Terminal coalgebras

Eugenia Cheng and Tom Leinster

University of Sheffield and University of Glasgow

June 2008
Plan

1. Introduction to terminal coalgebras
2. Some theory of terminal coalgebras
3. Trimble-like \(n \)-categories
4. Trimble-like \(\omega \)-categories via terminal coalgebras
Plan

1. Introduction to terminal coalgebras
Plan

1. Introduction to terminal coalgebras
2. Some theory of terminal coalgebras
Plan

1. Introduction to terminal coalgebras
2. Some theory of terminal coalgebras
3. Trimble-like n-categories
Plan

1. Introduction to terminal coalgebras
2. Some theory of terminal coalgebras
3. Trimble-like n-categories
4. Trimble-like ω-categories via terminal coalgebras
1. Introduction to terminal coalgebras

A coalgebra for an endofunctor $F : C \to C$ consists of

- an object $A \in C$
- a morphism $F_A : A \to A$

satisfying no axioms.
1. Introduction to terminal coalgebras

A coalgebra for an endofunctor $F : \mathcal{C} \to \mathcal{C}$ consists of

• an object $A \in \mathcal{C}$
• a morphism $F(A) \to A$

satisfying no axioms.
1. Introduction to terminal coalgebras

A coalgebra for an endofunctor $F : \mathcal{C} \rightarrow \mathcal{C}$ consists of

- an object $A \in \mathcal{C}$
1. Introduction to terminal coalgebras

A coalgebra for an endofunctor $F : \mathcal{C} \to \mathcal{C}$ consists of

- an object $A \in \mathcal{C}$
- a morphism $A \to FA$
1. Introduction to terminal coalgebras

A coalgebra for an endofunctor $F : \mathcal{C} \rightarrow \mathcal{C}$ consists of

- an object $A \in \mathcal{C}$

\[A \quad \Downarrow \quad FA \]

- a morphism satisfying no axioms.

satisfying no axioms.
1. Introduction to terminal coalgebras

Coalgebras for F form a category with the obvious morphisms
1. Introduction to terminal coalgebras

Coalgebras for F form a category with the obvious morphisms

\[
\begin{array}{ccc}
A & \xrightarrow{h} & B \\
\downarrow & & \downarrow \\
FA & \xrightarrow{Fh} & FB
\end{array}
\]
1. Introduction to terminal coalgebras

Coalgebras for F form a category with the obvious morphisms

\[
\begin{array}{ccc}
A & \xrightarrow{h} & B \\
\downarrow & & \downarrow \\
FA & \xrightarrow{Fh} & FB
\end{array}
\]

so we can look for terminal coalgebras.
1. Introduction to terminal coalgebras

Example 1
Example 1

Given a set M we have an endofunctor
1. Introduction to terminal coalgebras

Example 1

Given a set M we have an endofunctor

$$\begin{align*}
\text{Set} & \xrightarrow{M \times -} \text{Set} \\
A & \mapsto M \times A
\end{align*}$$
1. Introduction to terminal coalgebras

Example 1

Given a set M we have an endofunctor

$$
\text{Set} \xrightarrow{M \times -} \text{Set}
$$

$$A \mapsto M \times A$$

The terminal coalgebra is given by the set $M^\mathbb{N}$ of “infinite words” in M
1. Introduction to terminal coalgebras

Example 1
Given a set M we have an endofunctor

$$\text{Set} \xrightarrow{M \times -} \text{Set}$$

$$A \mapsto M \times A$$

The terminal coalgebra is given by the set $M^\mathbb{N}$ of “infinite words” in M

$$(m_1, m_2, m_3, \ldots)$$
1. Introduction to terminal coalgebras

The structure map of this coalgebra:
1. Introduction to terminal coalgebras

The structure map of this coalgebra:

\[M^\mathbb{N} \rightarrow M \times M^\mathbb{N} \]
1. Introduction to terminal coalgebras

The structure map of this coalgebra:

\[\begin{array}{c}
M^\mathbb{N} \\
\downarrow \\
M \times M^\mathbb{N}
\end{array} \]

is a canonical isomorphism.
1. Introduction to terminal coalgebras

To see that this is terminal:
1. Introduction to terminal coalgebras

To see that this is terminal:
Given any coalgebra

\[A \]

\[M \times A \]
1. Introduction to terminal coalgebras

To see that this is terminal:

Given any coalgebra

\[
A \\
\downarrow \\
M \times A
\]

we need to produce an infinite word in \(M \).
1. Introduction to terminal coalgebras

screen memory
1. Introduction to terminal coalgebras

screen memory

\(a \)
1. Introduction to terminal coalgebras

\[
\text{screen memory}
\]

\[
\begin{array}{ccc}
\text{a} & \rightarrow & (m_1, m_2, m_3, m_4, \ldots) \\
\text{m}_1 & a_1 \\
\end{array}
\]
1. Introduction to terminal coalgebras

<table>
<thead>
<tr>
<th>screen</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>m_1</td>
<td>a_1</td>
</tr>
<tr>
<td>m_2</td>
<td>a_2</td>
</tr>
</tbody>
</table>
1. Introduction to terminal coalgebras

<table>
<thead>
<tr>
<th>screen</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>(m_1)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>(a_2)</td>
</tr>
<tr>
<td>(m_3)</td>
<td>(a_3)</td>
</tr>
</tbody>
</table>
1. Introduction to terminal coalgebras

<table>
<thead>
<tr>
<th>screen</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>a_1</td>
</tr>
<tr>
<td>m_2</td>
<td>a_2</td>
</tr>
<tr>
<td>m_3</td>
<td>a_3</td>
</tr>
<tr>
<td>m_4</td>
<td>a_4</td>
</tr>
</tbody>
</table>
1. Introduction to terminal coalgebras

<table>
<thead>
<tr>
<th>screen</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>m_1</td>
<td>a_1</td>
</tr>
<tr>
<td>m_2</td>
<td>a_2</td>
</tr>
<tr>
<td>m_3</td>
<td>a_3</td>
</tr>
<tr>
<td>m_4</td>
<td>a_4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
1. Introduction to terminal coalgebras

\[
\begin{align*}
\text{screen} & \quad \text{memory} \\
 & \quad a \\
& \quad m_1 \quad a_1 \\
& \quad m_2 \quad a_2 \\
& \quad m_3 \quad a_3 \\
& \quad m_4 \quad a_4 \\
\vdots \\
a \mapsto (m_1, m_2, m_3, m_4, \ldots)
\end{align*}
\]
2. Some theory of terminal coalgebras

Lemma (Lambek)

If \(FA \) is a terminal coalgebra for \(F \) then \(f \) is an isomorphism.
2. Some theory of terminal coalgebras

Lemma (Lambek)
2. Some theory of terminal coalgebras

Lemma (Lambek)

If \(A \) is a terminal coalgebra for \(F \)

\[
\begin{array}{c}
A \\
\downarrow f \\
FA
\end{array}
\]
2. Some theory of terminal coalgebras

Lemma (Lambek)

If A is a terminal coalgebra for F

\[
\begin{array}{ccc}
A & \xrightarrow{f} & FA \\
\end{array}
\]

then f is an isomorphism.
2. Some theory of terminal coalgebras

Theorem (Adámek)
2. Some theory of terminal coalgebras

Theorem (Adámek)

We can construct the terminal coalgebra as the limit of the following diagram:
2. Some theory of terminal coalgebras

Theorem (Adámek)

We can construct the terminal coalgebra as the limit of the following diagram:

\[
\cdots \xrightarrow{F^3!} F^3 1 \xrightarrow{F^2!} F^2 1 \xrightarrow{F!} F 1 \xrightarrow{!} 1
\]
2. Some theory of terminal coalgebras

Theorem (Adámek)

We can construct the terminal coalgebra as the limit of the following diagram:

\[\cdots \xrightarrow{F^3!} F^3 \xrightarrow{F^2!} F^2 \xrightarrow{F!} F \xrightarrow{!} 1 \]

provided there is a terminal object 1, the limit exists, \(F \) preserves it.
2. Some theory of terminal coalgebras

