Cauchy completeness results motivated by Myhill's characterization of combinatorial functions

Matías Menni

matias.menni@gmail.com

Conicet and Lifia-UNLP, Argentina

Given

ullet a category $\mathcal C$ (of "combinatorial" objects) and

Given

- ullet a category ${\cal C}$ (of "combinatorial" objects) and
- a monad $(M, \mathbf{u}, \mathbf{m})$ on \mathcal{C} (thought of as a construction with a reasonably understood counting formula)

Given

- ullet a category ${\mathcal C}$ (of "combinatorial" objects) and
- a monad $(M, \mathbf{u}, \mathbf{m})$ on \mathcal{C} (thought of as a construction with a reasonably understood counting formula)
- an object X in $\mathcal C$ (whose figures/elements we need to count)

Given

- ullet a category ${\cal C}$ (of "combinatorial" objects) and
- a monad $(M, \mathbf{u}, \mathbf{m})$ on \mathcal{C} (thought of as a construction with a reasonably understood counting formula)
- an object X in $\mathcal C$ (whose figures/elements we need to count)

What is a solution to this "counting problem for X"?

Given

- a category C (of "combinatorial" objects) and
- a monad $(M, \mathbf{u}, \mathbf{m})$ on \mathcal{C} (thought of as a construction with a reasonably understood counting formula)
- an object X in $\mathcal C$ (whose figures/elements we need to count)

What is a solution to this "counting problem for X"?

The exhibition of an iso $X \cong MX_0$.

Given

- ullet a category ${\cal C}$ (of "combinatorial" objects) and
- a monad $(M, \mathbf{u}, \mathbf{m})$ on \mathcal{C} (thought of as a construction with a reasonably understood counting formula)
- an object X in \mathcal{C} (whose figures/elements we need to count)

What is a solution to this "counting problem for X"?

The exhibition of an iso $X \cong MX_0$.

So we are led to consider free M-algebras . . .

Given

- a category C (of "combinatorial" objects) and
- a monad $(M, \mathbf{u}, \mathbf{m})$ on \mathcal{C} (thought of as a construction with a reasonably understood counting formula)
- an object X in $\mathcal C$ (whose figures/elements we need to count)

What is a solution to this "counting problem for X"?

The exhibition of an iso $X \cong MX_0$.

So we are led to consider free M-algebras . . .

... and means to recognice them.

Given sequence $\{a_i \in \mathbb{N}\}_{i \geq 0}$ obtained by counting the number of instances of a given structure A.

Given sequence $\{a_i \in \mathbb{N}\}_{i \geq 0}$ obtained by counting the number of instances of a given structure A.

Why is it the case that, for some $\{b_i\}_{i>0}$, we have:

Given sequence $\{a_i \in \mathbb{N}\}_{i \geq 0}$ obtained by counting the number of instances of a given structure A.

Why is it the case that, for some $\{b_i\}_{i>0}$, we have:

$$\bullet$$
 $a_n = \sum_{i \in \mathbb{N}} b_i \binom{n}{i}$ or

Given sequence $\{a_i \in \mathbb{N}\}_{i \geq 0}$ obtained by counting the number of instances of a given structure A.

Why is it the case that, for some $\{b_i\}_{i>0}$, we have:

•
$$a_n = \sum_{i \in \mathbb{N}} b_i \binom{n}{i}$$
 or

•
$$a_n = \sum_{i \in \mathbb{N}} b_i S(n, i)$$
 or

Given sequence $\{a_i \in \mathbb{N}\}_{i \geq 0}$ obtained by counting the number of instances of a given structure A.

Why is it the case that, for some $\{b_i\}_{i\geq 0}$, we have:

•
$$a_n = \sum_{i \in \mathbb{N}} b_i \binom{n}{i}$$
 or

•
$$a_n = \sum_{i \in \mathbb{N}} b_i S(n, i)$$
 or

•
$$a_n = \sum_{i \in \mathbb{N}} b_i \begin{bmatrix} n \\ i \end{bmatrix}_q$$
 or

Given sequence $\{a_i \in \mathbb{N}\}_{i \geq 0}$ obtained by counting the number of instances of a given structure A.

Why is it the case that, for some $\{b_i\}_{i\geq 0}$, we have:

•
$$a_n = \sum_{i \in \mathbb{N}} b_i \binom{n}{i}$$
 or

•
$$a_n = \sum_{i \in \mathbb{N}} b_i S(n, i)$$
 or

•
$$a_n = \sum_{i \in \mathbb{N}} b_i \begin{bmatrix} n \\ i \end{bmatrix}_q$$
 or

Given sequence $\{a_i \in \mathbb{N}\}_{i \geq 0}$ obtained by counting the number of instances of a given structure A.

Why is it the case that, for some $\{b_i\}_{i>0}$, we have:

•
$$a_n = \sum_{i \in \mathbb{N}} b_i \binom{n}{i}$$
 or

•
$$a_n = \sum_{i \in \mathbb{N}} b_i S(n, i)$$
 or

•
$$a_n = \sum_{i \in \mathbb{N}} b_i \begin{bmatrix} n \\ i \end{bmatrix}_q$$
 or

Because A can be given the structure of a free algebra.

