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TOPICSThe international onferene "10th IMACS International Symposium on Iterative Methods in Sienti�Computing " (IMACS 10) will be held in Marrakeh, Morroo during Mai 18 - 21 , 2011. The meeting isdediated to Professor Paul Van Dooren on his 60th birthday. The topis of this onferene are (but notlimited to):- Large Linear Systems of Equations and Preonditioning,- Large Sale Eigenvalue Problems,- Saddle Points Problems,- Domain Deomposition,- Numerial Methods for PDEs,- Optimization,- High-Performane and Parallel Computation,- Linear Algebra and Control,- Model Redution,- Multigrid and Multilevel Methods,- Appliations to Image Proessing, Finanial Computation, Energy Minimization and Internet Searh Engines...INVITED SPEAKERS- M. GANDER, University of Geneva, (Switzerland)- V. MEHRMANN, Tehnishe University Berlin, (Germany)- G. MEURANT, (Frane)- Y. SAAD, University of Minnesota, (USA)- P. VAN DOOREN, Catholi University of Louvain, (Belgium)SCIENTIFIC COMMITTEE- M. BELLALIJ, - M. GANDER, - V. MEHRMANN, - M. PREVOST, - H. SADOK,- A. H. BENTBIB, - K. JBILOU, - A. MESSAOUDI, - L. REICHEL, - P. VAN DOOREN,- A. BOUHAMIDI, - A. LEMBARKI, - G. MEURANT, - Y. SAAD,ORGANIZING COMMITTEE- M. BELLALIJ , Université de Valeniennes, Frane- A. H. BENTBIB, Faulté des Sienes et Tehniques de Marrakeh , Maro- A. BOUHAMIDI, Université du Littoral C�te d'Opale, Frane- M. HEYOUNI, ENSA Al-Hoeima, Université Mohammed I, Oujda, Maro- K. JBILOU, Université du Littoral C�te d'Opale, Frane- A. LEMBARKI, Université Cadi Ayad , Faulté des Sienes Semlalia, Marrakeh , Maro- A. MESSAOUDI, ENS Rabat , Maro- M. PREVOST, Université du Littoral C�te d'Opale , Frane- L. REICHEL, Kent State University , USA- R. SADAKA, ENS Rabat, Maro- H. SADOK, Université du Littoral C�te d'Opale , Frane
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Why it is so difficult to solve Helmholtz problems with
classical iterative methods

Martin J. Gander ∗

Abstract

In contrast to the positive definite Helmholtz equation, the deceivingly similar

looking indefinite Helmholtz equation is difficult to solve using classical iterative

methods. Applying directly a Krylov method to the discretized equations without

preconditioning leads in general to stagnation and very large iteration counts.

Using classical incomplete LU preconditioners can even make the situation worse.

Classical domain decomposition and multigrid methods also fail to converge when

applied to such systems.

The purpose of this presentation is to investigate in each case where the

problems lie, and to explain why classical iterative methods have such difficulties

to solve indefinite Helmholtz problems. I will also present remedies that have been

proposed over the last decade, for incomplete LU type preconditioners, domain

decomposition and also multigrid methods.

∗Section de Mathèmatiques, Universite de Genève, CP 64, Genève Switzerland
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Numerical solution of linear quadratic optimal control
problems with differential-algebraic constraints

Volker Mehrmann ∗

Abstract

We discuss the numerical solution of linear quadratic optimal control problems

with constraints given by differential algebraic equations (DAEs). We show that

the optimality system is a boundary value problem that is again a DAE and show

how this can be solved to obtain optimal feedback solutions. This generalizes 30

year old results form Paul Van Dooren from the linear constant coefficient case

to the linear variable coefficient and nonliner case. We also discuss the numerical

solution of the optimality boundary value problem.

∗Institut für Mathematics, TU Berlin, Str. des 17, Juni 136, D610623, Berlin, Germany
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Necessary and sufficient conditions for GMRES complete
and partial stagnation

Gérard Meurant ∗

Abstract

In this talk we will give necessary and sufficient conditions for the complete or

partial stagnation of the GMRES iterative method for solving real linear systems.

Our results rely on a paper by Arioli, Pták and Strakoš (Krylov sequences of

maximal length and convergence of GMRES, BIT Numerical Mathematics, v 38

n 4 (1998)), characterizing the matrices having a prescribed convergence curve

for the residual norms. We will show that we have complete stagnation if and

only if the matrix A is orthonormally similar to an upper or lower Hessenberg

matrix having a particular first row or column or a particular last row or column.

Partial stagnation is characterized by a particular pattern of the matrix Q in

the QR factorization of the upper Hessenberg matrix generated by the Arnoldi

process.

Since these conditions are not easy to check in practice, it is interesting to

look for other characterizations. We will graphically illustrate the problem of

complete stagnation for real matrices of order n ≤ 4. For these matrices one can

give necessary and sufficient conditions for the existence of a real right-hand side b

such that the residual norms stagnate. We will also provide a sufficient condition

for the non-existence of complete stagnation for a matrix A of any order n.

∗gerard.meurant@gmail.com
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Multilevel methods for Ill-posed problems

Lothar Reichel ∗

Abstract

Multilevel methods for the solution of well-posed problems, such as certain

boundary value problems for partial differential equations and Fredholm integral

equations of the second kind, are popular and their properties are well understood.

Much less is known about the behavior of multilevel methods for the solution of

linear ill-posed problems, such as Fredholm integral equations of the first kind

with a right-hand side that is contaminated by error. We discuss properties of

cascadic multilevel methods for the latter kind of problems.

∗Department of Mathematical Sciences Kent State University Kent, OH 44242, USA
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Computing the diagonal of the inverse of a matrix

Yousef Saad ∗

Abstract

Several emerging application require to compute the diagonal of the inverse of

a (sparse) matrix. These include Density Functional Theory in elecronic structure

calculations, Dynamic Mean Field Theory (DMFT), and uncertainty quantifica-

tion. To solve this problem, a method based on probing can be used. This

technique leads to the solution of many linear systems with different right-hand

sides. Probing is quite effective when the diagonals of the inverse decay when

moving away from the main diagonal, as happens when A is diagonally dominant.

In other situations, alternative approaches must be considered. Among these we

discuss techniques based on domain decomposition ideas.

