quantaloid, a clear and transparent theory that may be developed along the lines
of the well-known theory of V-enriched categories; but it has the disadvantage that
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The Canonical Topology on a Meet-Semilattice

Isar Stubbe1

Received ; accepted

Considering the lattice of properties of a physical system, it has been argued elsewhere
that—to build a calculus of propositions having a well-behaved notion of disjunction
(and implication)—one should consider a very particular frame completion of this
lattice. We show that the pertinent frame completion is obtained as sheafification of the
presheaves on the given meet-semilattice with respect to its canonical Grothendieck
topology, an explicit description of which is easily given. Our conclusion is that there is
an intrinsic categorical quality to the notion of “disjunction” in the context of property
lattices of physical systems.

KEY WORDS: meet-semilattice; topology; sheaf; frame completion.

PACS: 02.10.Ab; 03.65.Fd.

1. DISTRIBUTIVE JOINS IN A PROPERTY LATTICE
ARE DISJUNCTIONS

Following Piron (1972, 1976, 1990) in his operational approach to (quantum)
physics, a physical system is described by its properties, the actuality of each prop-
erty being tested by a definite experimental project. The collection of properties
(actual or not) of a system forms a complete lattice (L,≤): the order relation in L

is the “implication of actuality” of properties (a ≤ b in L means that b is actual
whenever a is), and it is a matter of fact that the infimum in L is the conjunction
of properties (∧iai in L is actual if and only if every ai is actual). The state of a
system is defined as the collection of all of its actual properties; but it is easily seen
that one can identify a state ε ⊂ L with pε := ∧ε ∈ L. When denoting by S the
set of all possible states of a given physical system, Aerts (1982) put forward that
S is a space rather than just a set, its structure coming from the so-called “Cartan
map”

µ : L → P(S) : a '→ {ε ∈ S | pε ≤ a}.

1 Département de Mathématique, Université de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-
Neuve, Belgium; e-mail: i.stubbe@math.ucl.ac.be.
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CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID:
TENSORED AND COTENSORED CATEGORIES

ISAR STUBBE

Abstract. A quantaloid is a sup-lattice-enriched category; our subject is that of
categories, functors and distributors enriched in a base quantaloid Q. We show how
cocomplete Q-categories are precisely those which are tensored and conically cocom-
plete, or alternatively, those which are tensored, cotensored and ‘order-cocomplete’. In
fact, tensors and cotensors in a Q-category determine, and are determined by, certain
adjunctions in the category of Q-categories; some of these adjunctions can be reduced to
adjuctions in the category of ordered sets. Bearing this in mind, we explain how tensored
Q-categories are equivalent to order-valued closed pseudofunctors on Qop; this result is
then finetuned to obtain in particular that cocomplete Q-categories are equivalent to
sup-lattice-valued homomorphisms on Qop (a.k.a. Q-modules).

Introduction

The concept of “category enriched in a bicategory W” is as old as the definition of
bicategory itself [Bénabou, 1967]; however, J. Bénabou called them “polyads”. Taking a
W with only one object gives a monoidal category, and for symmetric monoidal closed V
the theory of V-categories is well developed [Kelly, 1982]. But also categories enriched in
a W with more than one object are interesting. R. Walters [1981] observed that sheaves
on a locale give rise to bicategory-enriched categories: “variation” (sheaves on a locale
Ω) is related to “enrichment” (categories enriched in Rel(Ω)). This insight was further
developed in [Walters, 1982], [Street, 1983] and [Betti et al., 1983]. Later [Gordon and
Power, 1997, 1999] complemented this work, stressing the important rôle of tensors in
bicategory-enriched categories.

Here we wish to discuss “variation and enrichment” in the case of a base quantaloid
Q (a small sup-lattice-enriched category). This is, of course, a particular case of the
above, but we believe that it is also of particular interest; many examples of bicategory-
enriched categories (like Walters’) are really quantaloid-enriched. Since in a quantaloid Q
every diagram of 2-cells commutes, many coherence issues disappear, so the theory of Q-
enriched categorical structures is very transparent. Moreover, by definition a quantaloid
Q has stable local colimits, hence (by local smallness) it is closed; this is of great help
when working with Q-categories. The theory of quantaloids is documented in [Rosenthal,
1996]; examples and applications of quantaloids abound in the literature; and [Stubbe,
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Towards “dynamic domains”: Totally continuous cocomplete
Q-categories