The main example

ullet Consider the category $\mathbf{Set}^{\mathbb{B}}$.

- ullet Consider the category $\mathbf{Set}^{\mathbb{B}}$.
- Think of $C \in \mathbf{Set}^{\mathbb{B}}$ as $\{c_i\}_{i \geq 0}$.

- ullet Consider the category $\mathbf{Set}^{\mathbb{B}}$.
- Think of $C \in \mathbf{Set}^{\mathbb{B}}$ as $\{c_i\}_{i \geq 0}$.
- Consider the monad $(M, \mathbf{u}, \mathbf{m})$ defined by

$$(MC)U = \sum_{V \subseteq U} CV$$

- ullet Consider the category $\mathbf{Set}^{\mathbb{B}}$.
- Think of $C \in \mathbf{Set}^{\mathbb{B}}$ as $\{c_i\}_{i \geq 0}$.
- Consider the monad $(M, \mathbf{u}, \mathbf{m})$ defined by

$$(MC)U = \sum_{V \subseteq U} CV$$

• Think of MC as $n \mapsto \sum_{i=0}^{n} c_i \binom{n}{i}$.

- ullet Consider the category $\mathbf{Set}^{\mathbb{B}}$.
- Think of $C \in \mathbf{Set}^{\mathbb{B}}$ as $\{c_i\}_{i \geq 0}$.
- Consider the monad $(M, \mathbf{u}, \mathbf{m})$ defined by

$$(MC)U = \sum_{V \subseteq U} CV$$

- Think of MC as $n \mapsto \sum_{i=0}^{n} c_i \binom{n}{i}$.
- So free algebras are "essentially the same" as Myhill's combinatorial functions.

- ullet Consider the category $\mathbf{Set}^{\mathbb{B}}$.
- Think of $C \in \mathbf{Set}^{\mathbb{B}}$ as $\{c_i\}_{i \geq 0}$.
- Consider the monad $(M, \mathbf{u}, \mathbf{m})$ defined by

$$(MC)U = \sum_{V \subseteq U} CV$$

- Think of MC as $n \mapsto \sum_{i=0}^{n} c_i \binom{n}{i}$.
- So free algebras are "essentially the same" as Myhill's combinatorial functions.
- CLAIM: Myhill's main result says that Kl_M is Cauchy complete (in a very strong sense).

A very simple counting problem

ullet Fix a set T.

- Fix a set T.
- Define T in $Set^{\mathbb{B}}$ by $TU = \{functions <math>T \to U\}$.

- Fix a set T.
- Define T in $Set^{\mathbb{B}}$ by $TU = \{functions <math>T \to U\}$.
- The assignment:

$$(V \subseteq U, f: T \to V) \mapsto (T \xrightarrow{f} V \xrightarrow{\subseteq} U)$$

extends to an M-algebra structure $a: M\mathbf{T} \to \mathbf{T}$.

- Fix a set T.
- Define T in $Set^{\mathbb{B}}$ by $TU = \{functions <math>T \to U\}$.
- The assignment:

$$(V \subseteq U, f: T \to V) \mapsto (T \xrightarrow{f} V \xrightarrow{\subseteq} U)$$

extends to an M-algebra structure $a: M\mathbf{T} \to \mathbf{T}$.

Is T a free M-algebra?

- Fix a set T.
- Define T in $Set^{\mathbb{B}}$ by $TU = \{functions <math>T \to U\}$.
- The assignment:

$$(V \subseteq U, f: T \to V) \mapsto (T \xrightarrow{f} V \xrightarrow{\subseteq} U)$$

extends to an M-algebra structure $a: M\mathbf{T} \to \mathbf{T}$.

Is T a free M-algebra?

It is enough to find a section for the canonical presentation $a:(M\mathbf{T},\mathbf{m})\to (\mathbf{T},a)$.

The assignment

$$(f:T\to U)\mapsto (fT\subseteq U,f:T\to fT)$$

extends to a section $s: (\mathbf{T}, a) \to (M\mathbf{T}, \mathbf{m})$ of the canonical presentation $a: (M\mathbf{T}, \mathbf{m}) \to (\mathbf{T}, a)$.

The assignment

$$(f:T\to U)\mapsto (fT\subseteq U,f:T\to fT)$$

extends to a section $s: (\mathbf{T}, a) \to (M\mathbf{T}, \mathbf{m})$ of the canonical presentation $a: (M\mathbf{T}, \mathbf{m}) \to (\mathbf{T}, a)$.

Which is the object of generators?

The assignment

$$(f:T \to U) \mapsto (fT \subseteq U, f:T \to fT)$$

extends to a section $s: (\mathbf{T}, a) \to (M\mathbf{T}, \mathbf{m})$ of the canonical presentation $a: (M\mathbf{T}, \mathbf{m}) \to (\mathbf{T}, a)$.

