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1. Introduction to terminal coalgebras

A coalgebra for an endofunctor F : C −→ C

consists of

• an object A ∈ C

• a morphism

FA

A

��

satisfying no axioms.
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1. Introduction to terminal coalgebras

Coalgebras for F form a category with the
obvious morphisms

FA

A B

FB

h //

Fh
//

�� ��

so we can look for terminal coalgebras.
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1. Introduction to terminal coalgebras

Example 1

Given a set M we have an endofunctor

Set
M×−→ Set

A 7→ M × A

The terminal coalgebra is given by

the set MN of “infinite words” in M

(m1, m2, m3, . . .)
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1. Introduction to terminal coalgebras

The structure map of this coalgebra:

M ×MN

MN

��

is a canonical isomorphism.
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1. Introduction to terminal coalgebras

To see that this is terminal:

Given any coalgebra

M × A

A

��

we need to produce an infinite word in M .
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1. Introduction to terminal coalgebras

screen memory

a

m1 a1

m2 a2

m3 a3

m4 a4

...

a 7→
(
m1, m2, m3, m4, . . .

)
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2. Some theory of terminal coalgebras

Lemma (Lambek)

If

FA

A

f
��

is a terminal coalgebra for F

then f is an isomorphism.
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2. Some theory of terminal coalgebras

Theorem (Adámek)

We can construct the terminal coalgebra as the
limit of the following diagram:

1F1F 21F 31· · · ! //F ! //F 2! //F 3! //

provided there is a terminal object 1, the limit exists, F preserves it
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2. Some theory of terminal coalgebras

Example 1 revisited

Given a set M we considered the endofunctor

Set
M×−→ Set

A 7→ M × A
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Given a set M we considered the endofunctor

Set
M×−→ Set

A 7→ M × A

We can construct a terminal coalgebra

as the limit of

1MM2M3· · · ! //M×! //M2×! //M3×! //

which does indeed give infinite words in M .
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2. Some theory of terminal coalgebras

Example 2 (Simpson)

There is an endofunctor

SymMonCat −→ SymMonCat

V 7→ V-Cat

The terminal coalgebra is given by

the category ω-Cat of strict ω-categories.

We note that Lambek’s Lemma holds:

ω-Cat ∼= (ω-Cat)-Cat.
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• F1 ∼= Set

• F n
1 = n-Cat
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2. Some theory of terminal coalgebras

Using Adámek’s construction

• F1 ∼= Set

• F n
1 = n-Cat

The limit diagram becomes

10-Cat1-Cat2-Cat· · · ! ////////
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2. Some theory of terminal coalgebras

Using Adámek’s construction

• F1 ∼= Set

• F n
1 = n-Cat

The limit diagram becomes

10-Cat1-Cat2-Cat· · · ! ////////

where each morphism here is truncation.

13.



2. Some theory of terminal coalgebras

Idea

This gives us a way of constructing infinite
versions of gadgets whose finite versions we can
construct simply by induction.

Aim

—to apply this to Trimble’s version of weak
n-categories.

14.
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2. Some theory of terminal coalgebras

Problem

• a strict ω-category is built from its
n-truncations, which are strict n-categories

• however if we truncate a weak ω-category we
do not get a weak n-category

—we get something incoherent at dimension n

So we need to build weak ω-categories from

“incoherent n-categories”

15.
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3. Trimble-like weak n-categories

Trimble’s idea for weak n-categories:

• enrich in (n− 1)-Cat, and

• weaken the composition using an operad.

What does “weak” mean?
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3. Trimble-like weak n-categories

Given a diagram

a0 a1 . . . ak−1 ak
f1 // f2 // // fk //

we have many composites.

Given a diagram

· ·
��
BB
��
JJ LL��

��

��
��

· ·//
��
DD

��
��
· ·

��
DD�� · ·//

we have very many composites.
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3. Trimble-like weak n-categories

Idea

Fix an operad P in a symmetric monoidal
category V.

A (V, P )-category is defined to be a cross between

• a V-category, and

• a P -algebra.

—The underlying data is a V-graph

but composition is like a P -algebra action.

18.
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3. Trimble-like weak n-categories

• Composition in an ordinary V-category:

A(ak−1, ak)× · · · × A(a0, a1) −→ A(a0, ak)

• P -algebra action:

P (k)× A× · · · × A −→ A

• Composition in a (V, P )-category:

P (k)×A(ak−1, ak)×· · ·×A(a0, a1) −→ A(a0, ak)

19.
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3. Trimble-like weak n-categories

We can then build weak n-categories:

• 0-Cat := Set

• (n + 1)-Cat := (n-Cat, Pn)-Cat

But what operads Pn are we going to use?

20.
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3. Trimble-like weak n-categories

Trimble’s method

• start with just one operad E ∈ Top

• take each Pn(k) to be the fundamental
n-groupoid of E(k)

So instead of picking one operad Pn for each n,
we just have to construct for each n

Πn : Top −→ n-Cat

and this turns out to be easy by induction.

21.
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3. Trimble-like weak n-categories

Induction step for Π

Given a finite product preserving functor

Π : Top −→ V

we induce a functor

Π+ : Top −→ (V, ΠE)-Cat

“do Π locally on the hom objects”

22.
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3. Trimble-like weak n-categories

Trimble n-categories by induction

• 0-Cat = Set

Π0 : Top −→ Set
X 7→ the set of connected

components of X

• (n + 1)-Cat =
(
n-Cat, ΠnE

)
-Cat

Πn+1 = Π+
n

23.
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4. Trimble-like weak ω-categories

For ω-categories we take the following limit

10-iCat1-iCat2-iCat· · · ! ////////

where each morphism is truncation.

Finally: can we get this as

1F1F 2
1F 3

1· · · ! //F ! //F 2! //F 3! //

?
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4. Trimble-like weak ω-categories

We want an endofunctor

F : (V, Π) 7→
(
(V, ΠE)-Cat, Π+)

so we use the obvious category with these objects.

Objects are pairs (V, Π) where
• V is a category with finite products
• Π is a functor Top −→ V preserving finite products.

Morphisms are the obvious commuting triangles.
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4. Trimble-like weak ω-categories

Then the limit

1F1F 2
1F 3

1· · · ! //F ! //F 2! //F 3! //

becomes

10-iCat1-iCat2-iCat· · · ! ////////

The terminal coalgebra is indeed the limit we were

looking for.
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