∗Minnesota Supercomputing Institute and Departement of Computer Science and Engineering,

University of Minnesota, Minneapolis, MN 55455, USA
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Updating and downsizing the approximate eigenspace of an
indefinite matrix

Paul Van Dooren ∗

Abstract

Indefinite symmetric matrices occur in many applications, such as optimiza-

tion, partial differential equations and variational problems where they are for

instance linked to a so-called saddle point problem. In these applications one

is typically interested in computing an estimate of the dominant eigenspace of

such matrices, in order to solve regularized least squares problems or compute

preconditioners. Let us consider a symmetric but indefinite matrix SN . We limit

ourselves to techniques where the approximations are computed incrementally

for principal submatrices of SN of growing dimension. Let SN be an N × N

symmetric matrix with eigenvalues

λ1 ≥ λ2 ≥ · · ·λP > 0 > λP+1 ≥ · · · ≥ λN−1 ≥ λN ,

i.e., SN has P positive eigenvalues and N − P negative ones. Let Sn for n < N

be an n× n principal submatrix, i.e. Sn := S(1 : n, 1 : n), n = 1, . . . , N , then its

eigenvalues will interlace those of SN and hence this matrix will also very likely

be indefinite. We now want to compute rank m approximations An to these

submatrices (with of course m < n) but also in factored form

Sn ≈ An = UnMnU
T
n ,

where UT
n Un = In, and Mn ∈ ℜm×m is a matrix of full rank m and where the

m eigenvalues of Mn are good approximations of the m dominant ones of Sn

(with that, we mean those of largest absolute value). In that case, Un can also be

expected to be a good approximation of the dominant eigenspace of Sn, provided

its dominant eigenvalues are well separated from the rest of the spectrum.

The proposed method is an incremental method in which we compute an

estimate of the dominant eigenbasis of matrices with growing dimensions. The

method extends the results of [1] to the indefinite matrix case and is well-suited

for large scale problems since it is efficient in terms of complexity as well as data

management.

References
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Alternative implementations of the hybrid Bi-CG methods
for linear equations

Kuniyoshi Abe ∗

Abstract

The hybrid Bi-Conjugate Gradient (Bi-CG) methods such as the Conju-

gate Gradient Squared method (CGS), the Bi-Conjugate Gradient STABilized

method (BiCGSTAB), the BiCGstab(l) method and the Generalized Product-

type method derived from Bi-CG (GPBiCG) are efficient solvers for solving

a large sparse linear system. The Induced Dimension Reduction (s) method

(IDR(s)) [3] has recently been developed, and moreover the equivalence between

BiCGSTAB and IDR(s) for s = 1 is shown in [1]. Sleijpen et al. have reformu-

lated BiCGSTAB to clarify the relationship between BiCGSTAB and IDR(s) in

[1, 2]. The formulation of Bi-CG part used in the reformulated BiCGSTAB is

different from that of the original Bi-CG; the coefficients αk and βk are computed

by using a formulation that is closer to the IDR approach.

In this paper, we will redesign variants of CGS, BiCGSTAB, GPBiCG and

BiCGstab(l) by using the same approach to compute Bi-CG part as was described

in [1, 2], i.e., the formulation of Bi-CG described in [1, 2]. Here our redesinged

BiCGSTAB and BiCGstab(l) will coincide with BiCGSTAB in [1] and IDRstab

[2] for s = 1, respectively. Although these variants are mathematically equivalent

to their counterparts, the computation of one of the Bi-CG coefficients differs,

and the recurrences of our variants are also partly different from those of the

original hybrid Bi-CG methods. This modification seems to allow a more accurate

computation of the Bi-CG coefficients. Numerical experiments show that our

variants are more stable and lead to faster convergence typically for linear systems

for which the methods converge slowly (long stagnation phase).
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A new method for classification of the Brachiopods based
on the Radon transformation

Youssef Ait Khouya ∗

Abstract

The analysis is the quantification of the organization’s morphology which

forms an important aspect in the paleontological studies. On the one hand, they

make it possible to understand the biodiversity in its morphological dimension.

On the other hand, they highlight the morphological transformations undergone

during the biological evolution. Historically, the form was encircled by a purely

descriptive approach based on the qualitative evaluations of the morphological

change starting from simple images. This approach was replaced gradually by the

biometric methods having leads to the populated design of the fossil species. The

variables used in such methods are linear dimensions, angles, surfaces and ratio

or combination of dimensions. But, these biometric descriptors are insufficiently

informative since they give only one approximate quantitative representation of

the form and its changes. Then we used the Fourier analysis which consists

in approximating the shape by a goniometrical function defined by a sum of

terms of sine and cosine. This function is broken up into a series of amplitude

of harmonics and phases or into a series of coefficient of Fourier being useful

like variables for the quantitative analyses. But this method is valid right for

the forms regular, indeed when morphologies become complex, it is not more

possible to use such descriptors. In this paper, we propose a new method to

identify Brachiopods based on the Radon transform. We use an adaptation of

Radon transform called R-transform. Furthermore, to improve the uniqueness of

the approach, a binary image is projected into the Radon space for different levels

of the Chamfer distance transform. The advantages of the proposed method are

robustness to noise, size and shift invariance.

∗Joint work with M. Ait oussous and N. Alaa, Department of Mathematics, Laboratory of Ap-

plied Mathematics and Computer Science (LAMAI), Faculty of Science and Technology, BP 549,

Marrakech, Morocco. e-mail: cimoinfo@hotmail.fr, alaanoureddine@gmail.com
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Detection of slums in the region of Marrakech using genetic
algorithms

Mohammed Ait Oussous ∗

Abstract

Active contours are powerful tools for image segmentation. Since the original

work on snackes were introduced by kass . Our approach has two stages: The first,

using k nearest neighbour method for classification of the satellite image. The

second, using the method of active contours by genetic algorithms formulation to

detect the edge of the village. These algorithms can provide an interesting alter-

native when traditional optimization methods (method ”Greedy”, the variational

approach, ...) do not provide reliable results

∗Joint work with Y.Ait khouya, N.Alaa, Department of Mathematics, Laboratory of Mathematics

and Computer Science (LAMAI), Faculty of Science and Technology, BP 549, Marrakech, Morocco

e-mail: youssef2005133@yahoo.fr, alaanoureddine@gmail.com .

13



Improving Newton’s method for nonlinear optimization
problems in several variables

Ameen Alawneh ∗

Abstract

One of the most important problems in mathematics is solving systems of

nonlinear equations. The problem of solving systems of nonlinear equations can

be seen in finding the solutions of optimization problems. It is not an easy task to

locate all critical points of a real valued function f(X) on R? by attempting to find

exact solutions of ?f(x)=0. Instead iterative methods are used to search out the

extremum by means of an approximating sequence whose points are generated

in some computationally acceptable way from f(x). More efficient methods for

solving systems of nonlinear equations are continuously being sought. Some of

these methods depend on variations of Newton’s approach and spectral methods.

Adomain decomposition method (ADM) was first introduced by Adomain and

it’s used for solving a wide range of problems. An advantage of ADM is provide

analytical approximation or approximated solution to a wide class of nonlinear

equations and stochastic equations without linearization, perturbation closer ap-

proximation or discretization. In this paper, ADM is used to improve Newton’s

method for minimizing function of several variables. Numerical solutions are

calculated in the form of convergent series with easily computable components.

The significant of this work is that improvement of Newton’s method reduces

computations, improves the accuracy and yields fast convergence.