- Which is the object of generators?
- It is the equalizer $T_s \to T$ of $s, u : T \to MT$.

$$\mathbf{T}_s \xrightarrow{\overline{s}} \mathbf{T} \xrightarrow{\mathbf{u}} M\mathbf{T}$$

The assignment

$$(f:T\to U)\mapsto (fT\subseteq U,f:T\to fT)$$

extends to a section $s: (\mathbf{T}, a) \to (M\mathbf{T}, \mathbf{m})$ of the canonical presentation $a: (M\mathbf{T}, \mathbf{m}) \to (\mathbf{T}, a)$.

- Which is the object of generators?
- It is the equalizer $T_s \to T$ of $s, u : T \to MT$.

$$T_s \xrightarrow{\overline{s}} T \xrightarrow{u} MT$$

• More explicitly, $T_sU = \{\text{surjections } T \to U\}.$

The assignment

$$(f:T\to U)\mapsto (fT\subseteq U,f:T\to fT)$$

extends to a section $s: (\mathbf{T}, a) \to (M\mathbf{T}, \mathbf{m})$ of the canonical presentation $a: (M\mathbf{T}, \mathbf{m}) \to (\mathbf{T}, a)$.

- Which is the object of generators?
- It is the equalizer $T_s \to T$ of $s, u : T \to MT$.

$$\mathbf{T}_s \xrightarrow{\overline{s}} \mathbf{T} \xrightarrow{\mathbf{u}} M\mathbf{T}$$

- More explicitly, $T_sU = \{\text{surjections } T \to U\}.$
- Numerical version: $n^{\sharp T} = \sum_{i=0}^{n} su(i, \sharp T) \binom{n}{i}$.

Strongly Cauchy monads

Cauchy monads

Definition 1. A *Cauchy monad* is a monad whose Kleisli category is Cauchy complete.

Cauchy monads

Definition 2. A *Cauchy monad* is a monad whose Kleisli category is Cauchy complete.

Example 1. Kaplansky's Theorem, Serre's problem, Schreier varieties (i.e. subalgebras of free algebras are free).

Cauchy monads

Definition 2. A *Cauchy monad* is a monad whose Kleisli category is Cauchy complete.

Example 1. Kaplansky's Theorem, Serre's problem, Schreier varieties (i.e. subalgebras of free algebras are free).

We need something stronger.

Cauchy monads

Definition 2. A *Cauchy monad* is a monad whose Kleisli category is Cauchy complete.

Example 1. Kaplansky's Theorem, Serre's problem, Schreier varieties (i.e. subalgebras of free algebras are free).

We need something stronger.

Definition 2. Let $s:(A,a)\to (MA,\mathbf{m})$ be a morphism. The *subobject of generic elements* associated to s is the equalizer (in \mathcal{C})

$$A_s \xrightarrow{\overline{s}} A \xrightarrow{\mathbf{u}_A} MA$$

of $s, \mathbf{u}_A : A \to MA$.

Strongly Cauchy monads

Definition 3. A monad $(M, \mathbf{u}, \mathbf{m})$ is *strongly Cauchy* if for every algebra (A, a) with a section $s: (A, a) \to (MA, \mathbf{m})$ for $a: (MA, \mathbf{m}) \to (A, a)$ the map

$$MA_s \xrightarrow{M\overline{s}} MA \xrightarrow{a} A$$

is an iso.

The terminology is consistent because . . .

Strongly Cauchy monads

Definition 3. A monad $(M, \mathbf{u}, \mathbf{m})$ is *strongly Cauchy* if for every algebra (A, a) with a section $s: (A, a) \to (MA, \mathbf{m})$ for $a: (MA, \mathbf{m}) \to (A, a)$ the map

$$MA_s \xrightarrow{M\overline{s}} MA \xrightarrow{a} A$$

is an iso.

The terminology is consistent because ...

Proposition 1. Every strongly Cauchy monad is Cauchy.

A more interesting example: Möbius categories

Definition 3. A category C has *finite decompositions of degree 2* if for every map f the set $\{(f', f'') \mid f'f'' = f\}$ is finite.

Fix C with finite decompositions and A a ring.

Definition 3. The *incidence algebra* $A\mathcal{C}$ of \mathcal{C} is:

- 1. the set of functions $Arr \mathcal{C} \to A$ with
- 2. pointwise addition and multiplication by scalar
- 3. multiplication $*:A\mathcal{C}\times A\mathcal{C}\to A\mathcal{C}$ defined by

$$(\alpha * \beta)f = \sum_{f'f''=f} (\alpha f')(\beta f'')$$

An *n*-tuple (f_1, \ldots, f_n) , $n \ge 1$, is a *decomposition* of f if $f_1 \ldots f_n = f$ and $f_i \ne id$ for every i.

An *n*-tuple (f_1, \ldots, f_n) , $n \ge 1$, is a *decomposition* of f if $f_1 \ldots f_n = f$ and $f_i \ne id$ for every i.