Isar Stubbe∗,1
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Abstract

It is common practice in both theoretical computer science and theoretical physics to describe the (static) logic of a system by
means of a complete lattice. When formalizing the dynamics of such a system, the updates of that system organize themselves quite
naturally in a quantale, or more generally, a quantaloid. In fact, we are led to consider cocomplete quantaloid-enriched categories
as a fundamental mathematical structure for a dynamic logic common to both computer science and physics. Here we explain the
theory of totally continuous cocomplete categories as a generalization of the well-known theory of totally continuous suplattices.
That is to say, we undertake some first steps towards a theory of “dynamic domains”.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Quantaloid-enriched category; Module; Projectivity; Small-projectivity; Complete distributivity; Total continuity; Total algebraicity;
Dynamic domain; Dynamic logic

1. Introduction

Towards “dynamic domains”. It is common practice in both theoretical computer science and theoretical physics
to describe the ‘properties’ of a ‘system’ by means of a complete lattice L; this lattice is then thought of as the logic
of the system. For example, the lattice of closed subspaces of a Hilbert space is the logic of properties of a quantum
system; and, in computer science, a domain is the logics of observables of a computational system.

More recently, also another ordered structure has been recognized to play an important rôle in both physics and
computer science: when formalizing the dynamics of a physical or computational system, it turns out that the ‘updates’
of a system – think of them as programs for a computational system, and property transitions for a physical system –
organize themselves quite naturally in a quantale Q [2,8].

Having a complete lattice L of properties of a system and a quantale Q of updates, we give an operational meaning
to each f ∈ Q by the so-called Principle of Causal Duality (explained in detail in [18] but going back to [10,12] for

∗ Corresponding address: Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp,
Belgium.

E-mail address: isar.stubbe@ua.ac.be.
1 Isar Stubbe is a Postdoctoral Fellow of the Research Foundation Flanders (FWO).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.01.002
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Theory and Applications of Categories, Vol. 19, No. 4, 2007, pp. 50–60.

Q-MODULES ARE Q-SUPLATTICES

ISAR STUBBE

Abstract. It is well known that the internal suplattices in the topos of sheaves on a
locale are precisely the modules on that locale. Using enriched category theory and a
lemma on KZ doctrines we prove (the generalization of) this fact in the case of ordered
sheaves on a small quantaloid. Comparing module-equivalence with sheaf-equivalence
for quantaloids and using the notion of centre of a quantaloid, we refine a result of F.
Borceux and E. Vitale.

1. Introduction

When studying topos theory one inevitably must study order theory too: if only because
many advanced features of topos theory depend on order-theoretic arguments using the
internal Heyting algebra structure of the subobject classifier in a topos, as C. J. Mikkelsen
[1976] illustrates plainly. One of the results of [Mikkelsen, 1976] states that an ordered
object in an elementary topos E is cocomplete, i.e. it is an internal suplattice, if and
only if the “principal downset embedding” from that object to its powerobject has a left
adjoint in Ord(E). In the case of a localic topos, it turns out that the internal suplattices
in Sh(Ω) are precisely the Ω-modules, and supmorphisms are just the module morphisms
[Joyal and Tierney, 1984; Pitts, 1988].

Now consider quantaloids (i.e. Sup-enriched categories) as non-commutative, multi-
typed generalization of locales. Using the theory of categories enriched in a quantaloid,
and building further on results by B. Walters [1981] and F. Borceux and R. Cruciani
[1998], I. Stubbe [2005b] proposed the notion of ordered sheaf on a (small) quantaloid Q
(or Q-order for short): one of several equivalent ways of describing a Q-order is to say
that it is a Cauchy complete category enriched in the split-idempotent completion of Q.
There is thus a locally ordered category Ord(Q) of Q-orders and functors between them.
If one puts Q to be the one-object suspension of a locale Ω, then Ord(Ω) is equivalent
to Ord(Sh(Ω)). (And if one puts Q to be the one-object suspension of the Lawvere reals
[0,∞], then Ord([0,∞]) is equivalent to the category of Cauchy complete generalized
metric spaces.)