Example 1 revisited

Given a set M we considered the endofunctor

$$\text{Set} \xrightarrow{\times M} \text{Set}$$

$A \mapsto M \times A$
Example 1 revisited

Given a set M we considered the endofunctor

$$
\text{Set} \xrightarrow{M \times -} \text{Set} \\
A \quad \mapsto \quad M \times A
$$

We can construct a terminal coalgebra as the limit of

$$
\cdots \xrightarrow{F^3!} F^31 \xrightarrow{F^2!} F^21 \xrightarrow{F!} F1 \xrightarrow{!} 1
$$
2. Some theory of terminal coalgebras

Example 1 revisited

Given a set M we considered the endofunctor

\[
\begin{array}{rcl}
\text{Set} & \xrightarrow{M \times -} & \text{Set} \\
A & \mapsto & M \times A
\end{array}
\]

We can construct a terminal coalgebra as the limit of

\[
\cdots \rightarrow M^3 \xrightarrow{M \times !} M^2 \xrightarrow{M \times !} M \xrightarrow{!} \{0\}
\]
2. Some theory of terminal coalgebras

Example 1 revisited

Given a set M we considered the endofunctor

$$\begin{align*}
\text{Set} & \xrightarrow{\times M} \text{Set} \\
A & \mapsto M \times A
\end{align*}$$

We can construct a terminal coalgebra as the limit of

$$
\cdots \xrightarrow{M^3 \times !} M^3 \xrightarrow{M^2 \times !} M^2 \xrightarrow{M \times !} M \xrightarrow{!} 1
$$

which does indeed give infinite words in M.
2. Some theory of terminal coalgebras

Example 2 (Simpson)
2. Some theory of terminal coalgebras

Example 2 (Simpson)

There is an endofunctor

\[
\begin{array}{ccc}
\text{SymMonCat} & \longrightarrow & \text{SymMonCat} \\
\forall & \mapsto & \forall\text{-Cat}
\end{array}
\]
2. Some theory of terminal coalgebras

Example 2 (Simpson)

There is an endofunctor

\[
\text{SymMonCat} \to \text{SymMonCat}
\]

\[
\forall \to \forall\text{-Cat}
\]

The terminal coalgebra is given by
2. Some theory of terminal coalgebras

Example 2 (Simpson)

There is an endofunctor

\[
\text{SymMonCat} \longrightarrow \text{SymMonCat}
\]

\[
\forall \quad \longmapsto \quad \forall\text{-Cat}
\]

The terminal coalgebra is given by the category \(\omega\text{-Cat} \) of strict \(\omega \)-categories.
2. Some theory of terminal coalgebras

Example 2 (Simpson)

There is an endofunctor

\[
\text{SymMonCat} \longrightarrow \text{SymMonCat}
\]

\[
\mathcal{V} \mapsto \mathcal{V}\text{-Cat}
\]

The terminal coalgebra is given by the category \(\omega\text{-Cat} \) of strict \(\omega\)-categories.

We note that Lambeck’s Lemma holds:

\[
\omega\text{-Cat} \cong (\omega\text{-Cat})\text{-Cat}.
\]
2. Some theory of terminal coalgebras

Using Adámek’s construction
2. Some theory of terminal coalgebras

Using Adámek’s construction

- $F 1 \cong \text{Set}$
2. Some theory of terminal coalgebras

Using Adámek’s construction

- $F^1 \cong \text{Set}$
- $F^n 1 = n\text{-Cat}$
Using Adámek’s construction

- $F \mathbb{1} \cong \text{Set}$
- $F^n \mathbb{1} = n\text{-Cat}$

The limit diagram

$$
\cdots \xrightarrow{F^3!} F^3 \mathbb{1} \xrightarrow{F^2!} F^2 \mathbb{1} \xrightarrow{F!} F \mathbb{1} \xrightarrow{!} \mathbb{1}
$$
2. Some theory of terminal coalgebras

Using Adámek’s construction

- $F1 \cong \text{Set}$
- $F^n1 = n\text{-Cat}$

The limit diagram becomes

$$\cdots \rightarrow 2\text{-Cat} \rightarrow 1\text{-Cat} \rightarrow 0\text{-Cat} \rightarrow ! \rightarrow \mathbb{1}$$
Using Adámek’s construction

- $F1 \cong \text{Set}$
- $F^n1 = n\text{-Cat}$

The limit diagram becomes

$$\cdots \longrightarrow 2\text{-Cat} \longrightarrow 1\text{-Cat} \longrightarrow 0\text{-Cat} \longrightarrow 1$$

where each morphism here is truncation.
2. Some theory of terminal coalgebras

Idea

This gives us a way of constructing infinite versions of gadgets whose finite versions we can construct simply by induction.
2. Some theory of terminal coalgebras

Idea

This gives us a way of constructing infinite versions of gadgets whose finite versions we can construct simply by induction.