Theorem 1 (Content, Lemay et Leroux; 1980). *If* C *has finite decompositions of degree 2 then t.f.a.e.:*

- 1. $\alpha \in A\mathcal{C}$ is invertible iff for all identities i in \mathcal{C} , αi is invertible in A.
- 2. every arrow in C has a finite number of decompositions.

An *n*-tuple (f_1, \ldots, f_n) , $n \ge 1$, is a *decomposition* of f if $f_1 \ldots f_n = f$ and $f_i \ne id$ for every i.

Theorem 1 (Content, Lemay et Leroux; 1980). *If* C *has finite decompositions of degree 2 then t.f.a.e.:*

- 1. $\alpha \in A\mathcal{C}$ is invertible iff for all identities i in \mathcal{C} , αi is invertible in A.
- 2. every arrow in C has a finite number of decompositions.

Definition 4. A *Möbius category* is one satisfying the conditions of the theorem above.

• (Riemann function) Define $\zeta \in A\mathcal{C}$ by $\zeta f = 1$ for every f in \mathcal{C} .

- (Riemann function) Define $\zeta \in A\mathcal{C}$ by $\zeta f = 1$ for every f in \mathcal{C} .
- (Möbius function) If $\mathcal C$ is Möbius, ζ is invertible. Denote $\zeta^{-1}=\mu$.

- (Riemann function) Define $\zeta \in A\mathcal{C}$ by $\zeta f = 1$ for every f in \mathcal{C} .
- (Möbius function) If $\mathcal C$ is Möbius, ζ is invertible. Denote $\zeta^{-1}=\mu$.
- **●** (The general Möbius inversion principle) For every $\alpha, \beta \in AC$

$$\alpha = \beta * \zeta \Leftrightarrow \beta = \alpha * \mu$$

- (Riemann function) Define $\zeta \in A\mathcal{C}$ by $\zeta f = 1$ for every f in \mathcal{C} .
- (Möbius function) If $\mathcal C$ is Möbius, ζ is invertible. Denote $\zeta^{-1}=\mu$.
- **●** (The general Möbius inversion principle) For every $\alpha, \beta \in AC$

$$\alpha = \beta * \zeta \Leftrightarrow \beta = \alpha * \mu$$

On a more combinatorial proof ...

• Instead of AC consider $\mathbf{Set}^{\mathrm{Arr}C}$ (with essentially the same tensor *).

- Instead of AC consider $\mathbf{Set}^{\mathrm{Arr}C}$ (with essentially the same tensor *).
- **Denote the terminal object by** ζ **.**

- Instead of AC consider $\mathbf{Set}^{\mathrm{Arr}C}$ (with essentially the same tensor *).
- Denote the terminal object by ζ .
- ▶ Let $E \in \mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$ assign to each map, its set of decompositions of even length.

- Instead of AC consider $\mathbf{Set}^{\mathrm{Arr}C}$ (with essentially the same tensor *).
- Denote the terminal object by ζ .
- ▶ Let $E \in \mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$ assign to each map, its set of decompositions of even length.
- E has an obvious monoid structure. Denote the resulting monad by (Ev, u, m).

- Instead of AC consider $\mathbf{Set}^{\mathrm{Arr}C}$ (with essentially the same tensor *).
- ullet Denote the terminal object by ζ .
- ▶ Let $E \in \mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$ assign to each map, its set of decompositions of even length.
- E has an obvious monoid structure. Denote the resulting monad by $(Ev, \mathbf{u}, \mathbf{m})$.

Lemma 1. The monad (Ev, u, m) is strongly Cauchy.

- Instead of AC consider $\mathbf{Set}^{\mathrm{Arr}C}$ (with essentially the same tensor *).
- **•** Denote the terminal object by ζ .
- ▶ Let $E \in \mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$ assign to each map, its set of decompositions of even length.
- E has an obvious monoid structure. Denote the resulting monad by (Ev, u, m).
- **Lemma 1.** The monad (Ev, u, m) is strongly Cauchy.
 - Decompositions of odd length induce a functor $\mathtt{Od}: \mathbf{Set}^{\mathrm{Arr}\mathcal{C}} \to \mathbf{Set}^{\mathrm{Arr}\mathcal{C}}.$

Proposition 2. For every β in $\mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$,

$$\beta + \mathrm{Od}(\beta * \zeta) \cong \mathrm{Ev}(\beta * \zeta)$$

Proposition 2. For every β in $\mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$,

$$\beta + \mathrm{Od}(\beta * \zeta) \cong \mathrm{Ev}(\beta * \zeta)$$

"
$$\alpha = \beta * \zeta \implies \beta = \text{Ev}(\alpha) - \text{Od}(\alpha) = \alpha * \mu$$
"

Proposition 2. For every β in $\mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$,

$$\beta + \mathrm{Od}(\beta * \zeta) \cong \mathrm{Ev}(\beta * \zeta)$$

"
$$\alpha = \beta * \zeta \implies \beta = \text{Ev}(\alpha) - \text{Od}(\alpha) = \alpha * \mu$$
"

Proof. 1. Use that (Ev, u, m) is strongly Cauchy.