In this paper we shall explain how Mod(Q), the quantaloid of Q-modules, is the
category of Eilenberg-Moore algebras for the KZ doctrine on Ord(Q) that sends a Q-order
A to its free cocompletion PA. The proof of this fact is, altogether, quite straightforward:
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Abstract Exponentiable functors between quantaloid-enriched categories are char-
acterized in elementary terms. The proof goes as follows: the elementary conditions
on a given functor translate into existence statements for certain adjoints that obey
some lax commutativity; this, in turn, is precisely what is needed to prove the
existence of partial products with that functor; so that the functor’s exponentiability
follows from the works of Niefield (J. Pure Appl. Algebra 23:147–167, 1982) and
Dyckhoff and Tholen (J. Pure Appl. Algebra 49:103–116, 1987).

Keywords Quantaloid · Enriched category · Exponentiability · Partial product

Mathematics Subject Classifications (2000) 06F07 · 18A22 · 18D05 · 18D20

1 Introduction

The study of exponentiable morphisms in a category C, in particular of exponentiable
functors between (small) categories (i.e. Conduché fibrations), has a long history; see
[7] for a short account. Recently M. M. Clementino and D. Hofmann [3] found simple
necessary-and-sufficient conditions for the exponentiability of a functor between V-
enriched categories, where V is a symmetric quantale which has its top element as
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a b s t r a c t

Ordered sheaves on a small quantaloid Q have been defined in terms of Q-enriched
categorical structures; they form a locally ordered categoryOrd(Q). The free-cocompletion
KZ-doctrine on Ord(Q) has Mod(Q), the quantaloid of Q-modules, as its category of
Eilenberg–Moore algebras. In this paper we give an intrinsic description of the Kleisli
algebras: we call them the locally principally generatedQ-modules. We deduce that Ord(Q)
is biequivalent to the 2-category of locally principally generatedQ-modules and left adjoint
module morphisms. The example of locally principally generated modules on a locale X is
worked out in full detail: relating X-modules to objects of the slice category Loc/X , we
show that ordered sheaves on X correspond with skew local homeomorphisms into X (like
sheaves on X correspond with local homeomorphisms into X).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Locales and quantales, sheaves and logic

A locale X is a complete lattice in which finite infima distribute over arbitrary suprema. A particular class of examples of
locales comes from topology: the open subsets of any topological space form a locale. But not every locale arises in this way,
whence the slogan that locales are ‘‘pointfree topologies’’ [23]. There is a ‘‘pointfree’’ way to do sheaf theory: a sheaf F on
a locale X is a functor F : Xop // Set satisfying gluing conditions. The collection of all such functors, together with natural
transformations between them, forms the topos Sh(X) of sheaves on X . One of the many close ties between logic and sheaf
theory, which is of particular interest to us, is that the internal logic of Sh(X) is an intuitionistic higher-order predicate logic
with X as object of truth values [29,8,24]. To borrow a phrase from [38] and others, sheaf theory thus serves as algebraic
logic.
The definition of locale can be restated: X is a complete lattice and (X,∧,>) is a monoid such that the multiplication

distributes on both sides over arbitrary suprema. It is natural to generalise this: a quantale Q = (Q , ◦, 1) is, by definition,
a monoid structure on a complete lattice such that the multiplication distributes on both sides over arbitrary suprema [31,
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Abstract We explain the precise relationship between two module-theoretic de-
scriptions of sheaves on an involutive quantale, namely the description via so-called
Hilbert structures on modules and that via so-called principally generated modules.
For a principally generated module satisfying a suitable symmetry condition we
observe the existence of a canonical Hilbert structure. We prove that, when working
over a modular quantal frame, a module bears a Hilbert structure if and only if it is
principally generated and symmetric, in which case its Hilbert structure is necessarily
the canonical one. We indicate applications to sheaves on locales, on quantal frames
and even on sites.

Keywords Quantale · Module · Principal element · Principal symmetry ·
Inner product · Sheaf

1 Introduction

Jan Paseka [8–10] introduced the notion of Hilbert module on an involutive quantale:
it is a module equipped with an inner product. This provides for an order-theoretic
notion of “inner product space”, originally intended as a generalisation of complete
lattices with a duality. Recently, [13] applied this definition to a locale X and further
defined what it means for a Hilbert X-module to have a Hilbert basis. These Hilbert
X-modules with Hilbert basis describe, in a module-theoretic way, the sheaves on X.

At the same time, the present authors defined the notion of (locally) principally
generated module on a quantaloid [3]. Our aim too was to describe “sheaves as
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SYMMETRY AND CAUCHY COMPLETION
OF QUANTALOID-ENRICHED CATEGORIES

HANS HEYMANS AND ISAR STUBBE

Abstract. We formulate an elementary condition on an involutive quantaloid Q under
which there is a distributive law from the Cauchy completion monad over the symmetri-
sation comonad on the category of Q-enriched categories. For such quantaloids, which
we call Cauchy-bilateral quantaloids, it follows that the Cauchy completion of any sym-
metric Q-enriched category is again symmetric. Examples include Lawvere’s quantale
of non-negative real numbers and Walters’ small quantaloids of closed cribles.

