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Preface (added July 26, 2007)

On November 12, 2003, I obtained a doctorate on my dissertation entitled “Cate-
gorical Structures enriched in a quantaloid: categories and semicategories”, at the
Université Catholique de Louvain in Louvain-la-Neuve, Belgium. The promotor of
my doctoral research was Francis Borceux, and the other members of the jury were
Bob Coecke, Yves Félix, Jean-Roger Roisin, Jif{ Rosicky and Enrico Vitale.

The aim of my doctoral dissertation was to bring together the existing mate-
rial on quantaloid-enriched categories, and then to use this formalism, adapting it
where necessary, to analyze in detail the concept of, loosely speaking, “sheaves on a
quantaloid”. Besides the Introduction, my dissertation consisted of five chapters: 1.
Preliminaries on quantaloids; 2. Categories enriched in a quantaloid; 3. Some cat-
egorical algebra; 4. Regular semicategories; and 5. Totally regular semicategories.
These have now been published in three articles: “Categorical structures enriched in
a quantaloid: categories, distributors, functors”, in Theory and Applications of Cat-
egories 14, pp. 1-45 (2005); “Categorical structures enriched in a quantaloid: regular
presheaves, regular semicategories”, in Cahiers de Topologie et Gomtrie Diffrentielle
Catgoriques 46, pp. 99-121 (2005); and “Categorical structures enriched in a quan-
taloid: orders and ideals over a base quantaloid”, in Applied Categorical Structures
13, pp. 235-255 (2005). Chopping up my dissertation in these three articles, meant
that its Introduction got lost (even though parts of it made it to the introductory sec-
tions of the respective articles). It seemed useful to reproduce it as a “stand-alone”
paper and make it available via the world wide web, for it provides a not-so-technical
overview of the material covered in my thesis (and a fortiori in those three articles).

Apart from twiddling with the lay-out, correcting some spelling mistakes and
changing a couple of mathematical notations (to make them exactly the same as
in the three articles), I didn’t change one iota of the original Introduction to my
doctoral dissertation. In particular are the references included here precisely those
of my doctorate.

Isar Stubbe

Postdoctoral Fellow of the Research Foundation Flanders (FWO)

Department of Mathematics and Computer Science, University of Antwerp, Belgium
isar.stubbe@ua.ac.be



1. A quantaloid as base for enriched categories

The theory of categories enriched in a symmetric monoidal closed category V is, by
now, well known [Bénabou, 1963, 1965; Eilenberg and Kelly, 1966; Lawvere, 1973;
Kelly, 1982]. For such a V with “enough” (co)limits the theory of V-categories, dis-
tributors and functors can be pushed as far as needed: it includes such things as
(weighted) (co)limits in a V-category, V-presheaves on a V-category, Kan extensions
of enriched functors, Morita theory for V-categories, and so on. We will argue below
that “V-category theory” can be generalized to “Q-category theory”, where now
Q denotes a quantaloid. A quantaloid is a kind of bicategory, so this is really a
particular case of the theory of “W-category theory”, with W a bicategory, as pio-
neered by [Bénabou, 1967; Walters, 1981; Street, 1983] and later further developed
[Betti et al., 1983; Gordon and Power, 1997].

1.1. From monoidal categories to bicategories. Monoidal categories are pre-
cisely one-object bicategories [Bénabou, 1967]. To wit, for a monoidal category V,
denote susp(V) — and call it the suspension of V — for the following bicategory: it
has one object; its arrows are the objects of V), their composition in susp(}) is given
by the tensor in V, and in particular is the identity arrow on the single object of
susp(V) precisely the identity object for the tensor in V; and the 2-cells in susp())
correspond precisely to the arrows of V. That susp(V) is in general a bicategory,
and not a 2-category, is due to the fact that the tensor on V is associative, and has
left and right identity, only up to natural isomorphism. (Viewing a monoidal cate-
gory V as a one-object bicategory has some analogues that may be more familiar:
for instance, a monoid is a one-object category, or more in particular, a group is a
one-object groupoid.)

Let W now denote a general bicategory. Given the above it is natural to ask
in how far V-category theory can be generalized to W-category theory. Let us
therefore first try to make sense of the usual conditions on a base monoidal category
V — symmetry, closedness, (co)completeness — in the case of a bicategory W.

In V-category theory one usually assumes the symmetry of the tensor in V; this
is essential to show that V is itself a V-category with hom-objects given by the right
adjoint to tensoring. But the definitions for V-category, distributor or functor do
not require the symmetry of the tensor in ¥V, and moreover, many important features
of V-category theory can still be developed in the non-symmetric case (sometimes
one has to work a little harder though). This is encouraging, because in passing
from a monoidal category V to a general bicategory W we will have to sacrifice this
symmetry: tensoring objects in V corresponds to composing morphisms in W and
in general it simply does not make sense for the composition g o f of two arrows f, g



to be “symmetric” (the domain of f may be different from the codomain of g)!!

On the other hand, we can successfully translate the notion of closedness of a
monoidal category V to the more general setting of a bicategory W. The tensor on
objects in V corresponds to the composition of morphisms in W, so we simply ask
that, for any object X of W and any arrow f : A— B in W, both functors?

—of W(B,X)—W(A,X):xz— zof, (1)
fo— WX,A)—WX,B):x— fox (2)

have right adjoints. We’ll denote these as

{f,=1: WA, X) —=W(B, X) -y — {f,y}, (3)
[f; =1 WX, B) = W(X, A) :y = [f,y]. (4)

(Indeed, we have to ask for both adjoints!) Such a bicategory W is said to be closed.
Some call an arrow such as {f,y} a (right) extension and [f,y] a (right) lifting (of
y through f).

Finally, by saying that V has “enough limits and colimits” is in practice often
meant that V' has small limits and small colimits. (In particular are the colimits
required to compose distributors between (small) V-categories. And the limits are
crucial if one wants to speak of a V-object of V-natural transformations between two
given parallel functors.) In a bicategory W the analogue for these (co)completeness
conditions is straightforward: recalling that in passing from a monoidal category V
to a bicategory W the role of the objects of V is played by the arrows of W, we must
now ask for W to have in its hom-categories small limits and small colimits (i.e. W
is locally complete and cocomplete).

So, to summarize, when trying to develop category theory over a base bicategory
W rather than a base monoidal category V), it seems reasonable to work with a base
bicategory which is closed, locally complete and locally cocomplete. Note that in
such a bicategory W, due to its closedness, composition always distributes on both
sides over colimits of morphisms:

f o (colim;er g;) = colim;er(f o gi), (5)
(colimje s fj) o g = colimjec s (fj o g). (6)

That is to say, the local colimits are stable under composition. (But this does not
hold in general for local limits!)

Tt may be argued however that the symmetry of the tensor in V is adequately generalized by
an involution on W.

2Composition of arrows f: A— B and ¢g: B— C is written in the usual manner, as go f: A—C.
And W(A, B) denotes the hom-category whose objects are arrows with domain A and codomain B.



1.2. Quantales and quantaloids. We will focus on a special case of these closed,
locally complete and locally cocomplete bicategories: namely, we study such bi-
categories whose hom-categories are moreover small and skeletal. Thus the hom-
categories are simply complete lattices: a small, skeletal complete (cocomplete) cat-
egory is precisely an ordered set with arbitrary infima (suprema), and the suprema
(infima) then come for free. We will write the local structure as an order, and local
limits and colimits of morphisms as their infimum, resp. supremum-—so for arrows
with same domain and codomain we have things like f < f', \/,.; fi, /\jeJ g;, etc.
In particular (5) and (6) become

fo (\/1 9i) = \/z(f °gi), (7)
(V; fi)og=\,;(fjog). (8)

The adjoint functor theorem says that the existence of the adjoints (3) and (4)
to the composition functors (1) and (2) (not only implies but also) is implied by
their distributing over suprema of morphisms as in (7) and (8). Such bicategories
— whose hom-categories are complete lattices and whose composition distributes on
both sides over arbitrary suprema — are called quantaloids. A one-object quantal-
oid is a quantale3. So a quantaloid Q is a Sup-enriched category and a quantale is
monoid in Sup. (Sup denotes the symmetric monoidal closed category of complete
lattices and morphisms that preserve suprema). This at once fixes the notion of a
homomorphism between quantaloids: it is a Sup-functor between the quantaloids
viewed as Sup-categories. (But due to the local structure of quantaloids, this no-
tion of homomorphism can be “relaxed”; in particular does J. Bénabou’s notion of
“morphism of bicategories”, i.e. the Australian’s “lax functor”, make sense too.)

To gain some intuition about quantales and quantaloids it may be useful to put
them in some perspective. Let us therefore look at some examples.

Of course Sup is the example par excellence of a quantaloid. And it follows
from standard arguments for symmetric monoidal closed categories that, for any
sup-lattice L, Sup(L, L) is a monoid in Sup, i.e. a quantale, and that any quantale
is canonically a subquantale of some Sup(L, L).

Thinking of Sup as some sort of “infinitary version” of Ab, a quantale (a monoid in
Sup) is then much like a ring (a monoid in Ab): instead of a finitary sum a; +ag+...+
an it comes with an infinitary one, namely the supremum \/,c; a;. (Of course, \/ is
an idempotent operation—so it is more than just an “infinitary sum”.) In particular,

31t was C. Mulvey [1986] who introduced the word ‘quantale’ in his work on (non-commutative)
C™-algebras to contrast with the word ‘locale’—see further. In today’s literature though the word
‘quantale’ often means different things to different authors. Let us therefore underline that through-
out this text a quantale always has a unit for its multiplication ([Rosenthal, 1990] and [Kruml, 2002]
do not ask this), but that on the contrary it should not necessarily be “idempotent” nor “right-sided”
(as [Borceux, Rosicky and Van den Bossche, 1989] ask).



the distributivity of product over sums in a ring generalizes to the distributivity of
composition over suprema in a quantale. On the other hand, thinking of Sup as some
“simplified version” of Cat confirms the fact that a quantaloid (a Sup-category) is a
simple kind of 2-category (a Cat-category); note that indeed every diagram of 2-cells
commutes in a quantaloid (and this is obviously not the case in any 2-category).
Quantales can be viewed as “non-commutative locales”. Recall that a locale
Q) is a complete lattice in which finitary infima distribute over arbitrary suprema:

vz, (yi)ier €
x A\ (\/ Yi) = \/(a; A Y;).
icl icl

For a topological space (X,7) the topology 7 is a locale with infimum given by
intersection and supremum by union. Although not every locale can be obtained in
this way, it is for this reason that they are often thought of as “pointless topologies”
[Johnstone, 1982, 1983]. A locale is in particular a complete lattice for which binary
infimum and the top element define a compatible structure of (commutative) monoid.
A quantale is, in the same terms, a complete lattice equipped with a compatible
monoid structure—but not necessarily with the infimum as multiplication nor the
top element as unit. Therefore we may think of a quantale as a “(pointless) non-
commutative topology”. (This is easier said than done; the “spatiality” of a quantale
is highly non-trivial! It is one of the research themes of the Brno school [Rosicky,
1995; Paseka and Rosicky, 2000; Kruml, 2002].)

Let us, to be a bit more concrete, briefly sketch how quantales and quantaloids
quite naturally arise in ring theory as such strange “topologies”. (This is in some
sense (a modern account of) the “historical example” of quantales and quantaloids.
Indeed, the importance of ordered sets with a compatible multiplication as structure
an sich was first recognized in the study of ideals in a ring [Krull, 1924; Ward and
Dilworth, 1939].) Thereto, let R denote a (not necessarily commutative) ring (with
unit). The ring R is canonically a right module over itself, and a right ideal I is
by definition just a (right) submodule*. Similarly one defines left-sided ideals, and
two-sided ideals, in R. These form respective sets Ridl(R), Lidl(R) and Tidl(R). (For
a commutative R these sets obviously coincide, and we may simply denote IdI(R)
for the ideals in R.) Any two additive subgroups I, J C R can be multiplied, by the
formula

I - J = {finite sums i1j1 + ... + inJjn with all i € I and all j; € J}, 9)

and a new additive subgroup of R is obtained. It is easily seen that this multiplication
is internal on each of the sets Ridl(R), Lidl(R) and Tidl(R), and that the latter is then
even a monoid with unit R. Moreover, for any family (Ix)rex of additive subgroups

4So R is a “space”, and I is a “subspace”.



of R we may consider the subgroup generated by (the set-theoretic union of) this
family: it is the sum

Z I}, = {finite sums of elements in U Ii.}. (10)
keK keK

In particular, the ordered sets (Ridl(R),C), (LidI(R),C) and (Tidl(R),C) are com-
plete lattices with this sum as supremum (and top element R). The multiplication
in (9) distributes on both sides over the arbitrary sums in (10); so Tidl(R) is a quan-
tale, and Ridl(R) and Lidl(R) are “almost” quantales (they lack a two-sided unit for
the multiplication).

At first sight it thus seems that the separate structures of right-sided, left-
sided and two-sided ideals in a ring R each provide some kind of “(pointless) non-
commutative topology”. But actually it is not necessary to keep these different
kinds of ideals separated, as G. Van den Bossche [1995] points out (but she credits
B. Lawvere for this idea): they organize themselves quite naturally in one single
“quantaloid of ideals” of R. Indeed, observe that:

when I € Lidl(R) and J € RidI(R), then I - J € Tidl(R);

when I € Ridl(R) and J € Tidl(R), then I - J € Ridl(R);

when I € Tidl(R) and J € LidI(R), then I - J € LidI(R).