Proposition 2. For every β in $\mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$,

$$\beta + \mathrm{Od}(\beta * \zeta) \cong \mathrm{Ev}(\beta * \zeta)$$

"
$$\alpha = \beta * \zeta \implies \beta = \text{Ev}(\alpha) - \text{Od}(\alpha) = \alpha * \mu$$
"

- *Proof.* 1. Use that (Ev, u, m) is strongly Cauchy.
 - 2. Put an Ev-algebra structure a on $\beta + Od(\beta * \zeta)$.

Proposition 2. For every β in $\mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$,

$$\beta + \mathrm{Od}(\beta * \zeta) \cong \mathrm{Ev}(\beta * \zeta)$$

"
$$\alpha = \beta * \zeta \implies \beta = \text{Ev}(\alpha) - \text{Od}(\alpha) = \alpha * \mu$$
"

- *Proof.* 1. Use that (Ev, u, m) is strongly Cauchy.
 - 2. Put an Ev-algebra structure a on $\beta + Od(\beta * \zeta)$.
 - 3. Find a section s for the canonical presentation of a.

Proposition 2. For every β in $\mathbf{Set}^{\mathrm{Arr}\mathcal{C}}$,

$$\beta + \mathrm{Od}(\beta * \zeta) \cong \mathrm{Ev}(\beta * \zeta)$$

"
$$\alpha = \beta * \zeta \implies \beta = \text{Ev}(\alpha) - \text{Od}(\alpha) = \alpha * \mu$$
"

Proof. 1. Use that (Ev, u, m) is strongly Cauchy.

- 2. Put an Ev-algebra structure a on $\beta + Od(\beta * \zeta)$.
- 3. Find a section s for the canonical presentation of a.
- 4. Observe that the subobject of generic elements is $\beta * \zeta$.

Strongly Cauchy monads on Heyting categories

Minimal elements

Let $(M, \mathbf{u}, \mathbf{m})$ be a monad on a Heyting category \mathcal{H} .

Minimal elements

Let $(M, \mathbf{u}, \mathbf{m})$ be a monad on a Heyting category \mathcal{H} .

Definition 6. The *subobject of minimal elements* associated with an M-algebra (A, a) is the subobject $a_{\star} : \lfloor A, a \rfloor \to A$ of A where

$$|A, a| = \{x \in A \mid (\forall v \in MA)(av = x \to v = \mathbf{u}x)\}$$

Minimal elements

Let $(M, \mathbf{u}, \mathbf{m})$ be a monad on a Heyting category \mathcal{H} .

Definition 6. The *subobject of minimal elements* associated with an M-algebra (A, a) is the subobject $a_{\star} : \lfloor A, a \rfloor \to A$ of A where

$$[A, a] = \{x \in A \mid (\forall v \in MA)(av = x \to v = \mathbf{u}x)\}$$

Definition 6. An algebra (A, a) is *well-founded* if the morphism

$$M \lfloor A, a \rfloor \xrightarrow{Ma_{\star}} MA \xrightarrow{a} A$$

is regular epi.

Proposition 3. Let $(M, \mathbf{m}, \mathbf{u})$ be a monad on a Heyting category such that M maps pullbacks to quasi-pullbacks. For an M-algebra (A, a) the following are equivalent:

- 1. $a(Ma_{\star}): M|A,a| \rightarrow A$ is an iso.
- 2. (A, a) is well-founded and quasi-exact

Proposition 3. Let $(M, \mathbf{m}, \mathbf{u})$ be a monad on a Heyting category such that M maps pullbacks to quasi-pullbacks. For an M-algebra (A, a) the following are equivalent:

- 1. $a(Ma_{\star}): M|A,a| \rightarrow A$ is an iso.
- 2. (A, a) is well-founded and quasi-exact

What are quasi-exact algebras?

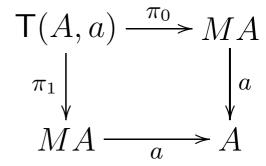
Proposition 3. Let $(M, \mathbf{m}, \mathbf{u})$ be a monad on a Heyting category such that M maps pullbacks to quasi-pullbacks. For an M-algebra (A, a) the following are equivalent:

- 1. $a(Ma_{\star}): M|A,a| \rightarrow A$ is an iso.
- 2. (A, a) is well-founded and quasi-exact

What are quasi-exact algebras?

Example 2. If $(M, \mathbf{m}, \mathbf{u})$ is the monad on $\mathbf{Set}^{\mathbb{B}}$ which induces the Schanuel topos then quasi-exact means pullback-preserving.

• For any algebra (A, a) consider the pullback



• For any algebra (A, a) consider the pullback

$$T(A, a) \xrightarrow{\pi_0} MA$$

$$\pi_1 \downarrow \qquad \qquad \downarrow a$$

$$MA \xrightarrow{a} A$$

● The assignment $(A, a) \mapsto \mathsf{T}(A, a)$ extends to a functor $\mathsf{T} : \mathsf{Alg} \to \mathcal{C}$.

ullet For any algebra (A,a) consider the pullback

$$T(A, a) \xrightarrow{\pi_0} MA$$

$$\downarrow a$$

$$MA \xrightarrow{a} A$$

● The assignment $(A, a) \mapsto \mathsf{T}(A, a)$ extends to a functor $\mathsf{T} : \mathsf{Alg} \to \mathcal{C}$.