∗Dept of Math, Stat and Physics Qatar University, Doha - Qatar Email: aalawneh@qu.edu.qa
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Mesh-free global and local radial basis collocation methods
for three-dimensional partial differential equations

Yasser Alhuri ∗

Abstract

In the effort to develop schemes that treat arbitrary datasets, Mesh-free radial

basis function (RBF) approximation has emerged as a popular choice, because it

does not suffer from the need to impose its own geometrical structure (such as a

grid or triangulation) in order to create an approximate. In short, RBF approxi-

mation is feasible regardless of the configuration of the dataset or domain of the

target function. This technique has been successful in numerous and disparate

real world problems involving the treatment of scattered data. The geosciences,

computer graphics, and medical imaging are a few fields where RBFs have pros-

pered. It is widely used in a variety of disciplines involving the processing of

multivariate data, such as denoising, machine learning and the numerical solu-

tion of partial differential equations (PDEs). This study deals with the numerical

solution of three-dimensional partial differential equations by the Mesh-free global

and local radial basis collocation methods.

∗yasseralhuri@yahoo.com -Hassan II University, FST, Mohammedia, Morocco
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A Game-theoretic approach to the minimization of the total
transmit power for multiuser MIMO-OFDM systems

Habib Ayad ∗

Abstract

A game theoretic approach to the minimization of the total transmit power for Multi-

Input Multi-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is

proposed. the problem is cast as a strategic cooperative game with users as players,

the set of allocated subcarriers as strategies and the total transmit power as payoff

functions. The Nash equilibrium solution is established. In this work we assume

that each user (player) has two strategic power allocations. those two strategic power

allocation are based on two different power allocation algorithms. In our approach we

assume that the channel state information (CSI) is perfectly known to the receiver

and the transmitter, the singular value decomposition (SVD) is used to decompose the

MIMO channel into a parallel eigenmode subchannels. In the simulation we present

the characteristic and the performance of our approach, we investigate the impact of

antennas number and users number and we compare our approach with the others

algorithms.

∗joint Work with Khalid El Baamrani: Equipe Tlcommunication et Rseaux informatiques, FSSM,

Cadi Ayyad University, Marrakech, Morocco and

Abdellah Ait Ouahman: Laboratoire de Technologie de l’Information et Modelisation, ENSA of

Marrakech, Cadi Ayyad University, Marrakech, Morocco

Corresponding author: ayad.habib@gmail.com
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The structured LU -Like decomposition and some of its
applications

Mustapha Bassour ∗

Abstract

We present in this work an algorithm that give a J-decomposition LU of an

real 2n-by-2n matrix M . The LU J-decomposition method is given in parallel

with Gaussian elimination. The J-decomposition LU allows us to compute the

factorization RJR of skew-Hamiltonian matrices. Decomposition M = RJR is

the fundamental step for solving structured kth degree polynomial eigenvalue

problem P (λ)v =
∑k

i=0 λ
iMiv = 0 which arise in many applications in science

and engineering.
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oratoire de Mathématiques Appliquées et Informatique. BP 549 Marrakech, Mo-

rocco.(mustapha.bassour@gmail.com) / (bentbib@fstg-marrakech.ac.ma, ahbentbib@gmail.com)).

17



Computing the GCD of two polynomials via Hankel and
Bezout matrices

Skander Belhaj ∗

The standard way to find the greatest common divisor (GCD) of two polynomials

is via the Euclidean algorithm. Unfortunately, the calssical algorithm turns out to

be unstable when applied to approximate polynomials. One might think of designing

stabilized numerical versions to the approximate case based on procedures involving

matrices. This paper is principally concerned with the extension of the approximate

approach for the block diagonalization of Hankel matrices [1] to the case of Bezout

matrices. In fact, for the computation of polynomial GCD, the use of Bezout matrices

seems better suited for numerical computations. We provide a comparisons of the two

approaches and show the better performances of the algorithms based on Bezoutians

by means of an experimental evidence.
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Polynomial algorithm for the maximum stable set problem

in a new class of graphs

Zineb Benmezziane ∗

Abstract

Finding the maximum independent set in a graph G is, in general, a diffi-

cult problem. And it remains NP-complete even for triangle-free or banner-free

graphs. To solve this problem, various approaches were observed. And several

authors have given iterative procedures, which at each stage, construct from a

graph G another graph G′ such that α(G′) = α(G) − k, where k is a positive

known integer.

Via pseudo boolean functions, Ebenegger and al. proposed a method with k = 1.

This method was named Struction (Stability number RedUCTION).

The struction is a general approach to compute the stability number α(G) of

a graph G. It construct iteratively a sequence of graphs G1, G2, .. such that

α(Gi+1) = α(Gi)− 1. But the main problem of this method is that the number

of vertices of the graph Gi+1 can increase exponentially, that is why the algorithm

is not polynomial.

In this article, we give a modified algorithm of the struction and describe a new

class of graphs Γ, for which the stability number can be obtained in polynomial

time using this algorithm.

A graph in the class Γ is chair-free, net-free graphs and has the property that

the subgraph induced by the set of centers of claws is the union of complete

subgraphs.

Keywords: stability number, algorithm, polynomial, graph.

∗Universit des Sciences et de la Technologie Houari Boumedienne, Alger 16111, Algrie; E-mail

adress: zbenmeziane@yahoo.fr. Joint work with Moncef ABBAS
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Blood flow modeling in the presence of a stent

Youssef Bentaleb ∗

Abstract

In this paper, we present a new approach based on the Navier-Stocks equations for

modeling the blood-flow comportment in the artery with presence of the cardiovascu-

lar stent. In fact, we propose a mathematical one-dimensional (1d) model obtained

making simplifying assumptions on solutions and to define the profiles of velocity and

pressure liquid (blood) through the variable geometry of the arteries interest of sim-

ulation in this context is to make a comparison between different geometries without

varying other parameters (such as blood flow, the properties of elasticity of the aor-

tic wall). Our approach for solving optimization problems in complex geometry like

the arteries, is to use first of methods and evolutionary algorithms, one-dimensional,

based on a model that leads to equations of Navier-Stokes equations for estimating

the velocity profile and blood pressure taking into account variations in the geometry

pressure. We made numerical simulations with Comsol.
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A Novel model of credit scoring using hidden markov model

Badreddine Benyacoub ∗

Abstract

Credit scoring is the set of decision models and their underlying techniques

that aid lenders in the granting of consumer credit, Credit scoring is one the most

successful applications of statistical modeling in finance and banking.

Hidden Markov models (HMM) are stochastic models capable of statistical

learning and classification. They have been applied in many areas like speech

recognition and handwriting recognition. In this study, HMM is used to evaluate

and estimate the risk due to failure of a bank borrower. The result of evaluation

of the risk assigns default bankruptcy probabilities to credit customers classifying

them as good (solvent) and bad (insolvent) borrowers.

This paper investigates the estimation techniques of Hidden Markov Model

to build a model for credit scoring in terms of classification and probability of

default modeling. we propose a new algorithm of risk computation, where to

make HMM a powerfel method for learning and decision as well as conventional

methods like linear discriminant analysis and logistic regression.
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Community detection for hierarchical video segmentation.