When I € RidI(R) and J € LidI(R), then I-J still makes sense, but it is not any longer
an ideal in R. However, it is an additive subgroup of R which is a module on the
center Z(R) of R. The collection of these still forms a quantale with multiplication
as in (9) (and Z(R) as unit) and suprema as in (10) (with top R). (Note that any
additive subgroup of R which is a left Z(R)-module is also a right Z(R)-module, and
conversely. And that for a commutative R, the center being the whole of R, these
coincide with the ideals.) This leads to the consideration of the following quantaloid:
Or has two objects, 0 and 1; the hom-objects are

Qr(0,0) = additive subgroups of R which are Z(R)-modules,
Qr(0,1) = Lidl(R), Qr(1,0) =Ridl(R), Qr(1,1) = Tidl(R)

(which are all complete lattices with suprema as in (10) and, in particular, top
element R); composition in Qp is the multiplication as in (9) which we read from
right to left (so IoJ = I-J); and the identity arrow on 1 is R and that on 0 is Z(R).
(Note that, for a commutative R, this quantaloid Qg is equivalent as Sup-category
to the quantale IdI(R) of ideals in R!) This quantaloid is then a “(multi-typed,
non-commutative) topology” for the ring R°.

°K. Rosenthal [1996] has a slightly different construction for the “quantaloid of ideals” of a ring
R: it is like Van den Bossche’s except for the hom-lattice Qr(0,0) which he takes to be all additive
subgroups of R. He too attributes this construction to Lawvere. But this construction has the
drawback that, for a commutative R, it is not equivalent to IdI(R).



There are many more examples of quantales and quantaloids arising in different
branches of mathematics, but this is not the place for an extensive discussion. But
just to give an idea of the range of subjects where quantales and quantaloids show
up, let us mention that:

- Quantales arise naturally when studying rings and algebras by ordered struc-
tures of ideals or other substructures. In particular can at least certain classes of
C*-algebras be recovered from a suitable quantale of ideals [Akemann, 1970; Giles
and Kummer, 1971; Borceux, Rosicky and Van den Bossche, 1989; Mulvey and
Pelletier, 2001, 2002].

- When thinking of a quantale as the order-theoretic version of a ring, it makes
sense to develop a theory of modules over a quantale. One may for example in-
vestigate conditions on such modules to make them behave like (an order-theoretic
version of) a Hilbert space [Paseka, 2002].

- The category of relations in a (Grothendieck) topos is a quantaloid, and difficult
calculations with toposes can be reduced to simpler ones by considering precisely
those quantaloids of relations [Pitts, 1988].

- Abstract categories of relations have been studied (under different names: ‘al-
legories’, ‘distributive categories of relations’) and they are if not quantaloids then
at least locally ordered categories [Carboni and Walters, 1987; Freyd and Scedrov,
1990].

- Certain classes of quantales have been recognized as semantics for propositional
linear logic [Girard, 1987; Rosenthal, 1990].

- In computer science quantaloids can be regarded as algebras of typed experi-
mental observations and are as such of use in the theory of process semantics [Abram-
sky and Vickers, 1993; Resende, 2000].

- More recently quantales and quantaloids have been recognized to play an im-
portant role in dynamic operational quantum logic [Amira et al., 1998; Coecke and
Stubbe, 1999; Coecke et al., 2001]. More generally, a “process logic” may be viewed
as a category enriched in a “quantaloid of processes”, the enrichment thus providing
an external implication to the logic [Coecke and Smets, 2001; Stubbe and Sourbron,
2002; Stubbe, 2003].

In 2000 the AMS decided to consider the theory of quantales as a subject in its
own right, and to classify it henceforth under MSC 06F07.

1.3. Enriched categories, distributors and functors. Now that we have a-
greed on the kind of bicategory that we would like to use as base for enriched
categories, namely quantaloids, let us see how the familiar definitions for V-enriched
category, distributor and functor — as found in [Kelly, 1982; Borceux, 1994] for
example — can be generalized.



Let us first recall that, for V a symmetric monoidal closed category, a small
V-enriched category A consists of:

a set Ag of objects a,d’,d”, ...;

for every two objects a,a’ € Ag a hom-object® A(a’,a) in V;

for every three objects a,a’,a” € Ay a composition morphism in V

Ma”,a/,a: A(CL”, a/) & A(CL,, CL) HA(CL”? CL),

for every object a € Ag an unit morphism in V

Na: I — A(a, a);

and these data have to satisfy some diagrammatic axioms. For two V-categories A
and B, a functor F: A—B is

- an object mapping Ag—Bg:a — Fa;
- for any two objects a,a’ € Ay a V-morphism

Fya:A(d a)—B(Fd, Fa);

satisfying axioms that express precisely the preservation of composition and units in
A. A distributor (which some also call module or profunctor) ®: A —e+B is usually”
defined to be a functor ®: B* ® A— V. This requires the notion of dual V-category
B*, which itself requires the symmetry of the tensor in V. In view of the generaliza-
tion we wish to make, where we no longer dispose of a “symmetric tensor” in the
base (bi)category, it is therefore appropriate to note that a distributor ®: A -e+B is
equivalently given by:

- for every two objects a € Ay, b € By, an object ®(b,a) in V;

6As for the notation: in the base category V a hom-object like V(A, B) contains arrows from A
to B; but in a V-category A the hom-object A(a’,a) is thought of as containing arrows which go
from a to a’. This may seem awkward at first, but it will make perfect sense when we will replace
V by a quantaloid Q...

It should be noted that a distributor ®: A -e» B is equivalently given by a V-functor from A into @,
the latter being the V-category of contravariant V-presheaves on B. This is actually J. Bénabou’s
original concept behind the notion of distributor that he gave for ordinary categories [Bénabou,
1973]. However, in the context of our generalization to a base quantaloid Q, the problem remains
that symmetry of the tensor in V is required to define the V-category of contravariant V-presheaves
on B.



- for every three objects a,a’ € Ay, b € By, a V-morphism
b

Dy ®(b,a") @ Ad', a) — ®(b, a);

- for every three objects a € Ay, b,b’ € By, a V-morphism

% B(b,b) @ B(V,a) — D(b, a);

where these morphisms <I>Z,7 , and @Z’b’ — expressing a right action of A, and a left
action of B, on ® — satisfy certain compatibility conditions with composition and
units in A and B.

How can these familiar definitions be understood when we work over a base
quantaloid Q instead of a symmetric monoidal closed V7 We should keep in mind
that it are the arrows of Q that will play the role of the objects of V, with the
composition of arrows being like the tensor of V-objects, and that the 2-cells in Q
must be thought of as the morphisms between objects in V. It may also be recalled
that, due to the hom-categories of a quantaloid being ordered sets, every diagram
of 2-cells in a quantaloid Q@ commutes.

A small Q-enriched category A will surely have a set of objects, let us denote
a,a’,a”,... € Ag. For reasons that will soon be clear, we must associate to each
a € Ag some object of Q; we will systematically denote for an A-object a this
associated Q-object by ta, and we shall refer to it as the type® of a in Q. (Conversely,
given an object A of Q, we say that an object a € Ag lies over A precisely when
ta = A.) So we have that

Ag is a Qp-typed set: to each a € Ay is associated some ta € Q. (11)

Such a Qp-typed set Ay can now be enriched in Q: for every two objects a,a’ € A,
ask for an arrow A(a’,a) in Q to play the role of “hom from a to a’”. Again, for
reasons that will soon be clear, we shall ask that this arrow has domain ta and
codomain ta’:

for all a,a’ € Ay, a hom-arrow A(d’,a):ta—ta’ in Q. (12)

Now suppose that we have three objects a,a’,a”; we can consider Diagram 1 in Q
of the hom-arrows between these objects. To say that there is a “composition from
A(d",;a’) o A(d',a) to A(a”,a) in the Q-enriched category A”, we must ask for a
composition 2-cell in Q:

for all a,a’ € A : A(a”,a’) o A(d’,a) < A(a”,a) in Q(ta,ta”). (13)

850 when Q has a (small) set of objects, the “typing” of objects is simply a function t: Ao — Qo.

10



A(d,a)
ta ———td

A //’ !
A(a”,a) (a, @)

ta//

Diagram 1: composition law

Likewise, on any object a € Ay there is an endo-hom-arrow A(a,a):ta—ta in Q,
but there is also the identity arrow 1l4:ta—ta in Q. To say that there is a “unit
on a in the Q-enriched category A”, we must ask for a unit 2-cell in O:

for all a € Ag : 144 < A(a,a) in Q(ta,ta). (14)

We do not need to impose any axioms about “composition being associative with
left and right units”: since “composition” and “units” in A are determined by 2-
cells in Q, the appropriate (diagrammatic) axioms automatically hold! So the above
is the appropriate definition of a Q-enriched category A. Note that, quite unlike
for V-categories, the composition and unit 2-cells in a Q-category A are uniquely
determined. More precisely, given a Qp-typed set Ay as in (11) together with hom-
arrows A(d',a):ta—ta’ in Q as in (12), it is a property, rather than an extra
structure, that these objects and hom-arrows form (or not) a Q-category A, i.e. that
they satisfy (or not) the composition and unit inequalities of (13) and (14).

For two Q-enriched categories A and B, a functor F: A— B should somehow
consist of a mapping of objects together with an action on the hom-arrows. For
such an action on hom-arrows to make sense, it will be required that the mapping
of objects preserves the types of the objects:

an object mapping Ag— Bg: a — Fa such that ta = t(Fa). (15)

To express the action of F' on the hom-arrows of A, we must ask for action 2-cells
in Q:
for all a,a’ € Ag : A(d',a) < B(Fd, Fa) in Q(ta,ta’). (16)

The axioms for the “functoriality” of F are certain diagrams of 2-cells in Q, so
they are always satisfied. Therefore, given an object mapping as in (15), it is again
a property, rather than extra structure, that this mapping determines a functor,
i.e. that it satisfies the functor inequalities of (16).

Finally, let us consider a distributor between O-categories A and B. In analogy
with the above, such a ®: A -+ B consists of a collection of Q-arrows:

for all a € Ay, b € By, an arrow ®(b,a):ta—tb in Q. (17)

11



And to express the “action of A on the right, and B on the left, on ®” we must ask
for action 2-cells in Q:

for all a,a’ € Ag,b € By : ®(b,a’) o A(a’,a) < ®(b,a) in Q(ta,td); (18)
for all a € Ag,b,b" € By : B(b,0') 0o ®(V,a) < ®(b,a) in Qta,tb). (19)

Once more, the compatibility of these action 2-cells with the composition and unit
2-cells of both A and B is automatic, for these compatibilities are expressed by
diagrams of 2-cells in Q. Thus, given a family of Q-arrows as in (17), it is a property,
rather than extra structure, that this family determines a distributor ®: A -e+B,
i.e. satisfies the action inequalities of (18) and (19).

Before we go any further, it is probably useful to discuss briefly some examples.

(a) The extended non-negative reals RT U {co} form a (symmetric) quantale
for the opposite order and addition as binary operation. In his famous paper on
“Metric spaces, generalized logic and closed categories” B. Lawvere recognized that
a category enriched in (the one-object suspension of) this quantale is a “generalized
metric space”: the enrichment itself is a binary distance function taking values in
the positive reals. In particular is the composition-inequality in such an enriched
category the triangular inequality. A functor between such generalized metric spaces
is a distance decreasing application. (These metric spaces are “generalized” in that
the distance function is not symmetric, that the distance between two points being
zero doesn’t imply their being identical, and that the distance between two points
may be infinite.)

(b) By 2 we will denote (the one-object suspension of) the two-element Boolean
algebra—obviously a particular example of a quantale (or one-object quantaloid).
Writing its elements as 0 and 1, the composition in 2 is the conjunction of these
truth values, and their disjunction is the supremum. A 2-enriched category A is
precisely a preordered set: its elements are the objects of A, and the enrichment
classifies the preorder:

for z, 2" € Ag : A(z,2") = 1 if and only if z < 2.

The transitivity of the preorder corresponds to the composition-inequality in A,
and its reflexivity to the unit-inequality. In the same way, a distributor ®: A —-e+B
between 2-categories is a so-called ideal relation between preorders: the relation
®y C Ay x By defined by

for (z,y) € Ag x By : ®(y,z) = 1 if and only if (z,y) € Po
satisfies — due to the action-inequalities for the distributor — the condition that

if z <a'in Ag, vy <y in By and (z,y) € Py, then (2,y) € Dy.

12



That is to say, the relation ® between the preorders (Ag, <) and (By, <) is “up-
closed” in Ay and “down-closed” in By. Finally, a functor F: A—B between 2-
categories is exactly a preorder-preserving map.

(c) Let R be a commutative ring (with unit), then the ideals in R form a quantale
IdI(R). The elements of the ring itself are the objects of an IdI( R)-enriched category
whose homs are given by annihilators: for r,s € R put the hom from r to s to be
Ann(r—s) ={z € R| (r—s)x = 0}. For a non-commutative R we have seen on p. 6
how the quantale of ideals generalizes to a quantaloid Qg; and G. Van den Bossche
[1995] points out how such a non-commutative ring R determines a Qpg-enriched
category by generalizing annihilators to commutators: Comm(r,s) ={x € R | rx =
xs}. Note first that if r is an element of Z(R) (the center of R) then Comm(r, s) is
a left ideal in R; if s is an element of Z(R) then Comm(r, s) is a right ideal; if both
r,s € Z(R) then obviously Comm(r, s) is a two-sided ideal; and if neither r nor s is
in Z(R) then Comm(r, s) is just an additive subgroup of R which is a Z(R)-module.
That is to say, R determines a Qg-enriched structure — which we denote as Commp
— whose objects of type 0 are the elements of R and whose objects of type 1 are the
elements of the center of R, and the homs of which are given by commutators.

(d) A quantaloid Q itself determines Q-enriched categories of arrows with com-
mon codomain, as follows. Fix an object A € Qg, and consider all Q-arrows with
codomain A; this already defines a Qg-typed set

(Qa)o = H Q(X, A) with types tf = dom(f).

