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The context

There are many situations in which one has two types of morphism
between the same object.

object “good” morphism “bad” morphism

monoidal category strict monoidal functor monoidal functor
monoidal category strict monoidal functor strong monoidal functor

category functor profunctor
ring homomorphism bimodule
set function partial function

topos geometric morphism left exact functor
distributive category distributive functor sum-preserving functor

I want to describe a categorical structure with which to study such
examples.
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What’s so bad about bad morphisms?

I When working with monoidal categories one is usually
interested in the monoidal functors or strong monoidal
functors, not the strict ones

I e.g. a monoidal functor 1→ V is precisely a monoid in V
I e.g. the free functor F : Set→ Ab is strong monoidal, the

forgetful functor U : Ab→ Set is monoidal

I The category of monoidal categories and strong monoidal
functors is not very nice (it has products, but not equalizers or
pullbacks, and very few colimits at all)

I e.g. let 1 be the terminal category, and I the “free-living
isomorphism”. These are both monoidal, and the two functors

1
//
// I

are both strong monoidal, but they have no equalizer

Strict morphisms and weak morphisms Stephen Lack
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2-categories to the rescue
I The 2-category MonCatps of monoidal categories, strong

monoidal functors, and monoidal natural transformations is
not so bad

I It has products
I It doesn’t have equalizers, but does have inserters: given

f , g : A→ B, one can form the universal K equipped with
k : K → A and a 2-cell κ : fk → gk

I It also has equifiers: given 2-cells α, β as in

H
h // A

f
))

g

66α⇓ ⇓β B

one can form the universal h : H → A with αh : fh→ gh
equal to βh : fh→ gh

I It therefore has all PIE-limits (Power-Robinson): the limits
that can be constructed out of Products, Inserters, and
Equifiers

Strict morphisms and weak morphisms Stephen Lack
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Even worse morphisms

I The 2-category MonCat of monoidal categories, monoidal
functors, and monoidal natural transformations is even worse!

I It has products, but neither inserters nor equifiers.

I It does have oplax limits of arrows: given f : A→ B, you can
form the universal L equipped with morphisms u : L→ A and
v : L→ B and a 2-cell

A

f

��

L

u
::uuuuuu

v $$IIIIII � �� �KS
λ

B

I e.g. the oplax limit of an arrow f : A→ B in Cat is the
comma category B/f

Strict morphisms and weak morphisms Stephen Lack
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Strict morphisms to the rescue!
I MonCat does have all limits of diagrams containing only

strict morphisms

I Furthermore, in an oplax limit

A

g

��
�O
�O
�O

L

u 77pppppp

v ''NNNNNN � �� �KS
λ

B

the morphisms u and v are strict
I Thus you can form the inserter of f and g if f is strict:

A

g

�� �O
�O
�O
�O
�O

K
p //

k $$

k --

L

u
::uuuuuuu

v $$IIIIII � �� �KS
λ

A
f

// B

I Similar situation for equifiers

Strict morphisms and weak morphisms Stephen Lack
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It takes all sorts. . .

I Thus even if you only care about monoidal functors or strong
monoidal functors, it’s good to keep track of the strict ones

I We want a structure which includes both types of morphism

Remark

More generally, one could consider a (strict) 2-monad T on a
complete and cocomplete 2-category K, and (strict) T -algebras,
and then take as “good” morphisms the strict ones, and as “bad”
morphisms the “pseudo” or the “lax” ones.

Examples:
algebras pseudo maps lax maps

monoidal cats strong monoidal f’s monoidal f’s
cats with coproducts coproduct-preserving arbitrary

distrib. cats distrib. f’s prod-pres.
cats with f. lims lex f’s lex f’s

Everything remains true!

Strict morphisms and weak morphisms Stephen Lack
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Are double categories the answer?

