Diads and their Application to Topoi

Toby Kenney

Mathematics, Dalhousie University, Halifax, Canada

CT2008 26-06-2008

Toby Kenney Diads and their Application to Topoi

イロト 不得 とくほと くほとう

3

Theorems from Topos Theory

Toby Kenney Diads and their Application to Topoi

ヘロト 人間 とくほとくほとう

Theorems from Topos Theory

Theorem

The category of coalgebras for a finite-limit preserving comonad on a topos is again a topos.

ヘロト ヘアト ヘビト ヘビト

ъ

Theorems from Topos Theory

Theorem

The category of coalgebras for a finite-limit preserving comonad on a topos is again a topos.

Theorem

The category of algebras for a finite-limit preserving **idempotent** monad on a topos is again a topos.

イロト イ理ト イヨト イヨト

Theorems from Topos Theory

Theorem

The category of coalgebras for a finite-limit preserving comonad on a topos is again a topos.

Theorem

The category of algebras for a finite-limit preserving **idempotent** monad on a topos is again a topos.

Theorem

The full subcategory of fixed points of a finite-limit preserving idempotent endofunctor on a topos is again a topos.

イロン 不得と 不良と 不良と

Diads Dialgebras

Diads

A *distributive diad* on a category C is a functor $T : C \longrightarrow C$, equipped with natural transformations $\alpha : T \longrightarrow T^2$ and $\beta : T^2 \longrightarrow T$ such that the following diagrams commute:

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Diads Dialgebras

Examples

• For a comonad (T, ν, ϵ) , (T, ν, ϵ_T) is a distributive diad.

Toby Kenney Diads and their Application to Topoi

Diads Dialgebras

Examples

- For a comonad (T, ν, ϵ) , (T, ν, ϵ_T) is a distributive diad.
- For a monad (*T*, η, μ), (*T*, η_T, μ) is a distributive diad if and only if the monad is idempotent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Diads Dialgebras

Examples

- For a comonad (T, ν, ϵ) , (T, ν, ϵ_T) is a distributive diad.
- For a monad (*T*, η, μ), (*T*, η_T, μ) is a distributive diad if and only if the monad is idempotent.
- Any idempotent functor is a distributive diad.

イロト イポト イヨト イヨト 一臣

Diads Dialgebras

Examples

- For a comonad (T, ν, ϵ) , (T, ν, ϵ_T) is a distributive diad.
- For a monad (*T*, η, μ), (*T*, η_T, μ) is a distributive diad if and only if the monad is idempotent.
- Any idempotent functor is a distributive diad.
- For a monad (T, η, μ) , $(T, T\eta, \mu)$ is a distributive diad.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Dialgebras

A *distributive dialgebra* for the distributive diad (T, α, β) is an object X with morphisms $X \xleftarrow{\phi}{\theta} TX$ such that the following diagrams commute:

Diads Dialgebras

Examples of Dialgebras

For a comonad (*T*, ν, ε), distributive dialgebras for (*T*, ν, ε_T) are coalgebras for (*T*, ν, ε).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Diads Dialgebras

Examples of Dialgebras

- For a comonad (*T*, ν, ε), distributive dialgebras for (*T*, ν, ε_T) are coalgebras for (*T*, ν, ε).
- For an idempotent diad, the dialgebras are exactly fixed points of *T* up to isomorphism.

イロン 不得 とくほ とくほ とうほ

Diads Dialgebras

Examples of Dialgebras

- For a comonad (*T*, ν, ε), distributive dialgebras for (*T*, ν, ε_T) are coalgebras for (*T*, ν, ε).
- For an idempotent diad, the dialgebras are exactly fixed points of *T* up to isomorphism.
- For a monad (T, η, μ) , where *T* is faithful, distributive dialgebras for $(T, T\eta, \mu)$ are coalgebras for the comonad induced on the category of algebras for (T, η, μ) .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Diads Dialgebras