XeQo

For two such arrows f: X — A and ¢: Y — A the lifting [g, f]: X — Y is a Q-arrow
from dom(f) to dom(g), and actually

@A(gvf) = [g)f]

defines a Q-category on (Q4)o. Similarly, the data

@Yo =[] QA X), tf=cod(f), Q*g,f) = {9, f}

XeQo

give a Q°P-category (but not a Q-category!).
(e) By the “opposite” of a Q-category A is of course meant the new structure
“A°P” with the same objects as A, but whose hom-arrows are reversed:

for objects a,a’ : A°P(d’,a) := A(a,d’).

But note that this does not define a Q-category, but rather a Q°P-category!

13



1.4. Matrices, monads and bimodules. To see how O-categories and distrib-
utors organize themselves in a categorical structure, it is useful to reconsider once
more their respective definitions. In particular we will make a very clear distinction
between two different aspects of these definitions. A first observation is that both a
O-category A and a distributor ®: A -e+B consist in some way of a “matrix whose el-
ements are arrows in Q”: the hom-arrows of a Q-category A as in (12) form a square
matrix, with |Ag| rows and |Ag| columns, whose entry at position (a’,a) € Ay x Ay
is precisely A(da’,a); and the elements of a distributor ®: A -e+B as in (17) form a
matrix, with |Bo| rows and |Ag| columns, whose entry at position (b,a) € By x Ay is
®(b,a). A second and quite separate aspect is then the translation of the composi-
tion and unit inequalities (13) and (14) (for a category) and the action inequalities
(18) and (19) (for a distributor) to these “matrices”. It turns out that categories
are monads, and distributors bimodules, in an appropriate quantaloid of matrices
whose elements are arrows in Q [Betti et al., 1983; Carboni et al., 1987].

More precisely, let us write (X, t), (Y,t), (Z,t), ... for Qp-typed sets: simply sets
to every element of which is associated a type in Qp (as in (11)). Given two such
Qo-typed sets (X, t) and (Y,¢), a matrix with elements in Q with |Y| rows and | X|
columns — written as M: (X,t) — (Y, t) — is a collection of Q-arrows like so:

(M(y, x): tx%ty) (20)

(z,y)EXXY'
Two matrices M: (X, t)— (Y,t) and N:(Y,¢)—(Z,t) can be composed: the new
matrix N o M: (X, t) — (Z,t) has as element on its zth row and zth column

(NoM)(z,2) = \/ N(z,y) o M(y, ). (21)
yey

Reading the supremum of arrows in Q as their “infinitary sum”, and the compo-
sition as their “multiplication”, this is the formula for matrix multiplication as in
linear algebra! The identity matrix on some Qp-typed set (X,t¢) will be denoted as
Ax:(X,t)— (X, t), because its elements are “Kronecker deltas”:

lip:te —tx when x = 2/,

Ax (2 z) = { (22)

Ota/ t2: to — " otherwise.

The arrow Oy, ¢, tz — t2’ denotes the smallest element of the sup-lattice Q(tz, ta’).
It is easily verified that Qp-typed sets and matrices with elements in Q form a
category—which we denote by Matr(Q). Actually, this category is a quantaloid for
the “elementwise” ordering of parallel matrices: for

M, M': (X, 1) == (Y, 1)

put M < M’ when for all X € X and y € Y, M(y,z) < M'(y, z) as Q-arrows.
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There is an obvious embedding of the given quantaloid Q into the quantaloid
Matr(Q) of matrices with elements in Q: every arrow f: A— B in Q can be seen
as a one-element matrix between one-element Qg-typed sets. This embedding has
the universal property that it is the direct-sum completion of Q in the (illegitimate)
category of (possibly large) quantaloids and homomorphisms?. From this fact it is
then easy to characterize those quantaloids that arise as quantaloids of matrices.

Let us now study the inequalities (13) and (14) (for Q-categories), and (18) and
(19) (for distributors) in the context of the quantaloid Matr(Q) of matrices with
elements in Q. Rewriting (13) by the equivalent

for all a,a” € Ag : \/ A(d",d') o A(d',;a) < A(d",a) (23)

a’€hg

it is readily seen that this inequality simply says that A o A < A in Matr(Q), where
now A is viewed as a square matrix on (Ag,t). Likewise, equation (14) can be
rewritten as

for all a,a’ € Ay : Ay, (d',a) < A(d,a) (24)

or even as Ay, < A in Matr(Q). These inequalities precisely say that a Q-enriched
category is a monad in the quantaloid Matr(Q)! And, much in the same way, (18)
and (19) say that a distributor ®: A -+ B is really a matrix ®: (Ag, t) — (Bo, t) such
that

for all a,a’ € Ag,b € By : \/cp, P(b,a") 0 A(d',a) < (b, a); (25)

for all a € Ag,b,0" € By : \/yycp, B(b,b') 0 @(V,a) < ®(b,a). (26)

In other words, ® o A < ® and Bo ® < & in the quantaloid Matr(Q)—thus a
distributor ®: A e+ B is a bimodule between the monads A and B in the quantaloid
Matr(Q)!

Indeed, an endo-arrow z@tin a quantaloid Q is a monad!'® when it satisfies tot < t
and 14 < ¢. And given two monads @t and BQSin Q, a bimodule b:t-e+s is by
definition a Q-arrow b: A— B satisfying bot < b and sob < b. For monads f@t, BQS
and CQ 7: two bimodules b:t-e+s and ¢: s—e»r can be composed: the composition is
written c®, b: t —e»7 but is actually computed simply as co b, the composition in Q.
We use this “tensor notation” for the composition of bimodules to stress that the
left and right identities for composition are not inherited from Q: it is indeed easily

9The quantaloid Matr(Q) always has a class of objects, no matter how “small” Q is! This is our
main motivation for not a priori restricting our attention to small quantaloids: the large ones arise
as important universal constructions on small ones.

10The notions of monad and bimodule make sense in any bicategory [Street, 1972], but applied to
a quantaloid they take these very simple forms because a quantaloid is locally ordered. In particular
any monad in a quantaloid is idempotent. The notation with a “—e—+” for bimodules is meant to
distinguish them from arrows—and is already anticipating the notation for distributors.
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verified that the identity bimodule on a monad @t is the Q-arrow ¢ itself (and not
14). So in particular we have, for a bimodule b: t -7, that b®;t = b and r®, b = b.
For any quantaloid Q we can thus construct a category Mnd(Q) whose objects are
monads in @ and whose arrows are bimodules. Actually, Mnd(Q) is a quantaloid:
its local structure is inherited from Q in the sense that for two parallel bimodules
b,b': &3 r we put that b < b in Mnd(Q) precisely when b < b in Q—so for a family
(b;:t—e+1);cr their supremum as bimodules is calculated “as in Q”.

There is then an obvious embedding of Q into Mnd(Q), because any morphism
f:A— B in Q determines a bimodule between trivial monads. This embedding
has a universal property in the (illegitimate) category of quantaloids and homomor-

1. it is the universal splitting of monads in Q. The object over which a

phisms
monad in a quantaloid splits, is both the object of its algebras (Eilenberg-Moore
algebras) and the object of its free algebras (Kleisli algebras). (These notions are
due to [Street, 1972].) This is due to the idempotency of any such monad. Thanks
to this universal property it is easy to characterize those quantaloids which arise as
quantaloids of monads and bimodules.

The point now is the following: (small) Q-enriched categories and distributors
are precisely monads and bimodules in the quantaloid of Qy-typed sets and matrices
with elements in Q:

Dist(Q) = Mnd(Matr(Q)). (27)

This at once dictates the rules for composition of distributors (the composition
U ®p ®: A-e»C of two distributors ®: A—e+B and ¥: B —e+C is computed as a matrix
composition) and identity distributors (the identity distributor on a Q-category A
is A: A—e+ A itself). As a result then, Dist(Q) is a (large) quantaloid in which Q can
be embedded. This embedding has a particular universal property, and therefore
those quantaloids arising as quantaloids of Q-enriched categories and distributors
can be characterized without much difficulty.

Moreover, Dist(Q) being a quantaloid, i.e. a particular kind of bicategory, we
dispose of all kinds of bicategorical notions that are pertinent for categories and
distributors: think of adjoints, liftings and extensions, etc. This will be particularly
important for the development of “Q-categorical algebra”.

1.5. Categorical algebra over a quantaloid. We’ve seen how (small) Q-enrich-
ed categories and distributors organize themselves in a new quantaloid Dist(Q).
Functors between O-categories too give rise to a category: it is quite obvious how
one computes the composition of two functors F: A—B and G:B—C:

GoF:A—C:aw— G(F(a)), (28)

" The quantaloid Mnd(Q) is small whenever Q is.
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and also the identity functor on a Q-category A is easily defined:
IaytA—A:a—a. (29)

We’ll write Cat(Q) for the category of (small) Q-enriched categories and functors.

A crucial lemma is that every functor determines an adjoint pair of distributors.
Indeed, let F: A— B be a functor between Q-enriched categories. Then it is easily
seen that both matrices

((I)(b, a) = B(b, Fa)) and <\I/(a, b) = B(Fa, b))

(a,b)EAO xBg (b,a)GBQ X Ag

are in fact distributors, thus ®: A —e+B and V: B-e+A. And a calculation shows that
® is left adjoint to ¥ in the quantaloid Dist(Q); that is to say, A < ¥ ®@p ¢ and
U ®y P < B. Not to introduce too many unnecessary notations, we shall simply
write

for these adjoint distributors represented by the functor F: A —B.

Sending a functor F:A—B to the distributor B(—, F'—): A—+B, which is a
left adjoint, determines a functor from Cat(Q) to Dist(Q) which is the identity on
objects:

Cat(Q) — Dist(Q): (F:AHIB%) - (B(—,F—):A@»B). (30)

Sending F' to B(F'—, —) of course determines a contravariant such functor. These
functors provide the key to the development of O-categorical algebra. To get a
feeling for this, let us look at some important examples.

(i) Cat(Q) as 2-category: Because of the functor in (30) the category Cat(Q)
inherits the local structure of the quantaloid Dist(Q): for functors F,G: A—=B we

put
F <G in Cat(Q)(A,B) < B(—,F—) <B(—,G—) in Dist(Q)(A,B).  (31)

Thus Cat(Q) becomes a locally preordered category (indeed the local order is not
anti-symmetric in general, and certainly not complete), and we dispose of all possible
2-categorical notions for Q-categories and functors too: adjoint functors, equivalent
categories, etc. It may by the way be noted that (31) is — as one would expect —
the correct translation of the idea of a V-natural transformation to the context of
O-categories, for it may be rewritten as

for all a € Ag : 14 < B(Fa,Ga) in Q(ta,ta). (32)

There is now an evident way in which every Q-enriched category has an “un-
derlying preordered set” (or rather an indexed family of preordered sets), precisely

17
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Diagram 2: weighted colimit

like every V-enriched category has an underlying (ordinary) category. Indeed, every
object a € Ag of a Q-category A may be identified with a “constant functor”

Aa:x g — A x — a. (33)

(For an object A of Q, x4 denotes the one-object Q-category whose single hom-
arrow is the identity on A'2; in the above we must necessarily put A = ta.) We may
thus order the objects of A as we order the corresponding functors:

a<din Ay < ta=td =: A and Aa < Ad’ in Cat(Q)(*4,A). (34)

Hence (Ag, <) is a (Qp-indexed family of) preordered sets.
A little calculation shows that

a<d inhy < ta=td =: Aand 14 < A(a,d’) in Q(4, A). (35)
Thus the local preorder in Cat(Q) proves to be “pointwise”: (32) just says that
for all a € Ay : Fa < Ga in (By, <). (36)

So every Q-category determines an underlying Qp-indexed family of preorders, and
every functor determines a Qg-indexed family of order-preserving maps—we obtain a
functor U: Cat(Q) — PreOrdg, between locally (pre)ordered categories. This functor
admits a left adjoint.
(ii) Weighted colimits in a Q-category: Let F': A— B be a functor, and ®: C -+ A
a distributor, between Q-enriched categories; we shall say that
c-&a-p (37)
is a ®-weighted diagram in B. Since F determines a right adjoint distributor
B(F—,—):B—e+ A, we may consider an associated diagram of distributors of which,
by closedness of the quantaloid Dist(Q), we can calculate the universal lifting—
see the left hand side of Diagram 2. If there exists a functor G: C— B for which

21n other words, *4 is the image of A € Qg by the canonical inclusion @ — Dist(Q).
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B(G—,—) = [Q),IBB(F—, —)] (i.e. G represents the distributor), then such a G is es-
sentially unique: would G’ be another such functor, then G and G’ are isomorphic
elements in (the preordered set) Cat(Q)(C,B). Therefore it makes sense to define
the ®-weighted colimit of F as the (essentially unique, when it exists) functor!3
colim(®, F'): C— B representing the universal lifting [@,IB%(F—, —)}:IB%%»(C. The
right hand side of Diagram 2 resumes the situation.

A Q-category B is said to be cocomplete when for every (small) weighted diagram
in B (cf. (37)) the colimit exists. Such a cocomplete Q-category has at least as many
objects as the base quantaloid Q; in particular, if 9 is a “large” quantaloid, then
any cocomplete Q-category will be “large” too. In principle we should thus carefully
distinguish, in everything that follows, between “small” and “large” Q-categories.
To avoid this rather unpleasant — and not very instructive — technical complication,
we will from now on suppose that Q is a small quantaloid unless we explicitly state
otherwise.

Given data as in

!
A2 e e (38)

and supposing that the ®-weighted colimit of F' exists, then F’ is said to preserve
this colimit if the ®-weighted colimit of F’ o F' exists too, and moreover

colim(®, F' o F) & F’ o colim(®, F). (39)

A colimit is absolute if it is preserved by any functor, and a functor is cocontinuous
if is preserves any colimit. Colimits whose weight is a left adjoint distributor are
always absolute, and functors which are left adjoint are always cocontinuous.