Aim

—to apply this to Trimble’s version of weak n-categories.
2. Some theory of terminal coalgebras

Problem
2. Some theory of terminal coalgebras

Problem

- a strict ω-category is built from its n-truncations, which are strict n-categories
2. Some theory of terminal coalgebras

Problem

- a strict ω-category is built from its n-truncations, which are strict n-categories
- however if we truncate a weak ω-category we do not get a weak n-category
Problem

- A strict \(\omega\)-category is built from its \(n\)-truncations, which are strict \(n\)-categories.
- However, if we truncate a weak \(\omega\)-category, we do not get a weak \(n\)-category.

We get something incoherent at dimension \(n\).
2. Some theory of terminal coalgebras

Problem

- a strict ω-category is built from its n-truncations, which are strict n-categories
- however if we truncate a weak ω-category we do not get a weak n-category

— we get something incoherent at dimension n

So we need to build weak ω-categories from

“incoherent n-categories”
3. Trimble-like weak n-categories

Trimble's idea for weak n-categories:

• enrich in $(n-1)$-Cat, and
• weaken the composition using an operad.

What does "weak" mean?
3. Trimble-like weak n-categories

Trimble’s idea for weak n-categories:
3. Trimble-like weak n-categories

Trimble’s idea for weak n-categories:

- enrich in $(n - 1)$-Cat,
3. Trimble-like weak \(n\)-categories

Trimble’s idea for weak \(n\)-categories:

- enrich in \((n - 1)\text{-Cat}\), and
3. Trimble-like weak n-categories

Trimble’s idea for weak n-categories:

- enrich in $(n - 1)$-Cat, and
- weaken the composition using an operad.
3. Trimble-like weak n-categories

Trimble’s idea for weak n-categories:

- enrich in $(n - 1)$-Cat, and
- weaken the composition using an operad.

What does “weak” mean?
3. Trimble-like weak n-categories

Given a diagram

\[
\begin{array}{cccccccc}
 a_0 & \xrightarrow{f_1} & a_1 & \xrightarrow{f_2} & \cdots & \xrightarrow{} & a_{k-1} & \xrightarrow{f_k} & a_k \\
\end{array}
\]
3. Trimble-like weak n-categories

Given a diagram

$$a_0 \xrightarrow{f_1} a_1 \xrightarrow{f_2} \cdots \xrightarrow{} a_{k-1} \xrightarrow{f_k} a_k$$

we have
3. Trimble-like weak n-categories

Given a diagram

\[
\begin{array}{c}
 a_0 \xrightarrow{f_1} a_1 \xrightarrow{f_2} \cdots \xrightarrow{f_k} a_{k-1} \xrightarrow{f_k} a_k
\end{array}
\]

we have many composites.
3. Trimble-like weak n-categories

Given a diagram

\[
a_0 \xrightarrow{f_1} a_1 \xrightarrow{f_2} \cdots \rightarrow a_{k-1} \xrightarrow{f_k} a_k
\]

we have many composites.

Given a diagram
3. Trimble-like weak n-categories

Given a diagram

$$a_0 \xrightarrow{f_1} a_1 \xrightarrow{f_2} \ldots \xrightarrow{} a_{k-1} \xrightarrow{f_k} a_k$$

we have many composites.

Given a diagram

we have
3. Trimble-like weak n-categories

Given a diagram

$$a_0 \xrightarrow{f_1} a_1 \xrightarrow{f_2} \cdots \xrightarrow{} a_{k-1} \xrightarrow{f_k} a_k$$

we have many composites.