I Double categories have two types of morphisms: horizontal
and vertical

A
bad //

good

��

B

good

��

�� ��
��

C
bad

// D

I Gives a very good explanation of which limits should exist

I Also captures their universal property with respect to strict
maps

I Does not (easily) capture the universal property with respect
to weak maps

I You need extra structure on a double category to be able to
think of strict maps as special case of weak maps

Strict morphisms and weak morphisms Stephen Lack
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Our setting
I Rather than strict and lax/pseudo/weak/bad we’ll speak of

tight maps and loose maps
I Our setting then will involve the following

I A 2-category Kt , whose 1-cells are called tight maps,
sometimes written A→ B

I A 2-category K`, whose 1-cells are called loose maps,
sometimes written A B

I A 2-functor J : Kt → K` which is the identity on objects and
locally fully faithful (fully faithful on hom-categories)

I Typically we use K as the name for the entire structure
I These have sometimes been called equipments (Verity thesis),

but we’ll call them F-categories
I Example: monoidal categories, with strict monoidal functors

and monoidal functors (or with strict and strong ones)
I More generally, for 2-monad T : T -algebras, with strict and

either pseudo (ALG(T)ps) or lax (ALG(T)lax)
I Example: Kt = K` = K, J = 1 (call such an F-category tight)

Strict morphisms and weak morphisms Stephen Lack
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but we’ll call them F-categories
I Example: monoidal categories, with strict monoidal functors

and monoidal functors (or with strict and strong ones)
I More generally, for 2-monad T : T -algebras, with strict and

either pseudo (ALG(T)ps) or lax (ALG(T)lax)
I Example: Kt = K` = K, J = 1 (call such an F-category tight)

Strict morphisms and weak morphisms Stephen Lack
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Another description of F -categories:

I a collection of objects A,B,C , . . .

I for all objects A and B, categories Kt(A,B) and K`(A,B) and
a fully faithful functor J : Kt(A,B)→ K`(A,B)

I for all objects A, B, C , a diagram

Kt(B,C )×Kt(A,B)

J×J ��

Mt // Kt(A,C )

J��
K`(B,C )×K`(A,B)

M` // K`(A,C )

I for all A, an object 1A of Kt(A,A); equivalently, a diagram

1
j // Kt(A,A)

J��
1 // K`(A,A)

I satisfying associative and identity laws

Strict morphisms and weak morphisms Stephen Lack
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F -categories are F -categories

I Let Cat2 be the category of arrows in Cat

I This has finite products (pointwise) and is cartesian closed

I Let F be the full subcategory of Cat2 consisting of the fully
faithful functors.

I This is closed in Cat2 under finite products and is also
cartesian closed

I Then an F-category consists of

I objects A,B,C , . . .
I for all A and B an object K(A,B) of F
I for all A, B, and C a morphism

M : K(B,C )×K(A,B)→ K(A,C ) in F
I for all A, a morphism j : 1→ K(A,A) in F
I associative and identity laws

I In other words: a category enriched in F

Strict morphisms and weak morphisms Stephen Lack
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(Very) basic concepts of F -category theory
I An F-functor F : K→ L consists of 2-functors Ft : Kt → Lt

and F` : K` → L` making commutative

Kt

J ��

Ft // Lt

J��
K` F`

// L`

I An F-natural transformation M between F ,G : K→ L
consists of 2-natural transformations mt : Ft → Gt and
m` : F` → G` satisfying an evident condition

I F becomes an F-category F: tight and loose maps are

At� _
j ��

// Bt� _
j��

At� _
j ��

Bt� _
j��

A` // B` A` // B`

I Functor categories [K,L]: objects are F-functors, tight maps
are F-natural transformations; loose maps F → G are
2-naturals m` : F` → G`

Strict morphisms and weak morphisms Stephen Lack
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Weighted limits

I Let S : D→ K and Φ : D→ F be F-functors. The limit of S
weighted by Φ is an object {Φ,S} of K equipped with a
natural isomorphism

K(A, {Φ, S}) ∼= [D,F](Φ,K(A, S))

I To give Φ : D→ F is equivalently to give

Dt Φt

''PPPPPP

J

��

�� ��
�� ϕ Cat pointwise fully faithful

D` Φ`

77nnnnnn

I Then {Φ,S} is just {Φ`,S`}, with a further universal property
for tight maps

Strict morphisms and weak morphisms Stephen Lack
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Example: inserters

I There’s a version of inserters for F-categories

I Dt is the arrow category; D` parallel pair; thus a diagram in K
consists of one tight map f : A→ B and one loose g : A B

I An inserter is a K with k : K → A and κ : fk → gk such that

1. for any (C , c : C  A, γ : fc → gc) there is a unique
x : C  K with kx = c and κx = γ

2. for any (C , c : C → A, γ : fc → gc) there is a unique
x : C → K with kx = c and κx = γ

I Here (1) says that K is the inserter in K`, and (2) is the extra
universal property for tight maps

I (2) is not just saying something is an inserter in Kt , since g
not in Kt

I These exist in ALG(T)lax and ALG(T)ps if they exist in K.