(iii) Presheaves on a Q-category: Let A be some (small) Q-enriched category.
The Q-enriched category PA of presheaves on A is defined by the following universal
property: for every Q-category C there is a natural equivalence of preorders

Dist(Q)(C, A) ~ Cat(Q)(C, PA). (40)

That is to say, PA ought to “classify” the distributors with codomain A.

It is not hard to see that the objects of PA are exactly distributors with codomain
A and whose domain is a trivial one-object O-enriched category. We will always
denote these with small Greek letters, like ¢: x4 —e> A, Y: g -+ A etc. In elementary
terms, such a presheaf ¢: x4 —e» A is thus a collection of Q-arrows

(gb(x): A—>tx> (41)

xE€AQ

13Some would probably be happier to see ® x F' as notation instead of colim(®, F).

17Tt turns out that Cat(Q)(C,PA) is a partial order rather than a preorder. As Dist(Q)(C,A) is
a complete lattice — it is the “hom” of a quantaloid — this equivalence is actually an isomorphism
of complete lattices.
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satisfying the inequalities expressing the action by A. (The action by x4 is trivial!)
The collection of such contravariant presheaves on A thus forms a Qg-typed set!®:
the type in Qg of ¢:x4-o+A is t¢p = A. For two such presheaves ¢:*4 -+ A and
1:xpg —o+ A the hom-arrow PA(1), ¢): A— B is the single element of the distributor
[¢, @]: x4 —o+xp (i.e. the lifting of ¢ through ).

Putting C = A in (40) there must correspond to the identity distributor A:A -e+ A
some functor from A to PA: it is of course the Yoneda embedding Ya: A—PA. Tt
can be figured out that Y, sends an object a € Ay onto the representable presheaf

A(—,a): %, —o+ A, the elements of which — as its notation suggests — are

(A(ac, a): ta%tw)me&o. (42)

From here on one can prove such things (familiar from V-category theory) as:
- the “Yoneda lemma” says that for any ¢ € PA and a € A,
PA(Yapa, @) = ¢(a); (43)

- as a consequence, the Yoneda embedding Y, : A — PA is a fully faithful functor
in the sense that, for any a,a’ € Ay,

A(d',a) = PA(Ypd', Yypa); (44)

- every presheaf is a “colimit of representables”: for a presheaf ¢ € PA (of type
tp = A, say) consider the weighted diagram

¢

Y,
$4 —6— A —25 PA;

its colimit exists and is the functor which “picks out” exactly the object ¢ € PA, so
we write with some abuse of notation that

colim(¢p, Ya) = ¢; (45)

- Ya: A—PA is the free cocompletion in Cat(Q): the inclusion of the category
Cocont(Q) of cocomplete Q-categories and cocontinuous functors (i.e. functors that
preserve colimits) in Cat(Q) admits a left adjoint which is precisely the presheaf
construction:

P  i: Cocont(Q) <5 Cat(Q). (46)

(iv) Cauchy completion of a Q-category: We’ve seen that every functor F: A—B
determines a left adjoint distributor B(—, F—): A—e+B. But the converse need not

>Note that there too it is quite essential that Q is a small quantaloid: if not, PA would have a
proper class of objects. Similar remarks apply to the Cauchy completion A.. encountered further
on.
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hold: not every left adjoint distributor ®: A -e+B is determined by a functor! Fol-
lowing [Lawvere, 1973; Street, 1983] we shall use the term ‘Cauchy distributor’ as
synonym for ‘left adjoint distributor’, and when a Cauchy distributor ®: A—-e+B is
determined by a functor F: A—B we will say that ® converges to F. (Such an F is
necessarily essentially unique.) If all Cauchy distributors with codomain B converge,
then B is said to be Cauchy complete.

For a small Q-enriched category A a new Q-category A is defined by the fol-
lowing universal property: for every Q-category C there is a natural equivalence of
preorders'®

Map(Dist(Q))(C, A) ~ Cat(Q)(C, A). (47)

In other words, A is supposed to universally classify the Cauchy distributors into
A. (The left hand side of this equation denotes the left adjoints — the “maps” —
amongst the distributors from C to A.) It can be shown that this new Q-category
A is Cauchy complete; it is called the Cauchy completion of A.

It turns out that A is really a full subcategory of PA: it is determined by those
presheaves on A which are left adjoint [Betti and Carboni, 1983; Street, 1983]. So
suppose that ¢: x4 -+ A and 1): xg —e+ A (contravariant presheaves on A) are actually
Cauchy distributors (say ¢ - ¢* and ¢ 4 ¢* in Dist(Q)), then A (¢, ¢): A— B is
the Q-arrow which is the single element of the lifting [1, ¢]: ¥4 e+ *p in Dist(Q). (It
is — because of the adjunction @ 4 ¢* — equivalently given by the single element of
the composition ©* ®4 ¢: x4 —o>%p.)

Of course the identity distributor A: A —e+ A itself is Cauchy; thus by (47) it must
correspond to some functor is: A— A.. This functor is precisely the factorization
of the Yoneda embedding Ya: A — PA over the full subcategory A, C PA. Some
results — familiar in V-category theory — can now be obtained:

- ip: A— A is the absolute-colimit completion of A in Cat(Q): the Cauchy
construction is left adjoint to the full inclusion of the Cauchy complete categories in
Cat(Q):

(—)ec 1 i: Catee (Q) £S5 Cat(Q); (48)

- for two Q-categories A and B we have that
A > Bin Dist(Q) <= A ~ B in Cat(Q) < PA ~ PB in Cat(Q),

and A and B are said to be Morita equivalent if (any of) these conditions hold;
- any Q-category A is isomorphic in Dist(Q) to its Cauchy completion A, so
there is an equivalence of quantaloids

Distcc(Q) ~ Dist(Q) (49)

161t turns out that this is actually an isomorphism of partial orders.
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(where Distc.(Q) denotes the obvious full subcategory);
- and as a result — in combination with (47) — there are equivalences of locally
preordered categories

Map(Dist(Q)) ~ Map(Distc(Q)) ~ Catec(Q). (50)

So, if one really only cares about “Cauchy invariant” (i.e. “Morita equivalent”)
constructions involving categories and functors (as one usually does), then one may
as well forget about functors altogether and work with Map(Dist(Q)) instead.

This is a lot of theory—and it may be useful to look at some examples here.

(a) Consider again Lawvere’s generalized metric spaces (see p. 12); let A denote
such a space. In [Lawvere, 1973] it is proved that a left adjoint distributor from a
one-point space into A is precisely (an equivalence class of) a Cauchy sequence in
A—and it is therefore that left adjoint distributors are also called Cauchy distrib-
utors. Cauchy completeness of A as enriched category coincides with its Cauchy
completeness as metric space (“all Cauchy sequences/distributors converge”).

(b) For an object A of a quantaloid Q we denote x 4 for the one-object Q-category
whose single object is of type A and whose single hom-arrow is 14. A contravariant
presheaf on * 4 is — applying (41) — just an arrow f: X — A in Q; and the hom-arrow
between two such presheaves f: X — A and ¢: Y — A is the lifting [g, f]. That is
to say, with notations as introduced in the examples on p. 12, P(x4) = Q4.

(c) Let A be an object of the quantaloid Q, and A a Q-category. A functor
F: A% — Q4 between these Q°P-categories (which were defined in the examples on
p. 12) is a mapping of objects, associating to any a € Ay some arrow Fa: A—ta in
Q, such that A°P(a’,a) < {Fd/, Fa} for any two objects a,a’ in A°P. The latter is
equivalent to A(a,a’) o Fa' < Fa, so F is precisely the same thing as a distributor
¢: x4 —o+ A between Q-categories as in (41)—i.e. a contravariant presheaf on A. (So
a contravariant presheaf on A is a “functor on the opposite of A with values in Q”
after alll)

(d) As indicated previously, 2-enriched categories are actually preordered sets,
functors between 2-categories are just order-preserving maps, and distributors are
ideal relations. More precisely we can state that Cat(2) = PreOrd and Dist(2) = IdI.
It now follows quite easily that, for a 2-category A, a presheaf on A is exactly a
“down-closed subset” of the preorder Ag; and the Yoneda embedding Y,: A—PA
maps an object a € Ay to the “principal down-closed subset” that it determines.
This is precisely the sup-completion of Ag! But this is entirely consistent with the
general fact that the presheaf-category is the free cocompletion, for a 2-category A
has all weighted colimits if and only if Ay has all suprema. To see this, consider a
weighted diagram of 2-categories

*CH?—HBLA
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(and without loss of generality we let the weight be a presheaf on B, i.e. ¢¢ is a
down-closed subset of By). Then actually the lifting

[¢,IB%(F—, —)];A@»*C

corresponds to the up-closed subset of Ag which contains all the upper bounds of
the image through F' of the elements of ¢q:

[gb,IB%(F—, 7)}0 = {a € Ao |forall be ¢y: Fb<al.

The ¢-weighted colimit of F' exists if and only if this lifting is representable—which
is the case precisely when there is a least upper bound for {Fb € Ag | b € ¢},
because this supremum is then precisely the representing object for the colimit!
Similar calculations show that every 2-category is Cauchy complete: any Cauchy
presheaf into a 2-category A is necessarily a principle down-closed set in Ay.

Especially this latter example seems to indicate that the theory of Q-enriched
categories, functors and distributors is like an “order-theory with truth-values in
Q7. This is surely a helpful intuition, but things are a bit more complicated than
that. The second part of the thesis is precisely devoted to a thorough study of these
complications.
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2. Ideals, orders and sets over a base quantaloid

As quantales may be viewed as “non-commutative locales”, and quantales themselves
are only quantaloids with one single object, one may wonder about “sheaves on a
quantaloid” as generalization of sheaves on a locale. Given that sheaves on a locale
) can be described in terms of so-called 2-sets, and the latter are in some sense
easier to manipulate, several authors have rather tried to generalize those 2-sets
to “Q-sets” for a quantale or quantaloid Q. This is not at all straightforward!
Starting from the work of [Van den Bossche, 1995; Borceux and Cruciani, 1998; van
der Plancke, 1998] we will analyze the situation using the formalism of quantaloid-
enriched categorical structures. As it turns out, we need a theory of “categories
without units” enriched in a base quantaloid—so we generalize and further develop
the theory of “categories without units” enriched in a symmetric monoidal closed V
of [Moens, 2000; Moens et al., 2002].

But before we plunge ourselves in technical developments of all kinds, we should
probably first ask ourselves...

2.1. Do we really need “sheaves on a quantaloid”? To give some motivation
(other than curiosity) for the study of “sheaves on a quantaloid” it may be good to
quickly recall the basic idea behind so-called sheaf representations of rings; let us
do this with a simple example (quoted from [Borceux, 1994]). Thereto let R denote
a commutative ring (with unit). An ideal I C R is radical when, for every r € R
and n € N, if r™ € [ then also r € I. The radical ideals of R form a localic quotient
Rad(R) of the quantale IdI(R):

ldI(R) —Rad(R): I — VI={re€ R|IneN:" cI}.

In the topos of sheaves on Rad(R) there is a ring-object R whose ring of global
sections is isomorphic to R; therefore R is said to be a sheaf representation for
R. But this sheaf R of rings has the interesting feature that it is a local ring in
the topos of sheaves on Rad(R): for any I € Rad(R) and r € R(I) there exists a
covering I = \/; . I in Rad(R) such that for every k € K either r |, or (1 —7) |z,
is invertible in R(I;). This explains the interest of the sheaf representation: even
though R is only a commutative ring (in the topos of sets), R is a local ring (in the
topos of sheaves on Rad(R)).

There are many other examples of interesting sheaf representations, and most
of them make use of one or another locale of ideals of a given ring R to serve as
“topology” on which R is then represented as a more-or-less interesting sheaf—and
so there is absolutely no confusion about the notion of “sheaf” in these cases. But
we have argued on p. 6 that the so-to-speak “generic topology” for a ring R is its
quantaloid of ideals Qr (which, for a commutative R, is equivalent to the quantale
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IdI(R)). So it would certainly be interesting to discuss sheaf representations of R over
this quantaloid. (We already know of a way in which R determines a Qpg-enriched
category — see p. 13 — but in what sense is this a “sheaf” or anything of that kind?)
This is the place to mention that several authors have put forward — sometimes
quite different — ideas on this topic in the context of sheaf representations for rings
and algebras:
- C. Mulvey and M. Nawaz [1995] work with an “idempotent right-sided quan-

177 "and for them a quantale-set is a sheaf on the sublocale of two-sided elements

tale
in the quantale. In the localic topos of these quantale-sets they recognize an extra
“quantalic subobject classifier”. (See also Nawaz’ [1985] doctoral thesis.)

- F. Borceux and B. Van den Bossche [1989] construct, for a given “idempotent
right-sided quantale” @), a category whose objects are the principal down-closed
subsets of () and whose morphisms are suitable “restriction maps”. On this category
they recognize a Grothendieck topology, and so they define a “sheaf on (" as a sheaf
on this site. In this Grothendieck topos the locales of subobjects can be provided
with the additional structure of a quantale.

- U. Berni-Canani et al. [1989] too start from such an “idempotent right-sided
quantale” and develop a theory of quantale-sets, but now these are the objects of a
fibration of localic toposes over the given quantale. And the localic topos of [Mulvey
and Nawaz, 1995] is then actually the stalk at the top element of the quantale.

- G. Van den Bossche [1995] takes any quantaloid Q and defines a “Q-set” to
be an idempotent matrix with elements in Q. She shows how, when equipped with
suitable morphisms, the category of Qpr-sets (where Qp is the “quantaloid of ideals”
for a — not necessarily commutative — ring R, as mentioned on p. 7) contains the
object Commp (see p. 13) whose “global sections” correspond to the elements of
Z(R), and certain other “sections” correspond to the elements of R itself.