Arnaud Browet ∗

Abstract

In every day life, image and video processing becomes more and more impor-

tant for example in urban traffic, medical analysis, surveillance but also within

social networks. That explains why there has been a lot of scientific research

around this topic for the last few decades.

In this work, we propose a new graph-based technique to uncover object con-

tours and extend it to video tracking. First a large graph is built based on the

individual pixels of a set of video frames. The weight of each edge, where each

pixel corresponds to a node, depends on the distance between pixels (defined by

the Euclidean or Chebyshev distance but also the distance in a well chosen color

space or the optical flow). From this graph, we will show that good segmentation

results can be achieved, without a-priori knowledge about the observed scene, by

identifying each object of the picture as a community extracted from the graph.

Communities have been initially defined by Newman and Girvan [1] as groups of

highly connected nodes with only a few light connections between distinct groups.

The authors defined a cost function Q, termed modularity, to assess the quality

of a clustering in the graph:

Q =
∑

ij

(Wij −Nij) δ(cj , cj)

where Wij is the edge weight between nodes i and j, Nij is a well chosen null

model to evaluate the strength of an edge and δ is a Kronecker delta indicating

if nodes i and j are in the same community.

Optimizing the modularity has been proved to be NP-hard but we show that

good segmentation can be achieved, at a reduced numerical cost, using an local

version of the so-called Louvain method, recently proposed in [2]. This greedy

algorithm recursively aggregated nodes or groups of nodes until no gain of mod-

ularity can be found.
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PVD’s contributions to numerical methods in systems and
control

Younès Chahlaoui ∗

Abstract

Paul M. Van Dooren received the engineering degree in computer science and

the doctoral degree in applied sciences, both from the Katholieke Universiteit

Leuven, Belgium, in 1974 and 1979, respectively. He held research and teaching

positions at the Katholieke Universiteit Leuven (1974-1979), the University of

Southern California (1978-1979), Stanford University (1979-1980), the Australian

National University (1984), Philips Research Laboratory Belgium (1980-1991),

the University of Illinois at Urbana-Champaign (1991-1994), Florida State Uni-

versity (1998) and the Universite Catholique de Louvain (1980-1991, 1994-now)

where he is currently a professor of Mathematical Engineering. Dr. Van Dooren

received the IBM-Belgium Informatics Award in 1974, the Householder Award in

1981 and the SIAM Wilkinson Prize of Numerical Analysis and Scientific Com-

puting in 1989. He is a Fellow of IEEE and of SIAM (Society of Industrial and

Applied Mathematics). He received the Francqui Chair in Antwerp in 2010. He

is an Associate Editor of several journals in numerical analysis and systems and

control theory. His main interests lie in the areas of numerical linear algebra,

systems and control theory, and in numerical methods for large graphs and net-

works. In this talk we will review some of his main contributions and we will show

some rare moments captured on pictures by some of his students and friends.
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Gramian-based MoR of switched dynamical systems

Younès Chahlaoui ∗

Abstract

We consider a switched linear dynamical system described by

δx(t) = Aσx(t) +Bσu(t), x(t0) = x0,

y(t) = Cσx(t),
(1)

where x(t) is the state, u(t) is the controlled input, y(t) is the measured output,

σ is the piecewise constant signal taking values from an index setM = {1, . . . , l},
and Ak, Bk and Ck, k ∈M are matrices of appropriate dimensions. The switched

system is a multi-model which is a special case of hybrid systems [2].

This talk is about model reduction of switched systems which has received

relatively little attention in the Numerical Linear Algebra community. We will

present several new Gramian-based methods. These Gramians are matrix energy

functions and they are, in theory, solutions of certain complicated Lyapunov

equations [3]. Here we propose to solve a set of simpler Lyapunov equations

and to use linear combinations of these solutions to obtain the Gramians. We

propose also a balanced truncation-like method with these two Gramians [1]. We

will also present another new algorithm based on Lyapunov stability analysis.

We will show how to solve the underlying set of Linear Matrix Inequalities for

two common solutions. These two solutions are used to come up with a balanced

truncation-like method. With this approach we will preserve the stability for the

reduced model. We will suppose implicitly that each subsystem is stable.
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A new cache efficient scheme for sparse matrix-dense
matrix multiplication

Eric Cox ∗

Abstract

Solution of large sparse linear systems is often the most time consuming part

of many science and engineering applications. Computational fluid dynamics,

circuit simulation, structural mechanics, and computational nanoelectronics are

just a few examples of the application areas, which give rise to solving large sparse

linear systems. Sparse matrixvector (or -dense matrix) multiplications, in turn,

are a major contributors to the time consumed by preconditioned iterative solvers.

It is well-known that, unlike dense matrix operations, sparse matrix operations

suffer significantly from excessive indirect memory addresses especially in deep

memory hierarchies. In this paper we present a novel sparse matrix-dense matrix

multiplication scheme that is based on a fast reordering strategy of the sparse

matrix under consideration so as to take advantage of concentrating most of

the work in the form of banded matrix (dense within the band) dense matrix

multiplication. The resulting scheme minimizes the disadvantages of indirect

memory addresses, is much more scalable, and is more tolerant of deep memory

hierarchies. We present detailed performance comparisons with other well known

sparse matrix multiplication kernels, including the well-known OSKI kernel of

the Lawrence Berkeley National Laboratory.
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A generalization of the Faber-Manteuffel theorem to
rank-structured matrices

Gianna M. Del Corso ∗

Abstract

In 1984 Faber and Manteuffel answered an important question posed in 1980

by Gene Golub about necessary and sufficient conditions on a matrix A for the

existence of a three-term conjugate gradient type method for solving a linear

system with A. In particular they showed that an (s+2)-term conjugate gradient

method exists if and only if A is normal of degree s that is AH is a polynomial

in A of degree at most s. The Faber-Manteuffel theorem can be formulated

independently of conjugate gradient context as a result on the existence of a short

recurrence for generating an orthogonal basis for the Krylov subspaces of A, or

in terms of matrices giving necessary and sufficient condition for the reducibility

of A to a banded-upper Hessenberg matrix (see [1]).

Theorem 1 [1] Let A be an n × n matrix with minimal polynomial of degree

dmin(A), let s be a nonnegative integer such that s+2 < dmin(A). A is normal(s)

if and only if it can be reduced to a (s+ 2)-band Hessenberg matrix.

We investigate to what extent the hypothesis of the theorem can be relaxed

to capture matrices that can be reduced to Hessenberg matrices having low rank

above the s-th superdiagonal. In particular we proved the following theorem.

Theorem 2 Let A be an n× n matrix, and let C be an n× n rank-k matrix. If

s is the smallest integer such that there exists a polynomial ps(t) of degree s such

that AH = ps(A) +C, then, A is reducible to an upper Hessenberg matrix having

rank-k above the s-th superdiagonal.