Definition 7. An algebra (A, a) is *quasi-exact* if T applied to $a: (MA, \mathbf{m}) \to (A, a)$ is regular epi.

Basic facts and example

- 1. Free algebras are quasi-exact.
- 2. Retracts of quasi-exact algebras are quasi-exact.

$$Kl \to \overline{Kl} \to qeAlg \to Alg$$

Basic facts and example

- 1. Free algebras are quasi-exact.
- 2. Retracts of quasi-exact algebras are quasi-exact.

$$Kl \to \overline{Kl} \to qeAlg \to Alg$$

Example 3. For the Myhill-Schanuel monad $Kl \rightarrow qeAlg$ is an equivalence.

Basic facts and example

- 1. Free algebras are quasi-exact.
- 2. Retracts of quasi-exact algebras are quasi-exact.

$$Kl \to \overline{Kl} \to qeAlg \to Alg$$

Example 3. For the Myhill-Schanuel monad $Kl \to qeAlg$ is an equivalence.

RECALL: An M-algebra (A, a) is well-founded if the map $M\lfloor A, a \rfloor \to A$ is regular epi.

Definition 8. A monad $(M, \mathbf{u}, \mathbf{m})$ on a Heyting category is well-founded if the quasi-exact algebras are well-founded.

Definition 8. A monad $(M, \mathbf{u}, \mathbf{m})$ on a Heyting category is *well-founded* if the quasi-exact algebras are well-founded.

Proposition 4. Let $(M, \mathbf{u}, \mathbf{m})$ be a well-founded monad on a Heyting category.

1. If M maps pullbacks to quasi-pullbacks then the embedding $\mathrm{Kl} \to \mathrm{qeAlg}$ is an equivalence and the monad is strongly Cauchy.

Definition 8. A monad $(M, \mathbf{u}, \mathbf{m})$ on a Heyting category is *well-founded* if the quasi-exact algebras are well-founded.

Proposition 4. Let $(M, \mathbf{u}, \mathbf{m})$ be a well-founded monad on a Heyting category.

- 1. If M maps pullbacks to quasi-pullbacks then the embedding $\mathrm{Kl} \to \mathrm{qeAlg}$ is an equivalence and the monad is strongly Cauchy.
- 2. If, moreover, M reflects isos then for every algebra (A,a) the canonical $a:(MA,\mathbf{m})\to (A,a)$ has at most one section.

Definition 8. A monad $(M, \mathbf{u}, \mathbf{m})$ on a Heyting category is *well-founded* if the quasi-exact algebras are well-founded.

Proposition 4. Let $(M, \mathbf{u}, \mathbf{m})$ be a well-founded monad on a Heyting category.

- 1. If M maps pullbacks to quasi-pullbacks then the embedding $\mathrm{Kl} \to \mathrm{qeAlg}$ is an equivalence and the monad is strongly Cauchy.
- 2. If, moreover, M reflects isos then for every algebra (A,a) the canonical $a:(MA,\mathbf{m})\to (A,a)$ has at most one section.
 - If such a section $s:(A,a)\to (MA,\mathbf{m})$ exists then $\lfloor A,a\rfloor=A_s$.

Concrete manifestations

Proposition 5. Let \mathcal{M} be a category with pullbacks and every map mono. Let \mathcal{I} be the subcategory of isos and $(M, \mathbf{u}, \mathbf{m})$ be the monad on $\mathbf{Set}^{\mathcal{I}}$ induced by $\mathcal{I} \to \mathcal{M}$. Then the following are equivalent

Proposition 5. Let \mathcal{M} be a category with pullbacks and every map mono. Let \mathcal{I} be the subcategory of isos and $(M, \mathbf{u}, \mathbf{m})$ be the monad on $\mathbf{Set}^{\mathcal{I}}$ induced by $\mathcal{I} \to \mathcal{M}$. Then the following are equivalent

- 1. $(M, \mathbf{u}, \mathbf{m})$ is well-founded
- 2. \mathcal{M} is well-founded (i.e. no infinite $X_0 \leftarrow X_1 \leftarrow \ldots \leftarrow X_n \leftarrow \ldots$)

Proposition 5. Let \mathcal{M} be a category with pullbacks and every map mono. Let \mathcal{I} be the subcategory of isos and $(M, \mathbf{u}, \mathbf{m})$ be the monad on $\mathbf{Set}^{\mathcal{I}}$ induced by $\mathcal{I} \to \mathcal{M}$. Then the following are equivalent

- 1. $(M, \mathbf{u}, \mathbf{m})$ is well-founded
- 2. \mathcal{M} is well-founded (i.e. no infinite $X_0 \leftarrow X_1 \leftarrow \ldots \leftarrow X_n \leftarrow \ldots$)

Moreover, in this case, $qeAlg \cong Kl_M$ is the category of pullback preserving functors $\mathcal{M} \to \mathbf{Set}$.