- F. van der Plancke [1998] further investigates these “Q-sets” that [Van den

[43

Bossche, 1995] introduced, taking the point of view that such an object is a “set
with an equality-predicate that takes its values in @”. With this intuition a suitable
notion of “subset of a O-set” is given, and — amongst other things — it is shown how
the “Q-sets of subsets” determine, and are determined by, projective objects in the
category Quant(Q, Sup) of Sup-presheaves on Q.

- R. Gylys [2001] combines elements from Van den Bossche’s [1995] “matrix-
approach” with Borceux and Van den Bossche’s [1986] “restriction-and-gluing” ap-

proach. For [Gylys, 2001] “O-sets” are sets with a suitable Q-valued equality; such

7Such an “idempotent right-sided quantale” is a complete lattice Q equipped with a binary
product —&—: @ X Q — @ which distributes on both sides over suprema, for which every element of
the lattice is idempotent (x&x = x), and for which the top element of the lattice is a unit-on-the-
right (z&T = z). As the product is not required to have a (two-sided) unit, this is not a quantale
in our sense!
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a Q-set is “complete” if it allows “restriction and gluing” of its “singletons”. There-
fore, a Q-set is to be thought of as a “presheaf”, and a complete Q-set as a “sheaf”,
on Q.

- Given a commutative ring R, S. Ambler and D. Verity [1996] consider enrich-
ments in the split-idempotent completion of the quantale IdI(R). They show how
the ring R is “represented” by an enriched category — to be thought of as a “pre-
sheaf” on IdI(R) — and how the Cauchy completion of this category corresponds to
its “sheafification”. Their formalism is thus a generalization of Walters’ [1981] de-
scription of sheaves on a locale as enriched categories. They also recover the results
in [Borceux and Van den Bossche, 1991].

Especially the works of G. Van den Bossche, F. van der Plancke and M.-A. Moens
have been of great influence on the present work. I only recently “discovered”
[Ambler and Verity, 1996; Gylys, 2001]—and was pleased to find out that their
results are particular cases of the more general theory.

2.2. Ordered sheaves on a locale. The topos Sh(2) of sheaves on a locale Q2
can be described in terms of so-called Q2-sets [Fourman and Scott, 1979; Higgs, 1984;
Fourman and Scott, 1979; Borceux, 1994; Johnstone, 2002]. An Q-set (A,[ - = - )
consists of a set A equipped with an “Q2-valued equality”

[-=-]Ax A—Q
satisfying for all a,a’,a” € A,
[a — a/] A [a/ — a//] < [a — a”], (51)
[a =d]=[d = d (52)

Clearly (51) is a transitivity axiom, and (52) is symmetry. There is no reflexivity
axiom, for it would read

Vae A: T < [a = al (53)

which would force all elements of (A,[ - = - ]) to be “global” (T denotes the top
of the locale). Together with a “good” notion of morphism, these Q-sets form a
category equivalent to Sh(£2).

With the intuition that a “non-symmetric equality” is an “inequality”, F. Bor-
ceux and R. Cruciani [1998] have worked out a theory of “Q-orders” (or Q-posets as
those authors call them). Such an Q-order (A, [ < - ]) consists of a set A together
with an “Q2-valued inequality”

[ < [ AXx A—Q

26



satisfying for all a,a’,a” € A,

[a <d]|A[a <a’] <[a<d], (54)
<d)<la<ad (55)
[a <d] <[d <dl. (56)

Here again (54) says that the “inequality” is transitive, and symmetry is gotten rid
off (and there is still no reflexivity)—but two new axioms (55) and (56) have to
be imposed “to make things work” (to quote F. Borceux). Together with a “good”
notion of morphism, 2-orders form a category equivalent to Ord(Sh(£2)), the category
of ordered objects in the topos Sh(£2).

It may now be observed that both 2-sets and 2-orders are categorical structures
enriched in (the one-object suspension of) the locale 2. Take an Q-order (A,[- < -]);
it quite naturally determines an object set Ag = A and an enrichment in §2:

(A(a,a') =[a< a'])

(a,a’)er X Ag '

The transitivity axiom (54) then says that there are composition-inequalities cf. (13),
but the lack of reflexivity (53) means that there are no unit-inequalities cf. (14): A
is not a category but only a semicategory enriched in (the one-object suspension of)
Q). Thus an Q-order (and a fortiori an Q-set) is an Q-semicategory satisfying some
extra axioms ((55) and (56) for orders, (52) for sets).

The point is that — when rewritten in a suitable manner — the axioms for Q-
orders still make sense when we replace the locale €2 by a quantaloid Q. The axioms
for Q-sets do not make sense for a base quantaloid Q (because of the symmetry in
(52)), unless it is endowed with an involution (see p. 48). Our aim here is to give
a very precise analysis of these matters by means of the formalism of categorical
structures enriched in a quantaloid.

2.3. Categories without units over a base quantaloid. By a Q-enriched sem-
icategory we will mean precisely a “category without units” enriched in the quantal-
oid Q: a Q-semicategory A thus consists of a Qp-typed set Ay, as in (11), which is
enriched in Q, as in (12), satisfying composition-inequalities, as in (13)—and that’s
it. In terms of matrices, A is an endo-arrow in the quantaloid Matr(Q) that satisfies
Ao A <A;itis a “monad without unit” in Matr(Q).

As neither the definition for “functor between Q-categories” nor that for “distrib-
utor between Q-categories” (see p. 11) refer in any way to the units of the involved
Q-categories, they still make sense for Q-semicategories. (Essentially this is due to
the fact that both the “functoriality” of a functor and the “compatibility of action
with unit and composition axioms” of a distributor are diagrammatic axioms of
two-cells in the base quantaloid—and any such diagram is commutative!) Thus, for
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two Q-semicategories A and B, a semifunctor F': A— B is by definition an object
mapping Ag—Bp:a — Fa that preserves types, as in (15), satisfying the action-
inequalities for the hom-arrows, as in (16). And a semidistributor ®: A -+B is just
a [Bg| x |Ag| matrix with elements in Q, as in (17), satisfying the action-inequalities
of (18) and (19). In other words, such a semidistributor is just a matrix ®: Ag— By
together with action-inequalities ® o A < ® and Bo ® < &; it is a “bimodule”
between “monads without units” in Matr(Q).

It is quite trivial to verify that Q-semicategories and semifunctors form a cat-
egory; the composition and identities are as for functors (see (28) and (29)). We
will denote this category as SCat(Q), and from the definitions it is clear there is a
(non-trivial'®) embedding

Cat(Q) —SCat(Q). (57)

This embedding is full: the reason, ultimately, is that in the definition for “functor”
there is no reference whatsoever to the unit-inequalities for the domain and codomain
Q-categories. Moreover, this embedding has a left adjoint. Explicitly, given a Q-
semicategory A, one defines a Q-category A by freely adding units: A has the same
objects as A, but for the hom-arrows we put

— Ald,a)ifa#d
A !/ — ) )
(@ a) { Ala,a)\/ 1y if a=d.

In other terms, viewing A as endo-matrix on Ag, A is the supremum with the identity
matrix on Ag (22): A = A\ Ay,. It is now a fact that, for a semicategory A and a
category C, an object mapping Ag— Cqy: a — Fla is a semifunctor between A and C
if and only if the same object mapping is a functor between A and C; so we obtain
that

Cat(Q)(A,C) = SCat(Q)(A,C). (58)

In sum we have described the left adjoint

(0): SCat(Q) —s Cat(Q). (59)

In particular, for a semifunctor F: A— C — with A a semicategory and C a category
— we will write F: A—C for the corresponding functor.

Let us now look at the semidistributors between O-semicategories. For two O-
semicategories A and B it is certainly true that the collection of semidistributors
from A to B forms a complete lattice:

Distrib(A,B) = {® € Matr(Q)(A,B) | Poc A< P and Bo ® < &}

8For example, a strictly ordered set (P, <) determines a 2-semicategory which is not a category.
More examples on p. 34.

28



is indeed a sublattice of Matr(Q)(A,B), inheriting the suprema. But it is not
true that these complete lattices are the hom-objects of some quantaloid of “Q-
semicategories and semidistributors”: although the formula for the composition of
distributors (21) still makes sense, and although a Q-semicategory A is a semidis-
tributor A: A —e+ A, it is not true in general that A is the identity semidistributor on
itself. On the other hand, it follows from elementary calculations in the quantaloid
Matr(Q) that, for any two Q-semicategories A and B, a matrix from A to By is a
semidistributor between the semicategories A and B if and only if the same matrix
is a distributor between the free categories A and B:

Distrib(A, B) = Dist(Q)(A, B). (60)

When working with O-semicategories, it are especially (58) and (60) that are of
great importance. To illustrate this, let us consider the presheaf-construction for
semicategories—we will see how it reduces to the known presheaf construction for
categories.

Indeed, let A and B be Q-semicategories. It is then a matter of pasting together
(58), (60) and (40) to see that

Distrib(A, B) = Dist(Q)(&, B) = Cat(Q)(&, PB) = SCat(Q)(A, PB).  (61)

This indicates that PB — the Q-category of (contravariant) presheaves on the free
Q-category B — is the correct Q-categorical structure whose objects are the (con-
travariant) presheaves on the Q-semicategory B: it “classifies” the semidistributors
with codomain B (and as domain any Q-semicategory A). For a Q-category C we
know that C = C so it follows that PC = PC and there can thus be no confusion
about the notion of “presheaf” on a OQ-category.

Since B itself is a semidistributor B: B —e+ B, there is a corresponding semifunctor
Y: B— PB—which we of course will call the Yoneda semifunctor!'®. For an object
b € By there is quite evidently a semidistributor B(—, b): 4 —e+B with as elements
the O-arrows

<B(m, b): tb%tm) - (62)

and by (60) there is a corresponding distributor B(—, b): *; —e+ B (which as matriz is
identical, but note that the codomain has changed!). The latter is the image of b by
Yg: it is the presheaf represented by b. But — unfortunately — two major properties
for presheaves on a Q-category fail for presheaves on a O-semicategory. For one
thing, there is no “Yoneda lemma” for all presheaves on a given Q-semicategory B.
And a second important difference is that a presheaf on a Q-semicategory is not
necessarily a “colimit of representables”.

90One must be careful not to confuse the Yoneda semifunctor Ya: A — PA with the Yoneda functor
Y5 A — PA; in particular is the latter quite different from the functor Ya: A — PA!
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Diagram 3: Yoneda vs. regular presheaf

Still, for certain presheaves on a OQ-semicategory the “Yoneda lemma” may
hold (we call these appropriately ‘Yoneda presheaves’), and certain presheaves may
be “colimit of representables” (and we call these ‘regular presheaves’). Moens
et al. [2002] have recognized the importance of — in particular — regular presheaves
in the context of semicategories enriched in a symmetric monoidal closed category
V. In the next few paragraphs we will generalize their insights to Q-enriched semi-
categories®’.

(i) Yoneda presheaves: Let A be a Q-semicategory, and ¢ € PA a presheaf on

A. We'll say that ¢ is a Yoneda presheaf if for all a € Ag
PA(Yaa, ¢) = ¢(a) in Q. (63)

That is to say, we explicitly ask the validity of the “Yoneda lemma” (43) for ¢ € PA.
Another way of putting this, is as follows: consider A as distributor from A to A,
then it is required that

[A, ¢>} — ¢ in Dist(Q): (64)
see the left-hand side of Diagram 3.

The Yoneda presheaves on a given Q-semicategory A define a full subcategory
of the category of all presheaves; let us denote it as YA. It is then an easy corollary
that the Yoneda embedding Yj: A — PA factors over the full embedding YA — PA
if and only if A is a category rather than a semicategory—that is to say, precisely
when all representable presheaves on A are Yoneda presheaves.

(ii) Regular presheaves: We will say that a presheaf ¢: x4 -+ A on a semicategory
A is regular if it is “a colimit of representables”. More precisely, given ¢ we may
consider the weighted diagram

* A 4?—> A A PA (65)
in the Q-category PA (note that the functor involved is determined — through
the universal property of the free category on A — by Y:A—7PA). This dia-
gram must have a colimit, since PA is cocomplete! This colimit is thus a functor

*0Tn [Van den Bossche, 1995; van der Plancke, 1998] the “regularity” of presheaves plays an
important réle too, but this “regularity” is not recognized and studied as such.
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colim(¢, Y ): x4 — PA which “picks out” exactly one object of PA. When this ob-
ject is precisely ¢ itself, we shall say that the presheaf ¢ € PA is regular: thus we
explicitly ask explicitly that

colim(¢, Ya) = ¢. (66)

Straightforward calculations show that the colimit of the weighted diagram (65) in
PA is actually equal to the composition A @7 ¢ (A is regarded as endo-distributor
on A), so that the requirement for ¢ to be a regular presheaf on A becomes quite
simply that

A ®5 ¢ = ¢ in Dist(Q); (67)

see the right-hand side of Diagram 3.

The regular presheaves on a Q-semicategory A define a full subcategory of PA;
we will denote it as RA. We will say that the semicategory A is regular when the
Yoneda embedding Yj: A—PA factors over the full inclusion RA —PA. In other
words, A is a regular Q-semicategory if and only if the representable presheaves
are regular [Moens et al., 2002]. It is clear that every Q-category is a regular
semicategory, but the converse is not true?'. So ‘regular semicategory’ is a strictly
weaker notion than ‘category’, but still strong enough to admit a “good behavior”
of presheaves??.