In the conjugate gradient context, for k = 1, we can reformulate Theorem 2 as

follows.

Theorem 3 Let A be a nonsingular matrix with minimal polynomial degree

dmin(A). Let s be a nonnegative integer, s + 2 < dmin(A). If there exists a

polynomial ps(t) of degree s and a rank-one matrix C such that AH = ps(A)+C,

then A admits, for any initial vector r0 a corrected optimal recurrence of length

at most s+2, while for any r0 of grade with respect to A at least s+2, it admits

a corrected optimal recurrence of length (s+ 2).

We are currently investigating how the Faber-Manteuffel proof can be modified

to prove the necessary conditions.
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Constrained non-negative matrix factorization. Application
to industrial sources identification.

Gilles Delmaire∗

Abstract

Our contribution is concerned with factorization of an observation matrix

into two unknown matrices, the contribution matrix G and the profile matrix F

enabling to identify many pollution sources :

X = GF + E

The search for G and F may be achieved through factorization technics PMF(Postive

Matrix Factorization) and NMF(Non negative Matrix Factorization) who look al-

ternatively for best updates on G and F. These methods are sensitive to noise

and initialization and give results up to a scaling factor and a permutation one.

Weighted NMF [1] [2] have been proposed to take into account different standard

deviations of the data matrix. However, some profiles components are incon-

sistent with practical experience. To avoid this drawback, constrained convex

optimization is used in order to freeze some profile and contribution components

and to let free the other ones. The problem is then equivalent to a family of con-

strained quadratic sub-problems whose solution may be computed. Constraints

are expressed in our case as linear equality constraints where some components

of the profile matrix are set to zero or to a constant positive value. Similarly, lin-

ear equality constraints may be added to the contribution matrix. Some global

expressions including multiplicative updates of the whole matrixes are derived

enabling a low computational load. These technics are used to estimate source

contributions of air suspended particles. The challenge is to overcome difficulties

coming from similar industrial profiles. On one hand, constrained optimization

enables to avoid unexpected components in the profile matrix and on the other

hand to get some more precise information on unknown profiles. For the same

reasons, it provides a more precise contribution of the different sources on the

whole air quality.
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Multigrid methods for zero-sum two player stochastic
games with mean reward

Sylvie Detournay ∗

Abstract

We develop a fast numerical algorithm for large scale zero-sum two player

stochastic games with perfect information and mean reward, which combines

policy iteration and algebraic multigrid methods.

Consider a finite state space X . The stochastic game is played in stages as

follows. The initial state x0 is given and known by the two players. The player

who plays first, says max, chooses an action in a set of possible actions. Then the

second player, called min, chooses an action in another set of possible actions.

The actions of both players and the current state determine a payment made

by min to max at stage 0 and the probability of the new state x1. Then the

game continue in the same way with state x1 and so on. We call a strategy or

policy for a player, a rule which tells him the action to choose in any situation. A

Markovian strategy depends only, possibly randomly, on the current state. Each

pair of Markovian stationary strategies of the two players determines a Markov

chain on X . We are studying the value of the game with mean reward which is

defined as the mean expected payment per stage, made by min to max, when

each player chooses a strategy maximizing his reward.

The value of the game is solution of a dynamic programing equation. This

nonlinear equation can be solved by the policy iteration algorithm for zero sum

stochastic games of Hoffman and Karp (66) when the Markov transition matrices

of the game are all irreducible. The principle of this algorithm consists in ap-

plying successively the two following steps: first compute the value of the game

with fixed strategy for the first player and then improve this strategy. The first

step is solved applying the policy iteration for one player games, i.e. stochastic

control problems. Cochet-Terrasson and Gaubert (06) proposed a version of pol-

icy iteration for two player games in the general multichain case, which is based

on the algorithm for multichain Markov decision processes of Denardo and Fox

(68). Each iteration of Dernado and Fox algorithm requires the computation

of stationary probabilities of irreducible Markov chains and also the solution of

linear systems of the type v =Mv + r where M is a sub-markovian matrix.

We propose an algorithm based on Cochet-Terrasson and Gaubert policy it-

eration algorithm where we use multigrid methods for Markov chains of Horton

(94) and De Sterck and all (08) to find the stationary probabilities and algebraic

multigrid algorithm of Ruge and Stüben (86) for the above linear systems. We

present numerical results of this algorithm (implemented in C) for large scale

zero-sum games.

∗Joint work with Marianne Akian, Inria Saclay and CMAP Ecole Polytechnique, France.

28



Construction, investigation and numerical resolution of high
order accurate semi-discrete decomposition scheme for

multidimensional quasi-linear evolution problem

Nana Dikhaminjia ∗

Abstract

In the present work there is considered the following nonlinear evolution prob-

lem:

u′ (t) +Au (t) +M (u (t)) = f (t) , t > 0, u (0) = ϕ.

Here A is a self-adjoint positively defined operator in Hilbert space H and

A = A1 + A2 + ... + Am (m ≥ 2), where A1, A2, ..., Am are self-adjoint posi-

tively defined operators. ϕ is a given vector from D (A), f(t) is a continuously

differentiable function, nonlinear operatorM (·) satisfies Liptschitz condition. Let
us introduce the following net domain ωτ = {tk = kτ , k = 0, 1, ..., τ > 0}. On

the basis of high order accurate rational splitting of the semigroup (see [1]), there

is constructed the following fourth order of accurate decomposition scheme:

uk+1 = V (2τ)uk−1 + τ (gk+1 + 4V (τ) gk + V (2τ) gk−1) ,

where gk = (f (tk)−M (uk)) /3,

2V (τ) = Tτ (α)T τ (α)Tτ (α)T τ (α) + T τ (α)Tτ (α)T τ (α)Tτ (α) ,

Tτ (α) = Wτ (αA1) ...Wτ (αAm) , T τ (α) =Wτ (αAm) ...Wτ (αA1) ,

Wτ (A) = (I − ατA) (I + ατA)
−1

(I − ατA) (I + ατA)
−1
, 4α = 1± i/

√
3.

Numerical realization of the constructed scheme on each time layer tk+1 is carried

out using the following iterative process:

u
(m)
k+1 = −τ

3
M

(

u
(m−1)
k+1

)

+ Fk, k = 1, 2..., m − iteration index,

Fk = V (2τ) (uk−1 + τgk−1) + 4τV (τ) gk +
τ

3
f (tk+1) .

The stability of the decomposition scheme is investigated and the error of

the approximate solution is estimated. Using this scheme, there are carried out

numerical calculations for different model problems. On the basis of the results

of numerical calculations there are studied the stability and accurate order of the

obtained decomposition scheme.
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Sequences of generalized eigenproblems in DFT

Edoardo Di Napoli∗

Abstract

Research in several branches of chemistry and material science relies on large

numerical simulations. Many of these simulations are based on Density Func-

tional Theory (DFT) models that lead to sequences of generalized eigenproblems

{Pi}. Every simulation normally requires the solution of hundreds of sequences,

each comprising dozens of large and dense eigenproblems; in addition, the prob-

lems at iteration i + 1 of {Pi}are constructed manipulating the solution of the

problems at iteration i. The size of each problem ranges from 10 to 40 thousand

and the interest lays in the eigenpairs corresponding to the lower 10-30% part

of the spectrum. Due to the dense nature of the eigenproblems and the large

portion of the spectrum requested, iterative solvers are not competitive; as a

consequence, current simulation codes uniquely use direct methods.