Given a diagram

we have very many composites.
3. Trimble-like weak n-categories
3. Trimble-like weak n-categories

Idea
3. Trimble-like weak n-categories

Idea

Fix an operad P in a symmetric monoidal category \mathcal{V}.
3. Trimble-like weak n-categories

Idea

Fix an operad P in a symmetric monoidal category \mathcal{V}.

A (\mathcal{V}, P)-category
3. Trimble-like weak \(n \)-categories

Idea

Fix an operad \(P \) in a symmetric monoidal category \(\mathcal{V} \).

A \((\mathcal{V}, P)\)-category is defined to be a cross between
3. Trimble-like weak n-categories

Idea

Fix an operad P in a symmetric monoidal category \mathcal{V}.

A (\mathcal{V}, P)-category is defined to be a cross between

- a \mathcal{V}-category, and
3. Trimble-like weak n-categories

Idea

Fix an operad P in a symmetric monoidal category \mathcal{V}.

A (\mathcal{V}, P)-category is defined to be a cross between

- a \mathcal{V}-category, and
- a P-algebra.
3. Trimble-like weak n-categories

Idea

Fix an operad P in a symmetric monoidal category \mathcal{V}.

A (\mathcal{V}, P)-category is defined to be a cross between

- a \mathcal{V}-category, and
- a P-algebra.

—The underlying data is a \mathcal{V}-graph
3. Trimble-like weak n-categories

Idea

Fix an operad P in a symmetric monoidal category \mathcal{V}.

A (\mathcal{V}, P)-category is defined to be a cross between

- a \mathcal{V}-category, and
- a P-algebra.

—The underlying data is a \mathcal{V}-graph but composition is like a P-algebra action.
3. Trimble-like weak n-categories

- Composition in an ordinary \mathcal{V}-category:

$$A(a_{k-1}, a_k) \times \cdots \times A(a_0, a_1) \longrightarrow A(a_0, a_k)$$
3. Trimble-like weak n-categories

- Composition in an ordinary \mathcal{V}-category:
 \[
 A(a_{k-1}, a_k) \times \cdots \times A(a_0, a_1) \longrightarrow A(a_0, a_k)
 \]

- P-algebra action:
 \[
 P(k) \times A \times \cdots \times A \longrightarrow A
 \]
3. Trimble-like weak n-categories

- Composition in an ordinary \mathcal{V}-category:
 \[A(a_{k-1}, a_k) \times \cdots \times A(a_0, a_1) \longrightarrow A(a_0, a_k) \]

- P-algebra action:
 \[P(k) \times A \times \cdots \times A \longrightarrow A \]

- Composition in a (\mathcal{V}, P)-category:
 \[P(k) \times A(a_{k-1}, a_k) \times \cdots \times A(a_0, a_1) \longrightarrow A(a_0, a_k) \]
3. Trimble-like weak n-categories

We can then build weak n-categories:
3. Trimble-like weak n-categories

We can then build weak n-categories:

- 0-$\text{Cat} := \text{Set}$
3. Trimble-like weak n-categories

We can then build weak n-categories:

- $0\text{-Cat} := \text{Set}$
- $(n + 1)\text{-Cat} := (n\text{-Cat}, P_n)\text{-Cat}$
3. Trimble-like weak n-categories

We can then build weak n-categories:

- $0\text{-Cat} := \text{Set}$
- $(n + 1)\text{-Cat} := (n\text{-Cat}, P_n)\text{-Cat}$

But what operads P_n are we going to use?
3. Trimble-like weak n-categories

Trimble’s method
3. Trimble-like weak n-categories

Trimble’s method

- start with just one operad $E \in \text{Top}$
3. Trimble-like weak n-categories

Trimble’s method

- start with just one operad $E \in \text{Top}$
- take each $P_n(k)$ to be the fundamental n-groupoid of $E(k)$
3. Trimble-like weak n-categories

Trimble’s method

- start with just one operad $E \in \text{Top}$
- take each $P_n(k)$ to be the fundamental n-groupoid of $E(k)$

So instead of picking one operad P_n for each n, we just have to construct for each n

$$\Pi_n : \text{Top} \longrightarrow n\text{-Cat}$$
3. Trimble-like weak n-categories