(It is true that our definitions for ‘Yoneda presheaf’ and ‘regular presheaf’ on
a Q-semicategory are different from — but equivalent to! — those in [Moens, 2000;
Moens et al., 2002]. Indeed, in discussing presheaves on a Q-semicategory A we
always passed over to the free category A: we used the theory of Q-categories to say
something about semicategories. But there are completely equivalent descriptions
for presheaves, Yoneda presheaves and regular presheaves on semicategories that do
not refer in any way to free categories—i.e. a more ad hoc treatment of the matter.
The original definitions of M.-A. Moens [2000] — given for V-enriched categories —
are then precisely these alternative ones.)

In a sense, the requirement for a presheaf ¢ on a semicategory A to be ‘Yoneda’
(64) is “adjoint” to the requirement for it to be ‘regular’ (67)—compare both sides
of Diagram 3. Actually, for a regular Q-semicategory A the inclusion

it RA—PA: ¢ — ¢

is left adjoint to
j:PA—RA: Y — A ®x ¢

2'Example of a regular semicategory which is not a category: see p. 34.

22In fact, these regular Q-enriched semicategories are exactly what van der Plancke [1998] calls
“Q-sets”. A regular presheaf is then what he calls a “part” (or “subset”) of a Q-set, and he observes
that “every part is the union of singletons”—that is to say, every regular presheaf is a colimit of
representables.
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which in turn is left adjoint to
k:RA—PA: 0 — [A,0)].

Both i and k are fully faithful; and the image of k: RA — PA is precisely VA. (So
we have here what B. Lawvere [1996] calls a situation of “unity and identity of
opposites”.) As a result, the Q-category RA is cocomplete. A similar reasoning
holds to prove that YA is cocomplete too.

2.4. Regular semicategories: a distributor calculus. A Q-enriched semicat-
egory A is precisely a “monad without units” in the quantaloid Matr(Q): it is an
endo-matrix A: Ag — Ag for which AocA < A. We decided to call such a semicategory
‘regular’ when all representable presheaves on A are regular. In terms of matrices
this comes down to asking for the endo-matrix A: Ag— A to be idempotent?®.

Indeed, let A be a Q-semicategory. For an object a € Ay the representable

presheaf A(—,a): %y, —o+ A is the matrix whose elements are the Q-arrows

(A(w,a): ta%tw) .
rE€AQ

And — cf. (67) — this representable is regular when A @5 A(—,a) = A(—,a), or, when

computing this composition of semidistributors,

Vo e Ap: \/ Az,y) o Ay, a) = A(z,a)
yEAQ

as Q-arrows. Thus A is a regular Q-semicategory if and only if

Va,a' € Ay : \/ Ad',x) o A(z,a) = A(d, a),
€A

i.e. the matrix A: Ag— Ay is an idempotent in Matr(Q).

The theory of regular Q-semicategories is thus the theory of idempotents in
Matr(Q). Let us therefore first consider — quite generally — idempotents in any
quantaloid (small or large, that doesn’t matter here), to afterwards specify our
findings to the quantaloid Matr(Q).

For two idempotents @e and BX”in a quantaloid Q we say that a Q-arrow
b: A— B is a regular bimodule if boe = b and f ob = b, and we shall write this
as b:e-e» f. Such bimodules can be composed: given b:e—e+ f and c: f-e>g we
denote ¢ ®; b:e—e+g for the composition which is computed simply as co b in Q.
An idempotent e is a regular bimodule on itself, indeed it is the identity bimodule:

%1n [Van den Bossche, 1995] this is precisely the definition of “Q-set”. F. van der Plancke [1995]
was apparently aware of the fact that his “Q-sets” — which he defined in more elementary terms,
see a previous footnote — are precisely these idempotent matrices, but he didn’t exploit this fact.
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e:e—ere. We thus obtain a category ldm(Q) whose objects are idempotents and
whose arrows are regular bimodules; it is in fact a quantaloid because the supre-
mum of regular bimodules (b;:e—e~ f);c; may be calculated as supremum of (the
underlying) Q-arrows. (Note that [dm(Q) is small whenever Q is.)

Recall that Mnd(Q) denoted the quantaloid of monads and bimodules in Q (see
p. 16). Quite evidently, every bimodule between monads is a regular bimodule
between idempotents. That is to say, there are full embeddings

Q—>Mnd(Q) — ldm(Q). (68)

We have seen that Q—Mnd(Q) is the universal splitting of monads, and it is
thus not too surprising that @ —1ldm(Q) is the universal splitting of idempotents
[Freyd, 1964]. This universal property of [dm(Q) makes it easy to characterize those
quantaloids which arise as quantaloids of idempotents and regular bimodules: they
are the quantaloids that are Cauchy complete as category [Borceux and Dejean,
1986].

We can now perform the splitting of idempotents in the quantaloid Matr(Q): we
obtain a new quantaloid

RSDist(Q) = ldm(Matr(Q)) (69)

whose objects are precisely the regular Q-enriched semicategories, and whose mor-
phisms we will obviously call ‘regular semidistributors’. Explicitly, a regular semidis-
tributor ®: A —e+B between regular Q-semicategories is a matrix ®: (Ag,t) — (Bo, t)
such that

for all @ € Ag,b € Bo : ey, (b, a’) 0 A(d,a) = ®(b, a); (70)

for all a € Ag,b € By : \/ycp, B(b, ) 0 ®(b',a) = (b, a). (71)

That is to say, a reqular semidistributor is one for which the action-inequalities of
(25) and (26) “saturate” to equalities. This quantaloid RSDist(Q) is the appropriate
“distributor calculus” for (regular) Q-enriched semicategories. The base quantaloid
Q can obviously be embedded in RSDist(Q); more precisely, there are full embeddings

Q — Dist(Q) — RSDist(Q) (72)

in analogy with (68). For a small Q the embedding Q — RSDist(Q) has a particu-
larly interesting universal property: it is the Cauchy completion of Q as quantaloid
[van der Plancke, 1998].

Since regular Q-semicategories and regular semidistributors form a quantaloid
RSDist(Q), it now makes sense to speak of ‘adjoint regular semidistributors’—and
we may ask ourselves whether “semifunctors between regular semicategories induce
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adjoints pairs of regular semidistributors” (as is the case for functors between catego-
ries). Unfortunately, the answer is negative: let F: A— B be a semifunctor between
regular Q-semicategories, then surely it determines two semidistributors

B(—, F—):A-e+B and B(F—, —): B-e> A (73)

but these needn’t be regular?*! However, would these semidistributors be regular,
then they prove to be adjoint:

B(—, F—) 4 B(F—, —) in RSDist(Q).

We will thus say that F: A—B is regular when both semidistributors in (73) are
regular—in elementary terms, F' should satisfy

for all a € Ag,b € Bo : /ey, B, Fa') 0 A(d',a) = B(b, Fa); (74)
for all a € Ag,b € By : Aa,d') oB(Fd',a) =B(Fa,b). (75)

a’EAO

(The other two equations that one might expect, are trivial.) It is a fact that
regular Q-semicategories and regular semifunctors form a category, and we denote
it as RSCat(Q). This category is on the one hand a (non-full) subcategory of SCat(Q)
(the category of all Q-semicategories and all semifunctors), and on the other hand
it contains Cat(Q) (Q-categories and functors) as (full) subcategory:

Cat(Q) —RSCat(Q) —+SCat(Q). (76)

Further, sending a regular F: A—B to the left adjoint B(—, F'—): A—e+B preserves
composition and identities, so that

RSCat(Q) — RSDist(Q) : (F: A—B) — (B(—, F—): A-+B) (77)

is a functor (which is the identity on objects). (Sending F' to B(F'—, —) determines
a contravariant such functor.) The various inclusions and embeddings of (30), (72),
(76) and (77) commute as in Diagram 4.

After all this theory, let us look at some examples of such regular semicategories.

(a) To see that ‘regular semicategory’ is a strictly weaker notion than that of ‘cat-
egory’, we may consider the strict ordering on the real numbers as a 2-semicategory:
that is, we think of R as the 2-enriched structure whose objects are the real numbers,
and whose hom-arrows are given by

R(y,z) =1 if and only if y < x.

The transitivity of the order is then precisely the composition-inequality in R, and
the order being strict means that the unit-inequality cannot hold. So this is not a

24For a counterexample, see a bit further.
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Cat(Q) ——— RSCat(Q)

Dist(Q) ——— RSDist(Q)
Diagram 4: categories and regular semicategories

2-category, but a semicategory. However, it is a regular 2-semicategory, due to the

257

“density“®” of the reals:

\/ R(z,y) AR(y,z) = R(z, z)
yeR

holds because for every z < x there exists a y such that z < y < z!

(b) More about this example. The free category on the semicategory (R, <) is
simply (R, <). A presheaf on (R, <) is by definition a presheaf on (R, <), i.e. a down-
closed subset. But to illustrate the difference between the Yoneda embeddings, note
that:

Yir <) R—PR:r— yr = {z € R|z < r} for R-as-semicategory,
Yr<)R—PR:r— |r={zeR|z<r} for R-as-category.

A down-closed set D C R corresponds to a regular presheaf on (R, <) whenever for
every x € D there exists a y € D for which z < y (so D has no maximum); and D is
a Yoneda presheaf on (R, <) whenever {x C D implies that x € D too. Clearly every
4r is a regular presheaf on (R, <), which is consistent with the previous observation
that (R, <) is a regular semicategory.

(c¢) More generally, a continuously ordered set (P, <) with “way-below” relation
< (see for example [Gierz et al., 1980] for a precise definition) may be viewed as a
regular 2-semicategory P when putting Py = P as object-set and

for z,y € P: P(y,z) = 1 if and only if y < z.

The point is that “<” is an idempotent relation on P. And quite surprisingly (the
underlying order of) the 2-category RP of regular presheaves on P is (isomorphic
to) the Scott topology on P [van der Plancke, 1998].

(d) Inspired by the previous example, we may now give an example of a semifunc-
tor between regular semicategories which is not regular. Thereto, consider on the one
hand the strict ordering of the reals (R, <) and on the other the (partial) ordering

?5]. Koslowski [1997] and R. Rosebrugh and R. Wood [1994] would probably prefer to see the
word “interpolation property” here.
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on an interval, say ([—1, 1], <). They are both examples of regular 2-semicategories
(the latter is even a 2-category). The mapping

lifx>0

F:R—[-1,1]:x — :
—1 otherwise

is surely a semifunctor between regular 2-semicategories: if x < y in R then Fz <
Fy. For F to be a regular semifunctor, it is required that

- for all x € R and a € [—1,1] satisfying a < Fx there exists 2/ € R such that
2’ <z and a < F2/;

- for all z € R and a € [—1,1] satisfying Fx < a there exist ' € R such that
x <z and Fa' <a.

The first of these sentences is true, but the second is false (take x = 0 and a = —1),
so F' cannot be a regular semifunctor!

(e) We have observed (see p. 26) that for a locale 2, an Q-set (A,[ - = - |) may
be viewed as an 2-enriched semicategory whose objects are the elements of A, and
for two objects a,a’ the hom is [a' = a]. Actually, it is a regular semicategory?S,
because for any a,a’ € A we have due to symmetry of the Q-valued equality that
[a' =a] =[d = a] Aa=d] <[d = d] and therefore

[d =al=[d =d]A]d =a] < \/ ([a/:az]/\[x:a])g[a/:a]
€A

(using the transitivity axiom, i.e. the composition inequality). Rewriting the defi-
nition of ‘regular presheaf’ on such an 2-set in terms of the 2-valued equality, it is
easily seen to be precisely a mapping ¢: A— Q satisfying for all a € A that

\/ la=2] A é(z) = d(a).

T€EA

This is precisely the correct notion of (the “characteristic function” of) an ‘Q-subset’
of the given Q-set: thinking of the (2-set as a sheaf on 2, these (2-subsets correspond
to subsheaves [Borceux, 1994]. In particular is the (underlying order of the) Q-
category of regular presheaves on a given Q-set (viewed as regular semicategory)
exactly the locale of subsheaves of that Q-set (viewed as sheaf).

2.5. Cauchy completion of semicategories: total regularity. ‘Regular O-
semicategory’, ‘regular semidistributor’ and ‘regular semifunctor’ are strictly weaker
notions than ‘Q-category’, ‘distributor’ and ‘functor’, but they are just strong e-
nough to still allow for a distributor quantaloid RSDist(Q) and for every regular semi-
functor F: A—B in RSCat(Q) to induce an adjoint pair of regular semidistributors.

26Tt is even more than that, as we will see further on...
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As the similar functor (30) was the key to the development of the theory of O-
categories, we may now ask ourselves in how far (77) allows for a useful theory of
regular Q-semicategories. Particularly, it is quite essential to find a decent notion
of ‘Cauchy completion’ for such semicategories; after all, any categorical structure
is just a presentation of its Cauchy completion and so in principle a semicategory
too should be ‘Morita equivalent’ to its ‘Cauchy completion’.

Recall that for a Q-category C its Cauchy completion C.. is the category classi-
fying the Cauchy distributors with codomain C; it is the full subcategory of the
presheaf category PC determined by the Cauchy presheaves. The Yoneda em-
bedding Yc: C—PC factors fully over the full inclusion C.. C PC: every object
¢ € Cy can be “pointed at” by means of a constant functor Ac: #;.—> C, which in
turn determines the (Cauchy) representable presheaf C(—,c): %, —e+C (adjoint to
C(c, —): C—e+ %) that thus converges to Ac itself. That is to say, C can be thought
of as a full subcategory of C. because “representable presheaves on C converge to
constant functors into C”. (See p. 21 and further.)

Unfortunately, for a (regular) Q-semicategory A it is no longer true that “repre-
sentables converge to constants”! Indeed, even though any object a € Ag does indeed
determine a representable presheaf A(—,a): #;, —e+ A, it is simply not true that this
representable is left adjoint to A(a, —): A —e+#,: for then necessarily 14 < A(a,a)
by the unit of the adjunction! Put differently, it is impossible in general to “point
at” an object of A with a (regular) semifunctor like F: %4 — A: this would imply
that 14 < A(a,a), by the action of the semifunctor F' on the hom-arrows! If we per
se want an object a € Ay of a (regular) Q-semicategory A to be “pointed at” by
a constant (regular) semifunctor, so that this semifunctor determines a left adjoint
“representable presheaf” that in turn converges to the constant, then we will explic-
itly have to ask this right from the start—and we will have to be willing to consider
a constant semifunctor whose domain is not a category.