Examples of Dialgebras

- For a comonad (*T*, ν, ε), distributive dialgebras for (*T*, ν, ε_T) are coalgebras for (*T*, ν, ε).
- For an idempotent diad, the dialgebras are exactly fixed points of *T* up to isomorphism.
- For a monad (*T*, η, μ), where *T* is faithful, distributive dialgebras for (*T*, *T*η, μ) are coalgebras for the comonad induced on the category of algebras for (*T*, η, μ).
- For any distributive diad (*T*, α, β) and any object *X*, there is a free dialgebra (*TX*, α_X, β_X).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Diads Dialgebras

Dialgebra Homomorphisms

A dialgebra homomorphism from (X, ϕ, θ) to (Y, π, ρ) is the obvious thing – namely a morphism $X \xrightarrow{f} Y$ such that

commute.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Diads Dialgebras

Examples of Dialgebra Homomorphisms

 For the diad (*T*, ν, ε_T) from a comonad, dialgebra homomorphisms are exactly coalgebra homomorphisms.

ヘロト ヘアト ヘビト ヘビト

æ

Diads Dialgebras

Examples of Dialgebra Homomorphisms

- For the diad (*T*, ν, ε_T) from a comonad, dialgebra homomorphisms are exactly coalgebra homomorphisms.
- For the diad (*T*, η_T, μ) from a monad, dialgebra homomorphisms are exactly algebra homomorphisms.

イロン 不得 とくほ とくほ とう

Diads Dialgebras

Examples of Dialgebra Homomorphisms

- For the diad (*T*, ν, ε_T) from a comonad, dialgebra homomorphisms are exactly coalgebra homomorphisms.
- For the diad (*T*, η_T, μ) from a monad, dialgebra homomorphisms are exactly algebra homomorphisms.
- For any objects X and Y, and any morphism $X \xrightarrow{f} Y$, Tf is a dialgebra homomorphism between the free dialgebras on X and Y.

・ロト ・ 理 ト ・ ヨ ト ・

Diads Dialgebras

Examples of Dialgebra Homomorphisms

- For the diad (*T*, ν, ε_T) from a comonad, dialgebra homomorphisms are exactly coalgebra homomorphisms.
- For the diad (*T*, η_T, μ) from a monad, dialgebra homomorphisms are exactly algebra homomorphisms.
- For any objects X and Y, and any morphism $X \xrightarrow{f} Y$, Tf is a dialgebra homomorphism between the free dialgebras on X and Y.
- For any distributive dialgebra (X, φ, θ), φ is a dialgebra homomorphism from (X, φ, θ) to the free dialgebra (TX, α_X, β_X).

イロト 不得 とくほ とくほ とうほ

Limits Exponentials Subobject Classifier

Main Theorem

Theorem

The category of distributive dialgebras for a finite-limit preserving distributive diad on a topos is again a topos.

Toby Kenney Diads and their Application to Topoi

イロト 不得 とくほと くほとう

3

Limits Exponentials Subobject Classifier

Limits

• The terminal object is just the dialgebra (1, 1, 1).

ヘロト 人間 とくほとくほとう

₹ 990

Limits Exponentials Subobject Classifier

Limits

- The terminal object is just the dialgebra (1, 1, 1).
- The product of (X, φ, θ) and (Y, π, ρ) is (X × Y, φ × π, θ × ρ).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Limits Exponentials Subobject Classifier

Limits

- The terminal object is just the dialgebra (1, 1, 1).
- The product of (X, φ, θ) and (Y, π, ρ) is (X × Y, φ × π, θ × ρ).
- The equaliser of dialgebra maps *f* and *g* can be given a distributive dialgebra structure using the universal property of equalisers and the fact that *T* preserves equalisers:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Limits Exponentials Subobject Classifier

Equalisers

Toby Kenney Diads and their Application to Topoi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

Limits Exponentials Subobject Classifier

Equalisers

Toby Kenney Diads and their Application to Topoi

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Limits Exponentials Subobject Classifier

Equalisers

Toby Kenney Diads and their Application to Topoi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

Limits Exponentials Subobject Classifier

Equalisers

Toby Kenney Diads and their Application to Topoi

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Limits Exponentials Subobject Classifier

Equalisers

Toby Kenney Diads and their Application to Topoi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

Introduction Limits Diads & Dialgebras Exponentials Application to Topoi Subobject Classi

Exponentials

The exponential in the category of dialgebras is a subobject of $T(X^{\gamma})$.