Trimble’s method

- start with just one operad $E \in \text{Top}$
- take each $P_n(k)$ to be the fundamental n-groupoid of $E(k)$

So instead of picking one operad P_n for each n, we just have to construct for each n

$$\Pi_n : \text{Top} \longrightarrow n\text{-Cat}$$

and this turns out to be easy by induction.
3. Trimble-like weak n-categories

Induction step for Π
3. Trimble-like weak n-categories

Induction step for Π

Given a finite product preserving functor

$$\Pi : \mathbf{Top} \longrightarrow \mathcal{V}$$
3. Trimble-like weak n-categories

Induction step for Π

Given a finite product preserving functor

$$\Pi : \text{Top} \longrightarrow \mathcal{V}$$

we induce a functor

$$\Pi^+ : \text{Top} \longrightarrow (\mathcal{V}, \Pi E)\text{-Cat}$$
3. Trimble-like weak n-categories

Induction step for Π

Given a finite product preserving functor

$$\Pi : \text{Top} \longrightarrow \mathcal{V}$$

we induce a functor

$$\Pi^+ : \text{Top} \longrightarrow (\mathcal{V}, \Pi E)\text{-Cat}$$

“do Π locally on the hom objects”
3. Trimble-like weak n-categories

Trimble n-categories by induction
3. Trimble-like weak n-categories

Trimble n-categories by induction

- 0-$\text{Cat} = \text{Set}$
3. Trimble-like weak n-categories

Trimble n-categories by induction

- 0-$\text{Cat} = \text{Set}$
 \[\Pi_0 : \text{Top} \longrightarrow \text{Set} \]
3. Trimble-like weak n-categories

Trimble n-categories by induction

- 0-$\text{Cat} = \text{Set}$
 \[\Pi_0 : \text{Top} \rightarrow \text{Set} \]
 \[X \mapsto \text{the set of connected components of } X \]
3. Trimble-like weak n-categories

Trimble n-categories by induction

- 0-Cat = Set
 \[\Pi_0 : \text{Top} \rightarrow \text{Set} \]
 \[X \mapsto \text{the set of connected components of } X \]

- $(n + 1)$-Cat = $(n$-Cat, $\Pi_nE)$-Cat
3. Trimble-like weak n-categories

Trimble n-categories by induction

- 0-$\text{Cat} = \text{Set}$

 $\Pi_0 : \text{Top} \rightarrow \text{Set}$

 $X \mapsto$ the set of connected components of X

- $(n + 1)$-$\text{Cat} = (n$-$\text{Cat}, \Pi_n E)$-Cat

 $\Pi_{n+1} = \Pi_n^+$
3. Trimble-like weak n-categories

Incoherent

Trimble n-categories by induction

- 0-$\text{iCat} = \text{Set}$

 \[\Pi_0 : \text{Top} \longrightarrow \text{Set} \]

 \[X \mapsto \text{the set of connected components of} \ X \]

- $(n + 1)$-$\text{iCat} = (n$-$\text{iCat}, \Pi_n E)$-Cat

 \[\Pi_{n+1} = \Pi_n^+ \]
3. Trimble-like weak n-categories

Incoherent

Trimble n-categories by induction

- $0\text{-iCat} = \text{Set}$
 \[
 \Pi_0 : \text{Top} \longrightarrow \text{Set} \quad \text{points}
 \]
 \[
 X \longmapsto \text{the set of connected components of } X
 \]

- $(n+1)\text{-iCat} = (n\text{-iCat}, \Pi_n E)\text{-Cat}$
 \[
 \Pi_{n+1} = \Pi_n^+
 \]
4. Trimble-like weak ω-categories
4. Trimble-like weak ω-categories

For ω-categories we take the following limit

$$
\cdots \longrightarrow 2\text{-iCat} \longrightarrow 1\text{-iCat} \longrightarrow 0\text{-iCat} \overset{!}{\longrightarrow} 1
$$
4. Trimble-like weak ω-categories

For ω-categories we take the following limit

$$
\cdots \rightarrow 2\text{-iCat} \rightarrow 1\text{-iCat} \rightarrow 0\text{-iCat} \rightarrow \mathbb{1}
$$

where each morphism is truncation.
4. Trimble-like weak ω-categories

For ω-categories we take the following limit

$$
\cdots \rightarrow 2\text{-iCat} \rightarrow 1\text{-iCat} \rightarrow 0\text{-iCat} \rightarrow \mathbb{1}
$$

where each morphism is truncation.

