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Theorems from Topos Theory

Theorem
The category of coalgebras for a finite-limit preserving
comonad on a topos is again a topos.

Theorem
The category of algebras for a finite-limit preserving
idempotent monad on a topos is again a topos.

Theorem
The full subcategory of fixed points of a finite-limit preserving
idempotent endofunctor on a topos is again a topos.
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Diads

A distributive diad on a category C is a functor T : C // C,
equipped with natural transformations α : T // T 2 and
β : T 2 // T such that the following diagrams commute:

T 2
β

// T

T

α

OO

1

>>}}}}}}}}

T
α //

α

��

T 2

Tα
��

T 2
αT

// T 3

T 3
βT //

Tβ
��

T 2

β

��

T 2
β

// T

T 2
αT //

β

��

T 3

Tβ
��

T α
// T 2
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Examples

For a comonad (T , ν, ε), (T , ν, εT ) is a distributive diad.

For a monad (T , η, µ), (T , ηT , µ) is a distributive diad if and
only if the monad is idempotent.
Any idempotent functor is a distributive diad.
For a monad (T , η, µ), (T , Tη, µ) is a distributive diad.
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Dialgebras

A distributive dialgebra for the distributive diad (T , α, β) is an

object X with morphisms X
φ

//TX
θ

oo such that the following

diagrams commute:

TX
θ // X

X

φ

OO

1X

==||||||||

X
φ

//

φ

��

TX

Tφ
��

TX αX
// T 2X

T 2X
βX //

Tθ
��

TX

θ
��

TX
θ

// X

TX
αX //

θ
��

T 2X

Tθ
��

X
φ

// TX
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Examples of Dialgebras

For a comonad (T , ν, ε), distributive dialgebras for (T , ν, εT )
are coalgebras for (T , ν, ε).

For an idempotent diad, the dialgebras are exactly fixed
points of T up to isomorphism.
For a monad (T , η, µ), where T is faithful, distributive
dialgebras for (T , Tη, µ) are coalgebras for the comonad
induced on the category of algebras for (T , η, µ).
For any distributive diad (T , α, β) and any object X , there is
a free dialgebra (TX , αX , βX ).
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Dialgebra Homomorphisms

A dialgebra homomorphism from (X , φ, θ) to (Y , π, ρ) is the

obvious thing – namely a morphism X f // Y such that

TX
Tf //

θ
��

TY
ρ

��

X
f

// Y

and
TX

Tf // TY

X

φ

OO

f
// Y

π

OO

commute.
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Dialgebras

Examples of Dialgebra Homomorphisms

For the diad (T , ν, εT ) from a comonad, dialgebra
homomorphisms are exactly coalgebra homomorphisms.

For the diad (T , ηT , µ) from a monad, dialgebra
homomorphisms are exactly algebra homomorphisms.

For any objects X and Y , and any morphism X f // Y , Tf
is a dialgebra homomorphism between the free dialgebras
on X and Y .
For any distributive dialgebra (X , φ, θ), φ is a dialgebra
homomorphism from (X , φ, θ) to the free dialgebra
(TX , αX , βX ).
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Main Theorem

Theorem
The category of distributive dialgebras for a finite-limit
preserving distributive diad on a topos is again a topos.
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Limits

The terminal object is just the dialgebra (1, 1, 1).

The product of (X , φ, θ) and (Y , π, ρ) is
(X × Y , φ× π, θ × ρ).
The equaliser of dialgebra maps f and g can be given a
distributive dialgebra structure using the universal property
of equalisers and the fact that T preserves equalisers:
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Equalisers

TE
Te // TX

Tf //

Tg
// TY

E e
// X g

//

f //
Y
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TE
Te // TX

Tf //

Tg
// TY

E e
//

ζ

OO
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Equalisers

TE
Te //

ξ
��

TX
Tf //

Tg
//

θ
��

TY
ρ

��

E e
// X g

//

f //
Y
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Exponentials

The exponential in the category of dialgebras is a subobject of
T (X Y ).

Given Z f // T (X Y ), we define Z × Y
g

// X by

g = Z × Y f×π
// T (X Y )× TY

T (ev)
// TX θ // X

Given a dialgebra homomorphism Z × Y
g

// X , we

define Z f // T (X Y ) by

f = Z
ψ

// TZ
T (g)

// T (X Y )
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Given dialgebras (X , φ, θ) and (Y , π, ρ):

We form dialgebra homomorphisms T (X Y )
T (φY )

// T (TX Y ) and

T (X Y )
αXY

// T 2(X Y )
T (ε)

// T (TX TY )
T (TXπ)

// T (TX Y ), where ε is
the exponential comparison map T (X Y ) // TX TY .

The equaliser of these two homomorphisms is the exponential
in the category of dialgebras.
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Subobject Classifier

Since (TΩ, αΩ, βΩ) is a distributive dialgebra, αΩ is a dialgebra
homomorphism.

We let TΩ
τ // Ω be the classifying map of T (>). Now T τ is

also a dialgbra homomorphism.
The subobject classifier in the category of distributive
dialgebras is the equaliser of (T τ)αΩ and the identity on TΩ.
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Given a monomorphism Y // m // X in the category of dialgebras,
its classifying map is the factorisation of T (χm)π through e.

Y
��

m
��

ρ
// TY //

��

Tm
��

1
��

T (>)
��

X π
// TX

T (χm)
// TΩ

X
π //

π

��

TX
T (χm)

''OOOOOOOOOOOOO

Tπ
��

TX
αX //

T (χm)

��

T 2X
T (χTm)

//

T 2(χm)
��

TΩ

TΩ αΩ

// T 2Ω

Tτ

77ooooooooooooo
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