• Given $Z \xrightarrow{f} T(X^Y)$, we define $Z \times Y \xrightarrow{g} X$ by

$$g = Z \times Y \xrightarrow{f \times \pi} T(X^{Y}) \times TY \xrightarrow{T(\text{ev})} TX \xrightarrow{\theta} X$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction Limits Diads & Dialgebras Exponentials Application to Topoi Subobject Classid

Exponentials

The exponential in the category of dialgebras is a subobject of $T(X^{\gamma})$.

• Given
$$Z \xrightarrow{f} T(X^Y)$$
, we define $Z \times Y \xrightarrow{g} X$ by

$$g = Z \times Y \xrightarrow{f \times \pi} T(X^{Y}) \times TY \xrightarrow{T(\text{ev})} TX \xrightarrow{\theta} X$$

• Given a dialgebra homomorphism $Z \times Y \xrightarrow{g} X$, we define $Z \xrightarrow{f} T(X^Y)$ by

$$f = Z \xrightarrow{\psi} TZ \xrightarrow{T(\overline{g})} T(X^{Y})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction Limits Diads & Dialgebras Exponentials Application to Topoi Subobject Clas

```
Given dialgebras (X, \phi, \theta) and (Y, \pi, \rho):
```

Toby Kenney Diads and their Application to Topoi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へで

Given dialgebras (X, ϕ, θ) and (Y, π, ρ) :

We form dialgebra homomorphisms $T(X^{Y}) \xrightarrow{T(\phi^{Y})} T(TX^{Y})$ and $T(X^{Y}) \xrightarrow{\alpha_{X^{Y}}} T^{2}(X^{Y}) \xrightarrow{T(\epsilon)} T(TX^{TY}) \xrightarrow{T(TX^{\pi})} T(TX^{Y})$, where ϵ is the exponential comparison map $T(X^Y) \longrightarrow TX^{TY}$.

イロン 不得 とくほ とくほ とう

1

Given dialgebras (X, ϕ, θ) and (Y, π, ρ) :

We form dialgebra homomorphisms $T(X^{Y}) \xrightarrow{T(\phi^{Y})} T(TX^{Y})$ and $T(X^{Y}) \xrightarrow{\alpha_{X^{Y}}} T^{2}(X^{Y}) \xrightarrow{T(\epsilon)} T(TX^{TY}) \xrightarrow{T(TX^{\pi})} T(TX^{Y})$, where ϵ is the exponential comparison map $T(X^{Y}) \longrightarrow TX^{TY}$.

The equaliser of these two homomorphisms is the exponential in the category of dialgebras.

ヘロト 人間 とくほとくほとう

Limits Exponentials Subobject Classifier

Subobject Classifier

Since $(T\Omega, \alpha_{\Omega}, \beta_{\Omega})$ is a distributive dialgebra, α_{Ω} is a dialgebra homomorphism.

イロト 不得 とくほ とくほ とう

3

Limits Exponentials Subobject Classifier

Subobject Classifier

Since $(T\Omega, \alpha_{\Omega}, \beta_{\Omega})$ is a distributive dialgebra, α_{Ω} is a dialgebra homomorphism.

We let $T\Omega \xrightarrow{\tau} \Omega$ be the classifying map of $T(\top)$. Now $T\tau$ is also a dialgbra homomorphism.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Limits Exponentials Subobject Classifier

Subobject Classifier

Since $(T\Omega, \alpha_{\Omega}, \beta_{\Omega})$ is a distributive dialgebra, α_{Ω} is a dialgebra homomorphism.

We let $T\Omega \xrightarrow{\tau} \Omega$ be the classifying map of $T(\top)$. Now $T\tau$ is also a dialgbra homomorphism.

The subobject classifier in the category of distributive dialgebras is the equaliser of $(T\tau)\alpha_{\Omega}$ and the identity on $T\Omega$.

イロン 不得 とくほ とくほ とう

Introduction Limits Diads & Dialgebras Exponentials Application to Topoi Subobject Classifier

Given a monomorphism $Y \xrightarrow{m} X$ in the category of dialgebras, its classifying map is the factorisation of $T(\chi_m)\pi$ through *e*.

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()