Finally: can we get this as
4. Trimble-like weak ω-categories

For ω-categories we take the following limit

$$\cdots \rightarrow 2\text{-iCat} \rightarrow 1\text{-iCat} \rightarrow 0\text{-iCat} \rightarrow \mathbb{1}$$

where each morphism is truncation.

Finally: can we get this as

$$\cdots \xrightarrow{F^3!} F^3\mathbb{1} \xrightarrow{F^2!} F^2\mathbb{1} \xrightarrow{F!} F\mathbb{1} \rightarrow \mathbb{1}$$
4. Trimble-like weak ω-categories

For ω-categories we take the following limit

$$\cdots \longrightarrow 2\text{-iCat} \longrightarrow 1\text{-iCat} \longrightarrow 0\text{-iCat} \longrightarrow 1$$

where each morphism is truncation.

Finally: can we get this as

$$\cdots \xrightarrow{F^3!} F^3 \mathbb{1} \xrightarrow{F^2!} F^2 \mathbb{1} \xrightarrow{F!} F \mathbb{1} \longrightarrow 1$$
4. Trimble-like weak ω-categories

We want an endofunctor
4. Trimble-like weak ω-categories

We want an endofunctor

$$F : (\mathcal{V}, \Pi)$$
4. Trimble-like weak ω-categories

We want an endofunctor

$$F : (\mathcal{V}, \Pi) \mapsto ((\mathcal{V}, \Pi E)\text{-}\text{Cat}, \Pi^+)$$
4. Trimble-like weak ω-categories

We want an endofunctor

$$F : (\mathcal{V}, \Pi) \mapsto (\mathcal{V}, \Pi E)\text{-Cat}, \Pi^+)$$

so we use the obvious category with these objects.
We want an endofunctor

\[F : (\mathcal{V}, \Pi) \mapsto ((\mathcal{V}, \Pi E)\text{-Cat}, \Pi^+) \]

so we use the obvious category with these objects.

Objects are pairs \((\mathcal{V}, \Pi)\) where

- \(\mathcal{V}\) is a category with finite products
- \(\Pi\) is a functor \(\text{Top} \rightarrow \mathcal{V}\) preserving finite products.

Morphisms are the obvious commuting triangles.
4. Trimble-like weak ω-categories

Then the limit
4. Trimble-like weak ω-categories

Then the limit

$$\cdots \xrightarrow{F^3!} F^3 \mathbb{1} \xrightarrow{F^2!} F^2 \mathbb{1} \xrightarrow{F!} F \mathbb{1} \xrightarrow{!} \mathbb{1}$$
4. Trimble-like weak ω-categories

Then the limit

$$\cdots \xrightarrow{F^3!} F^3 \mathbb{1} \xrightarrow{F^2!} F^2 \mathbb{1} \xrightarrow{F!} F \mathbb{1} \xrightarrow{!} \mathbb{1}$$

becomes
4. Trimble-like weak ω-categories

Then the limit

$$
\cdots \xrightarrow{F^3!} F^31 \xrightarrow{F^2!} F^21 \xrightarrow{F!} F1 \xrightarrow{!} 1
$$

becomes

$$
\cdots \rightarrow 2\text{-iCat} \rightarrow 1\text{-iCat} \rightarrow 0\text{-iCat} \xrightarrow{!} 1
$$
4. Trimble-like weak ω-categories

Then the limit

$$\cdots \xrightarrow{F^3!} F^3 \mathbb{1} \xrightarrow{F^2!} F^2 \mathbb{1} \xrightarrow{F!} F \mathbb{1} \xrightarrow{!} \mathbb{1}$$

becomes

$$\cdots \longrightarrow 2\text{-}i\text{Cat} \longrightarrow 1\text{-}i\text{Cat} \longrightarrow 0\text{-}i\text{Cat} \xrightarrow{!} \mathbb{1}$$

The terminal coalgebra is indeed the limit we were looking for.