All this motivates the following definition: an object a of a regular O-semicat-
egory?’ A is stable if there exists a regular semifunctor from a one-object regular
O-semicategory to A “pointing at” a € Ag.

Note that such a one-object regular Q-semicategory is, simply, the “suspension”
of an idempotent in Q; for an idempotent A “we will denote *¢ for the regular
semicategory whose single object * is of type t+ = dom(e) and whose single hom-
arrow is precisely e. In the above definition we thus ask, for the object a € Ag, the
existence of some idempotent e, in Q and a regular semifunctor

Foi%e, — Atk — a. (78)

As a consequence of the regularity of this semifunctor we then have an adjoint pair

2TSince we want to speak of “adjoint semidistributors”, it is clear that this will only make sense
for a regular Q-semicategory A: then we can work in the quantaloid RSDist(Q).
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of semidistributors
A(—,a) 4 A(a, —): ALES *, . (79)

This is precisely what we wanted: to “point at” an object a with a constant semi-
functor, and to have a left adjoint “representable” that converges to this constant
semifunctor.

This definition can be expressed “equationally”: indeed, an object a in A is
stable if and only if

A(d',a) o Ala,a) = A(d,a),

A(a,a) o Aa,d) = Ala,d). (80)

for all a’ € Ag : {

These equations imply immediately that A(a,a):ta—ta is an idempotent which
itself may play the role of the idempotent e, in (78) and (79) above.

We are now obviously interested in regular semicategories all objects of which
are stable: we will call such a semicategory ‘totally regular’. Using (80) we may
thus spell out that a regular Q-semicategory A is totally regular if and only if

A(d';a) o Aa,a) = A(d,a),

A(a,a) o Aa,a’) = Ala,d). (81)

for all a,a’ € Ay : {

(These conditions make sense for any — not necessarily regular — Q-semicategory A:
they actually imply A’s regularity.) Every O-category is a totally regular semicat-
egory, but the converse is not true; and not every regular semicategory is totally
regular (see p. 41 for examples).

It is easily verified that a semidistributor ®: A —e+B between totally regular Q-
semicategories is regular — sensu (70) and (71) — if and only if

®(b,a) o Ala,a) = ®(b,a),

B(b,b) 0 @ (b, a) = ®(b,a). (82)

for all a € Ag,b € By : {
Denoting henceforth TRSDist(Q) for the full sub-quantaloid of RSDist(Q) deter-
mined by the totally regular O-semicategories, we thus have full embeddings of

quantaloids like
Dist(Q) — TRSDist(Q) — RSDist( Q). (83)

We can apply (82) to semifunctors: for totally regular semicategories A and B,
a semifunctor F: A— B is regular — sensu (74) and (75) — if and only if

B(b, Fa) o A(a,a) = B(b, Fa),

A(a,a) o B(Fa,b) = B(Fa,b). (84)

for all a € Ag,b € By : {
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Cat(Q) ———— TRSCat(Q) ———— RSCat(Q)

Dist(Q) —— TRSDist(Q) ——— RSDist(Q)
Diagram 5: totally regular semicategories

As we denoted TRSDist(Q) for the full sub-quantaloid of RSDist(Q) determined
by the totally regular semicategories, we will denote TRSCat(Q) for the full sub-2-
category of RSCat(Q) with those objects. It is quite obvious that we have (strict)
embeddings

Cat(Q) — TRSCat(Q) — RSCat(Q) (85)

(all of which are full), and that Diagram 5 commutes: the arrows from left to right
are full embeddings, those from top to bottom indicate that a regular semifunctor,
and in particular a functor, induces an adjoint pair of regular semidistributors.

The point is now that a totally regular Q-semicategory is indeed ‘Morita equiv-
alent’ to its ‘Cauchy completion’ in a way that is very similar to, but at the same
time quite different from, what we know for Q-categories. More precisely we can
proceed as follows.

- Say that a totally regular Q-semicategory B is Cauchy complete if every left
adjoint regular semidistributor with codomain B, like ®: A -+ B, is determined by a
(necessarily essentially unique) regular semifunctor F: A—B. That is to say, “all
Cauchy semidistributors into B converge”.

- For any given totally regular Q-semicategory B there exists a new Q-categorical
structure B with the universal property that, for all totally regular A,

Map(TRSDist(Q))(A, B) ~ TRSCat(Q)(A, B.) (36)

(natural in A). This B, can be constructed as follows: its objects are the left ad-
joint (regular) semidistributors into B whose domain is a one-object totally regular
semicategory, i.e. like ¢:*.-e+B with ¢ 4 ¢* in TRSDist(Q); the type of such an
object is t(¢:5 -e+B) = dom(e); and for two objects 9: %, —e+B and : *y —+B the
hom-arrow Bec (1), ¢): dom(e) — dom(f) is the single element of the regular semidis-
tributor [¢, 9] = ¥* @p ¢ (lifting and composition in the quantaloid TRSDist(Q)).
This B¢ is a Cauchy complete totally regular Q-semicategory.

- Since B:B-e+B is a (regular) left adjoint semidistributor, there must be a
corresponding (regular) semifunctor jp: B—Bec: this is the Cauchy completion of
B, it sends an object b € By onto the left adjoint regular semidistributor

B(—, b) *]B(b,b) -+ B.
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TRSCat(Q) — ), TRSCat(Q)  TRSDist(Q) — < TRSDist(Q)

+ +

TRSCat(Q) ——— TRSCat(Q) Dist(Q) ———— Dist(Q)

—Jcc (_)cc

Diagram 6: non-commuting squares!

By the naturality of (86) it is the unit of the left adjoint to the obvious full embed-
ding:
(—=)ec 7 i: TRSCate(Q) £S5 TRSCat(Q). (87)

- The (regular) semifunctor jp in turn determines (an adjoint pair of) semidis-
tributors Bec(—, jp—): B-e+Bee and Bec(jp—, —): Bec o+ B, which are actually each
others’ inverse; so B is isomorphic to B¢ in TRSDist(Q). That is to say, B is Morita
equivalent to its Cauchy completion. And it follows that

TRSDistcc(Q) ~ TRSDist(Q) (88)

is an equivalence of quantaloids (where the former is the obvious full subquantaloid
of the latter).
- It now follows from (86) and (88) that

Map(TRSDist(Q)) ~ Map(TRSDist..(Q)) ~ TRSCatc(Q); (89)

so, if one is only interested in “Cauchy invariant” properties of (or “Morita equiv-
alent” constructions on) totally regular Q-semicategories, one may take the left
adjoint (regular) semidistributors for “morphisms”.

A warning is appropriate here: for a Q-category C (which is trivially a totally
regular Q-semicategory), its Cauchy completion as category is very different from
its Cauchy completion as totally reqular semicategory. In fact, the latter isn’t even
a Q-category anymore (but a totally regular semicategory)! Our notations do not
distinguish between C’s “Cauchy completion as category” and its “Cauchy com-
pletion as totally regular semicategory”; we write both as C.. and hope that the
context makes clear which of both is meant. But — to make things perfectly clear —
the squares in Diagram 6 are not commutative! The theory of (Cauchy complete)
totally regular Q-semicategories is thus not at all “merely a straightforward general-
ization” of the theory of Q-enriched categories. (Another such situation that makes
this apparent, is that for a totally regular Q-semicategory A, its Cauchy completion
is not a full substructure of RA (or even PA), whereas for a category its Cauchy
completion (as category) is a full subcategory of its presheaf category.)
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It may be useful to mention that the construction of “B..” as outlined below
(86) makes perfectly sense for any (not necessarily totally) regular Q-semicategory B
(although it may not have the desired properties). But B is always totally regular,
and if B is fully faithfully embedded in B.. (a property that one certainly wants
from a “Cauchy completion”!) then B must be totally regular too. This justifies
— in retrospect — why a workable notion of “Cauchy completion” only applies to
totally regular O-semicategories, and not to the merely regular ones.

Here are some examples.

(a) Recall that the strictly ordered reals (R, <) may be viewed as a regular 2-
semicategory. But it is not totally regular: for x < y it is clear that R(z, y)AR(y,y) #
R(z,y). So not every regular semicategory is totally regular. On the other hand it
is obvious that not every totally regular semicategory is a category.

(b) Every totally regular 2-semicategory is Morita-equivalent to a true and honest
2-category, in the following way. Suppose that A is a totally regular 2-semicategory,
and that a € Ag is an object for which 1 £ A(a,a). Then it follows by total regularity
that

for all a’ € Ag : A(d’,a) =0 = A(a,d),

that is to say, those objects are “isolated” in A. Consider now the full substructure
of A determined by those objects which are not isolated; let i: A — A denote the full
inclusion. Then A is a 2-category, and the adjoint semidistributors A(—,i—): A-os A
and A(i—, —):A%ﬂ& are actually each others’ inverse in TRSDist(2). So the full
embedding Dist(2) — TRSDist(2) is an equivalence, and it follows that Cate(2) ~
TRSCat(2) too. (Recalling that every 2-category is Cauchy complete, we may even
state that Cat(2) ~ TRSCat.(2).)

(c) A similar remark applies to the structures enriched in the extended non-
negative reals (see p. 12). If A is a totally regular semicategory enriched in RTU{oo},
and a € A is an object for which 0 # A(a,a), then necessarily

for all ' € Ag : A(d’,a) = oo = A(a,d’).

That is to say, a is an “isolated” object (“infinitely far” from every other object—
even from itself!). But A is Morita-equivalent to its full subcategory determined by
the non-isolated objects.

(d) About the Qp-enriched category Commp determined by some ring R, in-
troduced on p. 13. On the one hand this Qg-category may be Cauchy completed
as category, but on the other hand we may consider it to be a totally regular Qp-
semicategory, and Cauchy complete it as semicategory. The outcomes of both pro-
cedures are different! In the case of a commutative ring R, [Ambler and Verity,
1996] argue — in a setting that we will shortly prove to be equivalent to ours — that
precisely the Cauchy completion of Commp as totally regular semicategory gives
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the correct “(generic) sheaf representation of R over Qr”; their paper contains the
result that (Commp)cc is a “ring-object” in TRSCatcc(Qr). The generalization to a
non-commutative R has not yet been studied in this fashion (and it must be noted
that Van den Bossche’s [1995] result is quite different in nature from Ambler and
Verity’s [1996] work!).

The most important example — that which motivated us to consider semicatego-
ries in the first place — deserves a subsection of its own: totally regular semicategories
enriched in a locale Q.

2.6. Finally, the answer to the initial question. We are now — finally! — at the
point where we can answer our initial question: “what precisely are those ordered
objects in Sh(£2) as Borceux and Cruciani [1998] describe them?”

We observed that the ordered objects in Sh(2) are those semicategories enriched
in (the one-object suspension of) the locale ) that satisfy two extra (“mysterious”)
conditions (55) and (56). But these conditions can be rewritten as

)
N
L2,
>

a<d]=[a<d], (90)

a <dl=la<d]. (91)

B
IN
@\
>

And then it is clear that an “Q-order” is exactly a totally regular {2-semicategory!
Further, the “morphisms between Q-orders” of which Borceux and Cruciani [1998]
speak, are exactly left adjoint regular semidistributors between totally regular sem-
icategories. So the (2-)category that they prove to be equivalent to Ord(Sh(f2)) is
precisely what we denote by Map(TRSDist(£2)).

The proof of this result relies totally on the theory of Cauchy complete totally
regular ()-semicategories. In fact,

- F. Borceux and R. Cruciani first define what we now recognize to be the
category Map(TRSDist(£2));

- then they prove that “every 2-order is isomorphic to a complete €2-order”,
i.e. every totally regular semicategory is Morita equivalent to its Cauchy completion,
so it follows that Map(TRSDist(2)) ~ Map(TRSDistc.(£2));

- the authors then show that “for those complete 2-orders the morphisms are
equivalently given by certain object-mappings”, which is precisely the equivalence
Map(TRSDistcc(2)) ~ TRSCatc.();

- and finally, by a direct argument, TRSCatc.(£2) ~ Ord(Sh(12)).

Interpreting (87) in this context we have explicitly that

(—)ec - i: TRSCate () S TRSCat(9)

behaves like a “sheafification”: the objects of TRSCat({2) are to be understood as
“ordered presheaves on 2”7, the Cauchy complete such semicategories are “ordered
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sheaves”, and the Cauchy completion of a semicategory is then like the sheafification
of a presheaf.

Encouraged by this example, we now propose to define the “quantaloid of O-
orders and ideals” precisely as

IdI(Q) := TRSDist..(Q), (92)
and the “locally (pre)ordered category of Q-orders and order-preserving maps” as
Ord(Q) := TRSCatc(Q). (93)

That is to say, Cauchy complete totally regular O-semicategories are “ordered shea-
ves on Q”, a regular semidistributor is an “ideal relation” between ordered sheaves,
and a regular semifunctor an “order-preserving map”. It is then a result that

Ord(Q) = Map(ldI(Q)),

i.e. that “left adjoint ideals are (the graphs of) order-preserving maps”.

At this point we must make a comment on categorical structures enriched in
2. We have argued earlier that 2-categories are (pre)ordered sets (and functors are
order-preserving maps and distributors are ideal relations). But the statements
above imply that we should rather take the Cauchy complete totally regular 2-
semicategories (and the regular semifunctors and semidistributors) to be the cor-
rect understanding of preorders in this context. So which of both is it? Well, as
indicated in an example on p. 41, it is “accidentally” so that every totally regular
2-semicategory is Morita-equivalent to a true and honest 2-category; and moreover
every 2-category is Cauchy complete. Therefore the possible confusion is easily
solved:

Ord(2) ~ Cat(2) and IdI(2) ~ Dist(2).