Proposition 5. Let \mathcal{M} be a category with pullbacks and every map mono. Let \mathcal{I} be the subcategory of isos and $(M, \mathbf{u}, \mathbf{m})$ be the monad on $\mathbf{Set}^{\mathcal{I}}$ induced by $\mathcal{I} \to \mathcal{M}$. Then the following are equivalent

- 1. $(M, \mathbf{u}, \mathbf{m})$ is well-founded
- 2. \mathcal{M} is well-founded (i.e. no infinite $X_0 \leftarrow X_1 \leftarrow \ldots \leftarrow X_n \leftarrow \ldots$)

Moreover, in this case, $qeAlg \cong Kl_M$ is the category of pullback preserving functors $\mathcal{M} \to \mathbf{Set}$.

Proof. Use previous result and (Fiore and Menni; 2005).

• $\mathcal{C} = (\mathbf{Set}^{\mathbb{B}}, \cdot, I)$ the category of Joyal's species.

- $C = (\mathbf{Set}^{\mathbb{B}}, \cdot, I)$ the category of Joyal's species.
- An object F in \mathcal{C} is thought of as $\sum_{n>0} F[n] \frac{x^n}{n!}$.

- $C = (\mathbf{Set}^{\mathbb{B}}, \cdot, I)$ the category of Joyal's species.
- An object F in C is thought of as $\sum_{n\geq 0} F[n] \frac{x^n}{n!}$.
- The exponential monad $(\mathbf{E}, \mathbf{u}, \mathbf{m})$ on \mathcal{C} is defined by $(\mathbf{E}F)U = \sum_{\pi \in \mathbf{Part}U} \prod_{p \in \pi} Fp$. Intuition: $\mathbf{E}F = e^F$.

- $C = (\mathbf{Set}^{\mathbb{B}}, \cdot, I)$ the category of Joyal's species.
- An object F in C is thought of as $\sum_{n>0} F[n] \frac{x^n}{n!}$.
- The exponential monad $(\mathbf{E}, \mathbf{u}, \mathbf{m})$ on \mathcal{C} is defined by $(\mathbf{E}F)U = \sum_{\pi \in \mathbf{Part}U} \prod_{p \in \pi} Fp$. Intuition: $\mathbf{E}F = e^F$.

Lemma 2 (Menni2003). $(E, \mathbf{u}, \mathbf{m})$ is well-founded.

- $C = (\mathbf{Set}^{\mathbb{B}}, \cdot, I)$ the category of Joyal's species.
- An object F in C is thought of as $\sum_{n\geq 0} F[n] \frac{x^n}{n!}$.
- The exponential monad $(\mathbf{E}, \mathbf{u}, \mathbf{m})$ on \mathcal{C} is defined by $(\mathbf{E}F)U = \sum_{\pi \in \mathbf{Part}U} \prod_{p \in \pi} Fp$. Intuition: $\mathbf{E}F = e^F$.

Lemma 2 (Menni2003). $(E, \mathbf{u}, \mathbf{m})$ is well-founded.

Free E-algebras are essentially the same as decompositions in the sense of (Dress-Müller97).

- $C = (\mathbf{Set}^{\mathbb{B}}, \cdot, I)$ the category of Joyal's species.
- An object F in C is thought of as $\sum_{n\geq 0} F[n] \frac{x^n}{n!}$.
- The exponential monad $(\mathbf{E}, \mathbf{u}, \mathbf{m})$ on \mathcal{C} is defined by $(\mathbf{E}F)U = \sum_{\pi \in \mathbf{Part}U} \prod_{p \in \pi} Fp$. Intuition: $\mathbf{E}F = e^F$.

Lemma 2 (Menni2003). (E, u, m) is well-founded.

- Free E-algebras are essentially the same as decompositions in the sense of (Dress-Müller97).
- The equivalence $Kl \rightarrow qeAlg$ is a combinatorial form of the exponential principle.

- $C = (\mathbf{Set}^{\mathbb{B}}, \cdot, I)$ the category of Joyal's species.
- An object F in C is thought of as $\sum_{n\geq 0} F[n] \frac{x^n}{n!}$.
- The exponential monad $(\mathbf{E}, \mathbf{u}, \mathbf{m})$ on \mathcal{C} is defined by $(\mathbf{E}F)U = \sum_{\pi \in \mathbf{Part}U} \prod_{p \in \pi} Fp$. Intuition: $\mathbf{E}F = e^F$.

Lemma 2 (Menni2003). (E, u, m) is well-founded.

- Free E-algebras are essentially the same as decompositions in the sense of (Dress-Müller97).
- The equivalence $Kl \rightarrow qeAlg$ is a combinatorial form of the exponential principle.
- Generalizes from $\mathbb{B} = !1$ to the symmetric monoidal completion !G of any groupoid G.