In this talk we present a study that highlights how eigenproblems in succes-

sive iterations are strongly correlated to one another. In order to understand

this result, we need to stress the importance of the basis wave functions, which

constitute the building blocks of any DFT scheme. Indeed, the matrix entries

of each problem in {Pi}are calculated through superposition integrals of a set of

basis wave functions. Moreover, the state wave functions—describing the quan-

tum states of the material—are linear combinations of basis wave functions with

coefficients given by the eigenvectors of the problem. Since a new set of basis

wave functions is determined at each iteration of the simulation, the eigenvectors

between adjacent iterations are only loosely linked with one another. In light of

these considerations it is surprising to find such a deep correlation between the

eigenvectors of successive problems.

We set up a mechanism to track the evolution over iterations i = 1, . . . , n of

the angle between eigenvectors x(i) and x(i+1) corresponding to the jth eigenvalue.

In all cases the angles decrease noticeably after the first few iterations and become

almost negligible, even though the overall simulation is not close to convergence.

Even the state of the art direct eigensolvers cannot exploit this behavior in the

solutions.

In contrast, we propose a 2-step approach in which the use of direct methods

is limited to the first few iterations, while iterative methods are employed for the

rest of the sequence. The choice of the iterative solver is dictated by the large

number of eigenpairs required in the simulation. For this reason we envision

the Subspace Iterations Method—despite its slow convergence rate—to be the

method of choice. Nested at the core of the method lays an inner loop V ← AV ;

due to the observed correlation between eigenvectors, the convergence is reached

in a limited number of steps. In summary, we propose evidence in favor of a

mixed solver in which direct and iterative methods are combined together.

∗Joint work with Paolo Bientinesi, AICES, RWTH Aachen, Germany.
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GA and ACO for the graph coloring problem

Douiri Sidi Mohamed ∗

Abstract

LetG = (V,E) an undirected graph, V corresponds to the set of vertices and E

corresponds to the set of edges. The graph coloring problem is to associate a color

to each vertex so that two connected vertices do not have the same color. A valid

k-coloring of vertices in a graph G = (V,E) is an application c : V −→ {1, ..., k}
such as c(x) 6= c(y), ∀(x, y) ∈ E, the value c(x) associated with vertex x is called

color of x (Figure 1).

Figure 1: G coloring in 3 colors.

(GCP) allows to model some applications of the operational research such as

the timetable problems, warehouse management, scheduling problem, etc. Several

methods and algorithms are proposed to resolve the problem of coloring, there are

exact methods and heuristics [1][2]. The smallest number of di�erent colors used

for a valid coloring is called the chromatic number, and denoted χ(G). It is well

known that the k-coloring problem is NP-completeness and the χ(G)-coloring

is NP-hard, thus heuristic approaches are inevitable in practice. In this paper

we propose two metaheuristics for solving (GCP), the genetic algorithms (GA)

and an algorithm of optimization by colonies of ants (ACO), to give approached

values of χ(G) and compare the results found by the two metaheuristics.
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Theoretical and numerical analysis of quasi-linear parabolic
and periodic problem with strong nonlinearity with respect

to the gradient

Abdelwahab Elaassri ∗

Abstract

In this work we present two mathematical models of the quenching process.

The first is based on the parabolic equation of heat conduction and has a variable

temperature. In the second model, we reformulate the problem with the internal

energy as a variable. We obtain a parabolic equation with strong nonlinearity

in the gradient of this energy and periodic in time. To prove the existence of

weak solution the latter model, we truncate the equation obtained. The classical

techniques based on upper and lower solution can be applied and ensure the

existence of periodic solution for the approached problem. The difficulty back to

show that the solution of the approximate problem converges to the solution of our

system. It is the primary objective of this work. The second objective in this work

is the numerical simulation of this model. We use the multiple shooting method,

and we reformulate the discrete problems in terms of optimization. Numerical

examples are presented and commented.
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Boundary observability for semilinear hyperbolic systems

Fatima Zahrae El Alaoui ∗

Abstract

The study of non-linear systems which model the real problems is difficult

compared to linear ones. The regional observability is a very important notion

allows the study of such systems. The notion of linear systems and fixed point

techniques are used in this work to solve the problem of regional observability

for semi-linear hyperbolic systems . It consists to observe the boundary initial

state of semi-linear hyperbolic systems in a part of the boundary of the system

evolution domain. We give definitions and we use two reconstruction approaches

based on extension of Hilbert Uniqueness Method and Sectorial property of the

considered operator. The obtained results lead to an algorithm which is tested

with numerical example and simulations.
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Multiscales methods for transport phenomena

Mohamed El Fatini ∗

Abstract

We derive an error estimates for multiscales stabilized method of transport

problems. The error estimator is efficient and reliable and depends only on the

discrete solution, the mesh-size and the data of the problem.

More recently stabilized methods have been reformulated in the context of

the variational multiscale formulation. Such decomposition allows splitting the

weak form of the problem into two sub-problems: one for the coarse scales and

one for the subscales. Examples of these methods are: Residual-Free Bubbles

(RFB) [1], Multiscale Finite Element Method (MFEM) [4], Subgrid Stabilization

[3] and Orthogonal subscale stabilization (OSS) [2]. Our purpose is to combine

stabilization and a posteriori error estimators to increase the stability of the

solution.
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Triangular finite element simulation of nonlinear kinematic
and diffusive wave problems

Karima El Wassifi ∗

Abstract

Generally the hydrodynamic models of overland flow are based on the shallow

water wave theory described by the Saint-Venant (SV) equations. These models

are derived from either the Kinematic wave (KW) or the diffusion wave (DW)

approximations.

In our study, we developed two models to solve one and two dimensional

Kinematic and Diffusion wave equations (Advection-Diffusion equations) which

simulate overland runoff and find out runoff at the watershed, by a Galerkin trian-

gular Finite Element Method (FEM). Particular emphasis is placed two numerical

schemes which are first and second order accurate in space and time: Implicit and

Crank-Nicholson schemes respectively. The nonlinear system equation is solved

using Newton-Raphson iteration. The study presents also the difficulties and

remedies of Galerkin finite elements method when there are discontinuities in the

solution for the pure convection problems.