1. Introduction

A quantaloid Q is a category enriched in the symmetric monoidal closed category Sup of
complete lattices and supremum-preserving functions. Viewing Q as a bicategory, it is
natural to study categories, functors and distributors enriched in Q. If Q comes equipped
with an involution, it makes sense to consider symmetric Q-enriched categories. An
important application of quantaloid-enriched categories was discovered by R.F.C. Walters
[1981, 1982]: he proved that the topos of sheaves on a small site (C, J) is equivalent to
the category of symmetric and Cauchy complete categories enriched in a suitable “small
quantaloid of closed cribles” R(C, J). A decade earlier, F.W. Lawvere [1973] had already
pointed out that the category of generalised metric spaces and non-expansive maps is
equivalent to the category of categories enriched in the quantale (that is, a one-object
quantaloid) ([0, ∞],

∧
, +, 0) of extended non-negative real numbers. This is a symmetric

quantale, hence it is trivially involutive; and here too the symmetric and Cauchy complete
[0, ∞]-enriched categories are important, if only to connect with the classical theory of
metric spaces. Crucial in both examples is thus the use of categories enriched in an
involutive quantaloid Q which are both symmetric and Cauchy complete. R. Betti and
R.F.C. Walters [1982] therefore raised the question “whether the Cauchy completion of a
symmetric [quantaloid-enriched] category is again symmetric”. That is to say, they ask
whether it is possible to restrict the Cauchy completion functor (−)cc: Cat(Q) !! Cat(Q)
along the embedding SymCat(Q) !! Cat(Q) of symmetric Q-categories. They show that
the answer to their question is affirmative for both R(C, J) and [0, ∞], by giving an ad
hoc proof in each case; they also give an example of an involutive quantale for which the
answer to their question is negative. Thus, it depends on the base quantaloid Q whether
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Elementary characterisation of small quantaloids of closed cribles

Hans Heymans∗ and Isar Stubbe†

March 17, 2011

Abstract

Each small site (C, J) determines a small quantaloid of closed cribles R(C, J). We prove

that a small quantaloid Q is equivalent to R(C, J) for some small site (C, J) if and only if

there exists a (necessarily subcanonical) Grothendieck topology J on the category Map(Q)

of left adjoints in Q such that Q ∼= R(Map(Q), J), if and only if Q is locally localic, map-

discrete, weakly tabular and weakly modular. If moreover coreflexives split in Q, then the

topology J on Map(Q) is the canonical topology.

1. Introduction

A quantaloid Q is, by definition, a category enriched in the symmetric monoidal closed category

Sup of complete lattices and supremum-preserving functions [Rosenthal, 1996]. Viewing Q as a

bicategory, it is natural to study categories, functors and distributors enriched in Q [Bénabou,

1967; Street, 1983; Stubbe, 2005a]. A major application of quantaloid-enriched category theory

was discovered by B. Walters, and published in this journal: in [1982], he proved that the topos

of sheaves on a site (C, J) is equivalent to the category of symmetric and Cauchy complete

categories enriched in the small quantaloid of closed cribles R(C, J) constructed from the given

site.

Given the importance of the construction of the quantaloid of closed cribles R(C, J) from a

small site (C, J), we provide in this paper an elementary axiomatisation of this notion. Precisely,

we prove that a small quantaloid Q is equivalent to R(C, J) for some small site (C, J) if and

only if there exists a Grothendieck topology J on the category Map(Q) of left adjoints in Q such

that Q ∼= R(Map(Q), J), if and only if Q is locally localic, map-discrete, weakly tabular and

weakly modular. (The latter two notions seem to be new, and inherited their name from the

stronger notions of tabularity and modularity introduced in [Freyd and Scedrov, 1990].) The

Grothendieck topology J on Map(Q) is always subcanonical, and if coreflexives split in Q, then

J is the canonical topology.

This result thus spells out how two, at first sight quite different, generalisations of locales,

namely Grothendieck topologies on the one hand, and quantaloids on the other, relate: the

former can be understood to form an axiomatically described subclass of the latter. It is hoped
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