I There’s a similar notion of equifiers for F-categories

Strict morphisms and weak morphisms Stephen Lack
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Example: tight limits

I Another important class of limits is the tight limits

I Let D be a 2-category and G : D → Cat a 2-functor

I Let D be the F-category with Dt = D` = D and Φ : D→ F
the weight with Φt = Φ` = G

I Call this a tight weight

I A diagram S : D→ K is just a 2-functor S : D → Kt

I The limit {Φ,S} is just a Cat-enriched limit {G , S},
preserved by J : Kt → K`

I Once again they exist in ALG(T)lax and ALG(T)ps provided
they do in K

Strict morphisms and weak morphisms Stephen Lack
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Weak transformations
I We saw before the functor F-category [K,L]

I There’s a weakening Ps(K,L) with the same objects:

I a tight map from m : F → G consists of a pseudonatural
m` : F` → G` which restricts to a 2-natural mt : Ft → Gt

FA
mA // GA FA

mA //

Ff
��
�O
�O

GA

Gf
��
�O
�O

FA
mA //

Fx
��

GA

Gx
��

∼=

FB
mB

// GB FB
mB

// GB

I a loose map in Ps(K,L) between F ,G : K→ L is a pseudo
natural transformation m` : F` → G` which is strict with
respect to tight maps

FA
mA ///o/o/o GA FA

mA ///o/o/o

Ff
��
�O
�O

GA

Gf
��
�O
�O

FA
mA ///o/o/o

Fx
��

GA

Gx
��

∼=

FB
mB

///o/o/o GB FB
mB

///o/o/o GB

I Also have analogues Lax(K,L) and Oplax(K,L)

Strict morphisms and weak morphisms Stephen Lack
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Monads and algebras

I An F-monad T on an F-category K consists of an F-functor
T : K→ K equipped with F-natural transformations
m : T 2 → T and i : 1→ T satisfying usual equations

I This amounts to a 2-monad Tt on Kt which extends to a
2-monad T` on K`

I There’s an F-category of algebras ALG(T)lax

I objects are (strict) Tt-algebras
I tight morphisms are strict Tt-morphisms
I loose morphisms are lax T`-morphisms

and there’s a forgetful F-functor U : ALG(T)lax → K

I If K is tight (K` = Kt = K), an F-monad is just a 2-monad
on K, and this agrees with previous construction

I Also have analogues ALG(T)ps, ALG(T)oplax for pseudo or
oplax morphisms

I Question: which limits lift from K to ALG(T)?

Strict morphisms and weak morphisms Stephen Lack
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Flexibility
I The inclusion [D,F]→ Ps(D,F) has a left adjoint if L is

cocomplete

I Thus pseudonatural transformations Φ→ Ψ correspond to
F-natural transformations QΦ→ Ψ

I This makes Q into an F-comonad on [D,F]
I Say that a weight Φ is algebraically flexible if it is a

Q-coalgebra
I The map ϕ : Φt → Φ`J induces a map ϕ : LanJ(Φt)→ Φ` in

[D`,Cat]

Dt

J

��

Φt

))SSSSSSSSSSS Dt

J

��

Φt

))SSSSSSSSSSS

�� ��
�� Cat

�� ��
�� ϕ Cat

D`

FF

Φ`

++ ++
��ϕ

LanJ(Φt)
55kkkkkkkkkkk D`

Φ`

55kkkkkkkkkkk

I We’ll be interested in the functors which are components of ϕ

Strict morphisms and weak morphisms Stephen Lack
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Lifting limits
We can characterize the weights which lift by:

Theorem

Let Φ : D→ F be a weight. The forgetful 2-functor
Ups : ALG(T)ps → K creates Φ-weighted limits for all T if and
only if Φ is algebraically flexible and ϕ is pointwise surjective on
objects.

Sketch of proof:

Let S : D→ ALG(T)ps be a diagram, and K the limit {Φ,UpsS}
in K, with unit n : Φ→ K(K ,UpsS), and now we have

Φ
n // K(K ,UpsS)

T // K(TK ,TUpsS) ///o/o/o K(TK ,UpsS)

Φ ///o/o/o QΦ
x // K(TK ,UpsS)

Φ
s // QΦ

x // K(TK ,UpsS)

TK
k // K and (K , k) is the limit in ALG(T)ps.