Test cases for both one-and two-dimensional problems, compare the numerical

solution of the (DW) and (KW) models with analytical solutions for specials

cases. These simulations show that the proposed numerical models accurately

predict the overland flow for several situations.
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Nonlinear iterative methods for regularization of inverse
scattering problems in Banach spaces

Claudio Estatico ∗

Abstract

Formally, any inverse problem can be modeled by an operator equation Ax =

y, where A : X → Y is the so-called “forward” operator between two functional

spaces X and Y , and x ∈ X is the “cause” of some “effects” y ∈ Y . By means of

the knowledge of (some approximation of) the effects y, the aim is to recover the

unknown cause x. Many well known solving schemes approximate the solution x

by means of the minimization of a cost functional like Φ(x) = ||Ax−y||Y +λ||x||X ,

whereX and Y are both Hilbert spaces, such as the classical L2 space, so that any

‖•‖ is basically the classical Euclidean norm. Iterative regularization algorithms

for the minimization of Φ give rise in general to over-smoothed solutions and the

discontinuities present in real solutions x are not well restored.

More recently, it has been investigated the behavior of iterative methods based

on more general Banach spaces X and Y , such as, for instance Lp, with 1 < p <

+∞ [1]. This way, the ”size” of both the residual Ax− y and the restored signal

x are measured by means of the metric of the involved Banach spaces. The new

“geometry” of the Banach spaces can substantially reduce the over-smoothing of

the iterative restoration process. For instance, the norm of the space Lp mainly

emphasizes, for values of the constant 1 < p < 2, the “weight” of the small

components, so that the minimization of Φ leads to a stronger reduction of such

a small values.

The direct generalization to Banach spaces of any classical linear iterative

algorithm for Hilbert spaces give rise to non-linear algorithms. In this talk, we

discuss the behavior of a non-linear iterative method for regularization in Banach

spaces. The algorithm is applied to a non-linear inverse scattering problem where

the dielectric distributions x of a 2D domain must be recovered by means of its

scattered microwave field y outside the domain. We will show how the new

computational results well outperform classical “Hilbertian regularization”.
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Remarks on the preconditioned conjugate gradient method
in the ocean general circulation model OPA

Raffaele Farina ∗

Abstract

In this work we analyze the elliptic kernel’s solver of the numerical model OPA

that is a Ocean General Circulation Model. In OPA we have the following

Laplace’s problem:















∂

∂x

[

α(x, y)
∂

∂x

(

∂ψ

∂t

)]

+
∂

∂y

[

β(x, y)
∂

∂y

(

∂ψ

∂t

)]

= f(x, y, t) su Ω× [t0, t1]

∂ψ

∂t
= 0 su δΩ× [t0, t1]

(1)

The problem’s (1) discretization gives n linear systems Ex = bi i = 1, ..n that

are solved to determine the dynamic and the thermodynamic variables of ocean

fluid at time t1. The aim of this work is to optimize the algorithm of Precon-

ditioned Conjugate Gradient Method used by Ocean Numerical Model OPA to

resolve the n linear sistems. We replace the existent diagonal preconditioner P−1

with the preconditioner P̄−1 obtained by the incomplete Cholesky’s decomposi-

tion of E, in order to avoid the low convergence of the algorithm of Preconditioned

Conjugate Gradient Method in OPA. This behavior depends on the domain grid

resolution and on the relationship between the functions α and β. We theoreti-

cally and numerically show an increasing of the performance in terms of higher

speed of convergence with a computational cost that scale linearly with the size

of the problem.
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Perron vector optimization applied to search engines

Olivier Fercoq ∗

Abstract

Internet search engines use a variety of algorithms to sort web pages based

on the text content of the pages or on the hyperlink structure of the web. We

consider here the case of link-based algorithms and we study the optimization

of the ranking of a given web site. The problem consists in finding an optimal

outlink strategy subject to design constraints and for a given search engine.

In a previous work with Akian, Bouhtou and Gaubert [2], we studied the

PageRank optimization problem. In this case, the ranking is given by the invari-

ant measure of a stochastic matrix. Here, we consider the more general situation

in which the ranking is determined by the Perron eigenvector of a nonnegative,

but not necessarily stochastic, matrix. Thus we cover Kleinberg’s HITS algo-

rithm. For both above problems, we have a concise description of the convex hull

of admissible matrices. So we consider convex sets of matrices, but we show that

Perron vector optimization on convex sets is NP-hard. However, we provide an

efficient algorithm for the computation of the derivative of the criterion. This

allows us to design a first order method giving a local minimum.

Unlike general Perron vector optimization problems, PageRank optimization

problems have a Markov decision process structure. This yields a very efficient

algorithm converging to a global optimum. We also identify assumptions under

which there exists a “master” page to which all controlled pages should point.

Finally, we report numerical results on fragments of the real web graph for

these search engine optimization problems.
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Solving eigenvalue problems with the dynamical functional
particle method

Marten Gulliksson ∗

Abstract

We consider the linear eigenvalue problem Av−λv = 0 where A ∈ R
n×n, λ ∈

C, v ∈ R
n, and ‖v‖2 = 1 with the standard 2-norm in R

n. The eigenvalue

problem is solved by the Dynamical Particle Functional Method, DFPM, which

consists of solving the dynamical system

M ü+N u̇ = Au−
(

uTAu
)

u, ‖u‖2 = 1 (1)

where M=diag(µ1, ..., µn), N=diag(η1, ..., ηn) and µi > 0, ηi > 0, i = 1, ..., n. We

show that the solution to (1) converges asymptotically to the eigenvector corre-

sponding to the largest eigenvalue if there is at least one real eigenvalue. The

smallest eigenvalue is attained by solving −(Av − λv) = 0. Furthermore, we

show that the convergence rate is exponential independent of problem size. With

deflation, all eigenvalues may be attained. The time-independent Schrödinger

equation was used to test the method where A = AT is sparse and the smallest

eigenvalue is determined. For this problem we compare DFPM with the standard

software packages ARPACK and LAPACK. These tests show that DFPM is ap-

proximately 10 times faster for a sparse matrix of size n = 10000 and 50 times

faster for a sparse matrix of size n = 500000 respectively.
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A meshless approximation method for solving the viscous
Burgers equation

M. Hached ∗

Abstract

In this talk, we discuss meshless radial basis function methods for solving the

Burgers equation with the Dirichlet boundary conditions given by

∂u(x, t)

∂t
= ν∆u(x, t)− u(x, t) · ∇u(x, t) + f(x, t), for x ∈ Ω, t ≥ 0,

u(x, t) = g(x, t), for x ∈ ∂Ω, t ≥ 0.

u(x, 0) = u0(x), x ∈ ∂Ω
An approximation of the solution in the domain is given as a radial basis func-

tion with time-dependent coefficients. Taking in account of the initial condition

leads to a large-scale nonlinear ordinary differential equation (ODE). So, we use

an implicit Runge-Kutta method with a high stage to solve a such ODE. The

main drawback of such methods is the cost required at each integration step for

computing the solution of a nonlinear system of equations. We will show how to

reduce the cost of the computation by transforming the linear systems arising in

the application of Newtons method to matrix equations. We propose an itera-

tive projection method onto block Krylov subspaces for solving numerically such

matrix equations. Numerical examples are given to illustrate the performance of

our proposed method.
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Local control of the quasi-interpolation error

Maŕıa José Ibáñez Pérez ∗

Abstract

The cubic quasi-interpolant [2, p. 104]

Qhf =
∑

i∈Z

1

6
(−f ((i− 1)h) + 8f (ih)− f ((i+ 1)h))M4

( ·
h
− i

)

provides a spline approximant for a function f defined on the real line from its

values on the grid hZ, h > 0. For a regular enough function f , the estimate

f −Qhf = O
(

h4
)

holds, and Qhf is a good approximation of f in practice.