(And for similar reasons, Cauchy complete generalized metric spaces are precisely
“orders over the quantale of extended reals”.)

From now on we use “Q-order” as synonym for “Cauchy complete totally regular
Q-semicategory” (which is quite a mouthful).

2.7. Restrictions and gluing. To support the idea that Q-orders are indeed
“sheaves”, let us indicate in what sense a “family of pairwise compatible elements
admits a unique gluing”.

Let A denote a totally regular Q-semicategory. Thinking of A as a “sheaf” on O,
we read a hom-arrow like A(d’,a) as the “greatest level at which a is smaller than
a”. In particular, an object a € Ay is a “section of A over A(a,a)”. (This is entirely
consistent with the case of Q-sets: thinking of such an (A4,[ - =-]) as a sheaf on ,
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[a = a] is precisely the element of € over which a is a section.) Note that (81) says
in particular that any A(a,a) is an idempotent, and any A(a’, a) a regular bimodule
between such idempotents, in @. We thus have to try to generalize such things as
restrictions, coverings, compatible families and gluings — which are well known for
sheaves on a locale 2 — to this situation where idempotents in Q seem to play the
role that the elements of a locale ) play in the theory of sheaves on (2.

Whenever for two idempotents A%nd A%in Q there exists a left adjoint regular
bimodule z:e-e+ f (with right adjoint denoted z*: f-e+e) that expresses e as a
section of f in Idm(Q) (i.e. z*®fx = e and z ®. 2* < f), then we think of z:e-e+ f
as a “restriction of idempotents in Q”. Suppose now that for an object a € Ag in a
totally regular Q-semicategory A, x: e -+ A(a, a) is such a restriction of idempotents.
The composition of left adjoint regular semidistributors

(z) A(-,a)

*e ——o— *A(a,0) —o——— A

(where (z) denotes the one-element semidistributor between one-object semicatego-
ries in the obvious way) gives a new left adjoint in TRSDist(Q). If this semidistrib-
utor converges, then the object (“picked out” by the regular semifunctor) to which
it converges (i.e. the representing object for this left adjoint) is the “restriction of a
through z:e—e+A(a,a)”. Clearly, if A is Cauchy complete then all such restrictions
exist.

Suppose now that for some idempotent 1@6 in Q there is a family of objects
(ai)ier in A for which

(i) for each i € I there is a restriction of idempotents x;: A(a;, a;) e+ e such that
e= Ve viox], and

(i) for each i,j € I, } o z; < A(ay, a;).
We may then think of the A(a;, a;)’s as a “covering” of e (because of the first sentence
above), and the a;’s as a “family of pairwise compatible elements” (because of the
second sentence). A “gluing” of such a family is then — whenever it exists — an
object a € Ay such that A(a,a) = e and the restriction of this a through each of
the z;: A(ai, a;) -+ A(a,a) (exists and) equals precisely the corresponding a;—see
Diagram 7.

Another way of expressing this, is as follows: let E denote the O-enriched struc-
ture with

- objects: Eg = I and types ti = A (for all i € I),

- hom-arrows: for 4,5 € I, E(j,i) = 2} o ;.
Due to condition (i) above, E is a totally regular semicategory which is Morita-
equivalent to the one-object totally regular semicategory *.: the semidistributor
©: x.—»E with elements O(i,%) = x; has as inverse O 1:E-e+%, with elements
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Diagram 7: a “covering”

©71(x,4) = z. Due to condition (ii) the object-mapping
F:Eg—Ag:i— Fi:=a;

is a regular semifunctor; it induces a left adjoint regular semidistributor B(—, F'—).
The composition of the left adjoints

B(—, F—
ko —8 E( )A

yields a new left adjoint. If it is representable (i.e. if it converges) then the repre-
senting object is the gluing of the compatible family (a;);. So for a Cauchy complete
A all families of pairwise compatible objects admit an essentially unique gluing!

These definitions of “restriction”, “covering”, “gluing” etc. can of course be
applied to -sets (viewed as totally regular Q-enriched semicategories): they then
coincide with the usual notions for the Q-sets (viewed as sheaves on Q).

2.8. Cauchy completion of, and enriching in, a base quantaloid. Concern-
ing the calculus of regular Q-semicategories and regular semidistributors, i.e. the
quantaloid RSDist(Q), it requires a simple calculation — using the definitions (27)
and (69), and the universal properties of the matrix-construction, the idempotent-
construction, and the monad-construction — to see that

RSDist(Q) ~ Dist(RSDist(Q)). (94)

That is to say, “regular semicategories are categories”... over a different base quan-
taloid?®!

It is natural to ask wether such a property also holds for the totally regular
O-semicategories—and the answer to that question is affirmative! To see what is

28It would however be too easy to do away with the theory of regular semicategories altogether,
because clearly Cat(RSDist(Q)) # RSCat(Q).
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happening it helps to first underline the important role that idempotents and regular
bimodules in @ play in definitions (81) and (82):

- a O-semicategory is totally regular if and only if every endo-hom-arrow is an
idempotent and every hom-arrow is a regular bimodule between these idempotents;

- a semidistributor between totally regular semicategories is regular if and only
if every element of the semidistributor is a regular bimodule between the endo-hom-
arrows.
As idempotents and regular bimodules in Q are themselves the objects and arrows
of the quantaloid ldm(Q) (see p. 33), it is now maybe not too surprising that totally
regular Q-semicategories can be described in terms of an enrichment in ldm(Q).

Indeed, let A be a totally regular Q-semicategory, define then an ldm(Q)-category
A as follows: the object-set is (1&)0 = Ao but the types of the objects are now ta =
A(a, a) (which is indeed an object of Idm(Q)); and for the hom-arrows put &(a’, a) =
A(d’,a) in Q (which is indeed an arrow in ldm(Q) between fa and fa’). Similarly,
for a regular semidistributor between totally regular semicategories like ®: A -+ B it
is easily seen that ®(b,a) = ®(b, a) defines a distributor ®: A -e+B between Idm(Q)-
categories. This defines a fully faithful homomorphism of quantaloids

(Z): TRSDist(Q) — Dist(ldm(Q)).

This homomorphism proves to be essentially surjective on objects?”, so it is an
equivalence of quantaloids:

TRSDist(Q) ~ Dist(ldm(Q)). (95)

Therefore, “totally regular semicategories are categories”... but obviously over a
quite different base quantaloid®°!

On p. 33 we mentioned that Idm(Q) is the quantaloid which is the Cauchy
completion of Q as category, and that RSDist(Q) is the Cauchy completion of Q as
quantaloid. And of course there are full embeddings

Q—1dm(Q) — RSDist(Q).

To stress that these Cauchy completions of Q (be it as category or as quantaloid)
are only determined up to equivalence, we may rather use notations

Q— Qcc— Qcc

2This is elementary, but depends on the fact that monads split in the base quantaloid Idm(Q):
the point is to prove that every ldm(Q)-category is Morita-equivalent to one whose endo-hom-arrows
are identities.

30Tt follows that TRSCatec(Q) ~ Catec(Idm(Q)) are biequivalent locally (pre)ordered categories.
But again it must be noted that TRSCat(Q) % Cat(ldm(Q)), which underlines the importance of
‘Morita equivalence’ and ‘Cauchy completions’.

46



ldm(Q) RSDist(Q)

=~ "

Dist(Q) TRSDist(Q) Dist(RSDist(Q))

\
\
y

DISt(Q) _— DiSt(Qcc) DiSt(QCC)

Diagram 8: comparing various enrichments

for any choice of Cauchy completion of Q as category, resp. as quantaloid. Enriching
in these quantaloids then gives rise to embeddings

Dist(Q) — Dist(Qcc) — Dist(Qcc)

and in particular can we now bring the various base quantaloids and enrichments
together in one big Diagram 8 in which all arrows are quantaloid homomorphisms,
and the equalities should be read as equivalences. In this diagram, on the foreground,
in the top row Q gets Cauchy completed and in the bottom row Q and its Cauchy
completions are the base for enriched categories and distributors. In the background
we then have a restatement of this scheme “in elementary terms”.

As a result, we may now state several equivalent expressions for the quantaloid
of Q-orders and ideals, cf. (92):

IdI(Q) = Distec(Qcc) =~ Dist(Qcc)-

By taking left adjoints one obtains as many equivalent expressions for Ord(Q).

The observation made here actually bridges the gap between the description of
(ordered) sheaves on a locale 2 of, on the one hand, [Borceux and Cruciani, 1998]
(see p. 26 and 42), and on the other hand [Walters, 1981]. Indeed, B. Walters
identified sheaves on Q as symmetric3! Cauchy complete categories enriched in — as
he described it — Rel(2), leaving it understood that a (not-necessarily symmetric)
Rel(2)-category should be thought of as an “ordered sheaf” on 2. But Rel(Q)
is precisely the split-idempotent completion of §2, because every element of €) is
idempotent of course, so Walters is working within Catec(€2¢c). This latter 2-category
is up to equivalence precisely TRSCatc(€?), i.e. what we have shown to be Borceux
and Cruciani’s description of ordered sheaves on ().

31The symmetry just means that in such an enriched category A one has for every pair of objects
a,a’ that A(a’,a) = A(a,a’)—which makes sense over Rel(2) but not in general, see further.
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2.9. Symmetric orders: towards sets. Having understood what “orders over
a base quantaloid” are, it would be interesting to know more about “symmetric
orders”, i.e. “sets over a base quantaloid”. Without digging deeply in this matter
(which is not really part of this thesis) we can still try to outline the subject for
future study.

First of all, let A be a Q-order for some quantaloid Q. For this order to be
“symmetric” it would have to satisfy the condition on its hom-arrows that

for all a,a’ € Ag : A(d',a) = A(a,d)...

which clearly doesn’t make sense in general: A(a’,a) and A(a,a’) are arrows in the
base quantaloid Q that go in opposite directions! Therefore we will need an extra
ingredient that allows us to compare arrows in Q that go in opposite directions: an
involution on Q.

An involution on a quantaloid @ is a homomorphism 7: Q°° — Q which is the
identity on objects and its own inverse on arrows. For simplicity we write f7: B— A
for the effect of 7 on some Q-arrow f: A— B, and read f7 as the “transpose” of

f. Having a quantaloid with involution (Q,7) we may now define a ‘r-symmetric
O-order’ A as a Q-order for which

for all a,a’ € Ag: A(d',a) = A(a,d’)". (96)

As a particular example note that for a locale € the identity idg is an involution
(viewing € as a one-object quantaloid!), and that the idg-symmetric Q-orders are
exactly the Q-sets. Therefore we speak in general of a ‘(Q, 7)-set’ instead of a ‘7-
symmetric Q-order’.

More generally, if a quantaloid Q is endowed with an involution 7, then the quan-
taloid Matr(Q) of Qp-typed sets and matrices with elements in Q (see p. 14) inherits
this involution: for a matrix M: (X,t) — (Y, t) one simply puts M": (Y,t) — (X, )
to be the matrix whose elements are M" (z,y) := M(y, z)". A matrix M is then said
to be ‘T-symmetric’ whenever M” = M—in which case M has to be an endo-matrix.
It is then obvious that each Q-enriched structure (category, semicategory, etc.) has
a “r-symmetric variant”. It would thus be interesting to understand how those
“r-symmetric variants” organize themselves in substructures of Dist(Q), Cat(Q),
RSDist(Q) and so on, and what (universal) properties those new structures have.

Of course, of particular interest are the 7-symmetric totally regular Q-semi-
categories, i.e. the (Q, 7)-sets. It is noteworthy that for such a (Q,7)-set A, every
endo-hom-arrow is a 7-symmetric idempotent in Q. Recalling that a Q-order can
be seen as a Qcc-enriched category (cf. p. 46), it thus seems that the 7-symmetric
ones can be seen as T-symmetric Q,c-enriched categories, where by Q;.c we mean
the universal splitting of 7-symmetric idempotents in Q (as opposed to Q. which
is the universal splitting of all idempotents).
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Another point that should be cleared out is: what is the appropriate Cauchy com-
pletion of a (Q, 7)-set? This is not as obvious as it may seem at first sight, because
the Cauchy completion of a 7-symmetric totally regular Q-semicategory as explained
on p. 39 and further is not necessarily 7-symmetric3?! But it may be observed that
for a regular semifunctor F': A— B between two (Q, 7)-sets, B(—, F—)" = B(F'—, —)
(due to the 7-symmetry of B): the transpose of the left adjoint semidistributor in-
duced by F' is actually its right adjoint. It therefore seems reasonable to think that
the Cauchy completion of a (Q,7)-set A should not classify all left adjoint regular
semidistributors into A, but only those regular semidistributors that are left adjoint
to their transpose.

Ideally these considerations should lead to full substructures

TRSDist(Q, 7) — TRSDist(Q) and TRSCat(Q,7)— TRSCat(Q)
determined by the 7-symmetric objects; and there should be equivalences
TRSCate(Q, 7) ~ Map_(TRSDist..(Q, 7)) ~ Map_(TRSDist(Q, 7))

where by “Map.” is meant: taking those left adjoints whose right adjoint is their
transpose. It would then make sense to define “sets, relations and functions over a
base quantaloid endowed with an involution” as

Rel(Q, ) := TRSDistc.(Q,7) and Set(Q,7) := Map,(Rel(Q,7)).

And it would then seem that Rel(Q, 7) is a full subquantaloid of IdI(Q), but Set(Q, 7)
would not be a full subcategory of Ord(Q).

32 A similar observation holds for 7-symmetric Q-categories [Betti and Walters, 1982; Labella and
Schmitt, 2002].
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