Strict morphisms and weak morphisms Stephen Lack
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A sufficient condition

There is also a useful sufficient condition which covers the most
important cases:

Theorem

Let Φ : D→ F be a weight. If ϕ : LanJ(Φt)→ Φ` is pointwise
bijective on objects, then Ups : ALG(T)ps → K creates
Φ-weighted limits.

Theorem

The weights in the previous theorem are precisely those that can
be constructed from tight limits, pseudo limits of loose morphisms,
inserters, and equifiers.

Strict morphisms and weak morphisms Stephen Lack
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The lax case

I To deal with lax morphisms, we need not pseudonatural
transformations but oplax natural ones

I But the inclusion [D,F]→ Oplax(D,F) still has a left adjoint,
Qoplax, and we can still prove

Theorem

Let Φ : D→ F be a weight. The forgetful 2-functor
U lax : ALG(T)lax → K creates Φ-weighted limits for all F-monads
if and only if Φ is a Q lax-coalgebra and ϕ is pointwise surjective on
objects.

Strict morphisms and weak morphisms Stephen Lack



Stricts and weaks F-categories Pseudo and lax aspects Variations

The lax case

I To deal with lax morphisms, we need not pseudonatural
transformations but oplax natural ones

I But the inclusion [D,F]→ Oplax(D,F) still has a left adjoint,
Qoplax, and we can still prove

Theorem

Let Φ : D→ F be a weight. The forgetful 2-functor
U lax : ALG(T)lax → K creates Φ-weighted limits for all F-monads
if and only if Φ is a Q lax-coalgebra and ϕ is pointwise surjective on
objects.

Strict morphisms and weak morphisms Stephen Lack



Stricts and weaks F-categories Pseudo and lax aspects Variations

The lax case

I To deal with lax morphisms, we need not pseudonatural
transformations but oplax natural ones

I But the inclusion [D,F]→ Oplax(D,F) still has a left adjoint,
Qoplax, and we can still prove

Theorem

Let Φ : D→ F be a weight. The forgetful 2-functor
U lax : ALG(T)lax → K creates Φ-weighted limits for all F-monads
if and only if Φ is a Q lax-coalgebra and ϕ is pointwise surjective on
objects.

Strict morphisms and weak morphisms Stephen Lack



Stricts and weaks F-categories Pseudo and lax aspects Variations

Fps-categories

I Let jA : At → A` and jB : Bt → B` be fully faithful functors

I A morphism in F between them is a a commutative square

I An alternative would be to allow squares that commute up to
isomorphism

At
//

� _

jA
��

Bt� _

jB
��

At
//

� _

jA
��

Bt� _

jB
��

∼=

A` // B` A` // B`

I These form the morphisms of a category Fps, once again
cartesian closed (but not complete or cocomplete)

I An Fps-category is a pseudofunctor which is the identity on
objects and locally fully faithful

I For example, one could take functors as tight morphisms and
profunctors as loose ones

Strict morphisms and weak morphisms Stephen Lack
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F2-categories

I An object of F consists of a single fully faithful functor

I Instead we could take a composable pair of fully faithful
functors

I These form the objects of a cartesian closed category F2

I An F2-category consists of a composable pair of 2-functors
which are the identity on objects and locally fully faithful

I This would allow strict, pseudo, and lax morphisms to be
treated altogether

Strict morphisms and weak morphisms Stephen Lack
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Set2-categories

I Set2 is the cartesian closed category of morphisms in Set

I A Set2-category is a functor which is the identity on objects

I Could also restrict Set2 to the full subcategory of injective
functions, to describe functors which are the identity on
objects and faithful

Strict morphisms and weak morphisms Stephen Lack
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Pro(endo)functors as enriched categories

I A category C equipped with a functor E : C → [Cop,Set] can
also be expressed as an enriched category

I This time our monoidal category is Set× Set, equipped with
the tensor product

(Xt ,X`)⊗ (Yt ,Y`) = (Xt × Yt ,X` × Yt + Xt × Y`)

I There is a corresponding (non-cartesian) tensor product on
Set2 in which the coproduct X` × Yt + Xt × Y` is replaced by
a pushout X` × Yt +Xt×Yt Xt × Y`

I An enriched category is then a pair (C,E ) as before, equipped
with a map i : Y → E from the Yoneda functor

I Can further modify this so that i is pointwise mono

I Also have enriched variants of all of these structures

Strict morphisms and weak morphisms Stephen Lack
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