Another simple example: permutations

Permutations I

1. Define \mathfrak{G} in $\mathbf{Set}^{\mathbb{B}}$ by

$$\mathfrak{G}U = \{ \sigma : U \to U \mid \sigma \text{ is bijective} \}$$

2. There is an M-algebra $a:M\mathfrak{G}\to\mathfrak{G}$ which, at stage U, takes a subset V of U together with a permutation π on V and produces the permutation on U which is the extension of π by leaving the elements in U/V fixed.

Is (\mathfrak{G}, a) a free M-algebra?

Permutations II

- 1. There is a section $s: \mathfrak{G} \to M\mathfrak{G}$ which, at stage U, takes a permutation π of U and produces the subset V of U given by the elements of U that are not fixed by π , together with the restriction of π to V. It follows that \mathfrak{G} is a free M-algebra.
- 2. What are the "generators"?
- 3. The equalizer of \mathbf{u} and s is the object \mathfrak{D} of derangements.
- 4. The numerical reflection of this is that $n! = \sum_{i=0}^{n} d_i \binom{n}{i}$.

Origin of the ideas

For every function $f: \mathbb{N} \to \mathbb{N}$ there exists a unique function $c: \mathbb{N} \to \mathbb{Z}$ such that for every $n \in \mathbb{N}$, $fn = \sum_{i=0}^{n} c_i \binom{n}{i}$.

- For every function $f: \mathbb{N} \to \mathbb{N}$ there exists a unique function $c: \mathbb{N} \to \mathbb{Z}$ such that for every $n \in \mathbb{N}$, $fn = \sum_{i=0}^{n} c_i \binom{n}{i}$.
- ▶ Let Q be the set of finite sets of natural numbers and define an *operator* to be a function $Q \rightarrow Q$.

- For every function $f: \mathbb{N} \to \mathbb{N}$ there exists a unique function $c: \mathbb{N} \to \mathbb{Z}$ such that for every $n \in \mathbb{N}$, $fn = \sum_{i=0}^{n} c_i \binom{n}{i}$.
- **●** Let Q be the set of finite sets of natural numbers and define an *operator* to be a function $Q \rightarrow Q$.
- An operator ϕ is called *numerical* if for a and b in Q of the same cardinality, ϕa and ϕb have the same cardinality.

- For every function $f: \mathbb{N} \to \mathbb{N}$ there exists a unique function $c: \mathbb{N} \to \mathbb{Z}$ such that for every $n \in \mathbb{N}$, $fn = \sum_{i=0}^{n} c_i \binom{n}{i}$.
- **●** Let Q be the set of finite sets of natural numbers and define an *operator* to be a function $Q \rightarrow Q$.
- An operator ϕ is called *numerical* if for a and b in Q of the same cardinality, ϕa and ϕb have the same cardinality.
- Clearly, every numerical operator induces a function $\mathbb{N} \to \mathbb{N}$.

Myhill and Schanuel

- 1. For a numerical operator ϕ let $\phi^{\varepsilon} = \bigcup \{\phi a \mid a \in Q\}$.
- 2. A numerical operator ϕ is *combinatorial* if there exists a $\phi^{-1}:\phi^{\varepsilon}\to Q$ such that $x\in\phi a$ if and only if $\phi^{-1}x\subseteq a$.
- 3. A function $f: \mathbb{N} \to \mathbb{N}$ is then called *combinatorial* if it is induced by a combinatorial operator.

Theorem 1 (Myhill). Let $f: \mathbb{N} \to \mathbb{N}$ be a function with $fn = \sum_{i=0}^n c_i \binom{n}{i}$. Then f is combinatorial if and only if $c_i \geq 0$ for every $i \geq 0$.

Myhill and Schanuel

Corollary 0. If f and g are combinatorial functions then so are the functions $n \mapsto (fn) \cdot (gn)$ and $n \mapsto f(gn)$.

Proof. This may be shown without introducing combinatorial operators, but combinatorial operators allow "to prove these closure conditions without the algebraic complications which arise from substitution involving expressions" of the form $\sum_{i=0}^{n} c_i \binom{n}{i}$. (Dekker 1990)

The other way to look at this is ...

The Schanuel topos

- 1. Continuous actions for subgroup of bijections of $\mathbb{N}^{\mathbb{N}}$.
- 2. Classifier of infinite decidable objects.
- 3. Sheaves for the atomic topology on \mathbb{I}^{op} .
- 4. Pullback-preserving functors $\mathbb{I} \to \mathbf{Set}$.
- 5. Kl_M , where $(M, \mathbf{u}, \mathbf{m})$ on $\mathbf{Set}^{\mathbb{B}}$ is induced by $\mathbb{B} \to \mathbb{I}$.

Myhill and Schanuel

We claim that

- 1. Myhill's theorem is essentially saying that Kl_M is Cauchy complete.
- 2. A numerical operator ϕ should be thought of as an M-algebra (A, a) with $a: MA \rightarrow A$.
- 3. The ϕ^{-1} witnessing that ϕ is combinatorial should be thought of as a section of the canonical quotient $a:(MA,\mathbf{m})\to (A,a)$.
- 4. Put differently: combinatorial operators are a device to recognice free M-algebras.