Let us suppose that the goal |f −Qhf | ≤ ε it is required on an interval

I for a given tolerance ε > 0. If there exists a subinterval J of I such that

|f (x)−Qhf (x)| > ε for x ∈ J and |f (x)−Qhf (x)| ≤ ε for x ∈ I \ J , the

condition on the quasi-interpolation error is not satisfied, then we look for an

approximant Ahf such that (a) the operator Ah is exact on P3; (b) Ahf = Qhf

on I; (c) and |f (x)−Ahf (x)| < ε when x ∈ J .
We will propose and analyze the construction of such operator Ah by using

near-best operators (see e.g. [1]) or by regularizing the Heaviside’s function.
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Parallelization of variable preconditioned Krylov subspace
method with mixed precision using GPU

Soichiro Ikuno ∗

Abstract

The Variable Preconditioned Krylov subspace method with mixed precision

on Graphics Processing Unit (GPU) using CUDA [1] is numerically investigated.

Recently, the performance of GPU surpasses that of CPU and various re-

searches of General Purpose computing on GPU (GPGPU) have been proposed

aggressively. However, GPU can calculate in the case of single precision fast, but

becomes slow in double precision calculation because GPU is a device used for

drawing of the graphics. Although the performance in double precision is still

superior to the other commodity processors, high performance single precision

operations of GPU should be used effectively.

K. Abe et al. developed new preconditioning strategy which is called the

Variable Preconditioned Generalized Conjugate Residual (VPGCR) method [2].

In VPGCR, the residual equation is solved in each iteration instead of precon-

ditioned matrix calculation. The convergence theorem of VPGCR is guaranteed

that the residual of VPGCR converges if the relative residual norm of variable

precondition calculation r satisfies the criterion r < 1 in each iteration. The

residual equation can be solved in the range of single precision, which means that

VPGCR is applicable method to elicit the high performance of GPU.

In this study, we apply the hybrid scheme that uses single precision and double

precision operations to VPGCR method using GPU. Note that JOR method is

adopted for precondition process. In the precondition process, single precision

operations can be used for faster calculation since only approximate results are

needed. The reduction of execution time in the precondition that occupies a large

part of calculation is dramatically effective although the main process must be

executed in double precision as same as usual.

Result of computation shows that VPGCR with mixed precision on GPU

demonstrates significant achievement than that of normal VPGCR on CPU.

VPGCR with mixed precision on GPU is 5.89 times faster than that of normal

VPGCR on CPU.
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High-order discontinuous Galerkin method for two-layer
shallow water equations: Application to the strait of

Gibraltar

Nouh Izem∗

Abstract

This study presents a discontinuous Galerkin finite-element method to solve

1D two-layer shallow water equations. This numerical model is intended to de-

scribe two superposed layers of immiscible fluids flows which differ in velocity,

thickness and density. The system contains source terms due to bottom topog-

raphy, and nonconservative products describing momentum exchange between

the layers. Their presence makes the system nonconservative, and eventually

non hyperbolic. To avoid the discretization of the term source, the continuous

equations are rewritten in a non-conservative form and discretized using nodal

polynomial basis functions of arbitrary order in space on each element of an un-

structured computational domain. To complete the discretization in space, we

choose the numerical flux based in the local Lax-Friedrichs flux. A third-order

explicit Runge-Kutta scheme is used to advance the solution in time. In spite of

the local time steps the scheme is locally conservative, fully explicit, and arbi-

trary order accurate in space and time for transient calculations. The versality of

the approach is illustrated on a number of numerical examples, in which we suc-

cessfully capture (quasi) steady-state solutions and propagating interfaces. The

numerical scheme is also applied to a realistic simulation of the flow through

the Strait of Gibraltar: Real bathymetric and coast-line data are considered to

include in the model the main features of the abrupt geometry of this natu-

ral strait connecting the Atlantic Ocean and the Mediterranean Sea. Initially

a steady-state solution is obtained from a ”lock- exchange” experiment. Then

we use this solution to simulate a tidal experiment in the Strait where the main

semidiurnal and diurnal tides are imposed as boundary conditions.
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Optimality conditions and duality in nondifferentiable
multiobjective programming

Izhar Ahmad ∗

Abstract

A nondifferentiable multiobjective problem is considered. Fritz John and

Kuhn-Tucker type necessary and sufficient conditions are derived for a weak ef-

ficient solution. Kuhn-Tucker type necessary conditions are also obtained for a

properly efficient solution. Weak and strong duality theorems are established for

a Mond-Weir type dual. Moreover, for a converse duality theorem we discuss a

special case of nondifferentiable multiobjective problem, where subgradients can

be computed explicitly.
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Backward error in linear least squares problems:
estimates, their accuracy, and implementation

Pavel Jiránek ∗

Abstract

We consider a linear least squares (LS) problem: find x̂ ∈ R
n such that

‖b−Ax̂‖2 = minx∈Rn ‖b−Ax‖2, where A ∈ R
m×n is a given matrix and b ∈ R

m is

a right-hand side vector. We are interested in computing the backward error for a

given approximation x to the LS solution x̂. It was shown in [3] that the backward

error µ defined by µ ≡ minE,f{‖[E, θf ]‖F ; (A+E)T (A+E)x = (A+E)T (b+f)}
is given by µ = min{ω, σmin(M)}, where θ > 0 is a given weighting parameter,

ω ≡ minE,f{‖[E, θf ]‖F ; (A+E)x = b+f} = θ‖r‖2/
√

1 + θ2‖x‖22 is the backward
error associated with x in the linear equations Ax = b, M ≡ [A;ω(I − rr†)]T ,
and r ≡ b− Ax is the residual vector. The minimal singular value of the matrix

M can be expensive to compute and some estimates of µ were proposed by

Stewart [1] and Karlson and Waldén [2]. We analyze their accuracy and show

that the Stewart’s bounds are good approximations of µ provided the quantity

ω lies outside the interval defined by the extremal singular values of the matrix

A. On the other hand, we extend the existing analysis of the Karlson-Waldén’s

estimate and prove that it is always a good approximation to the LS backward

error. We also discuss their implementation in the LSQR method of Paige and

Saunders.
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Approach HUM for regional controllability of semilinear
parabolic systems : state and gradient

Asmae Kamal ∗

Abstract

The problem of regional controllability for semi-linear parabolic systems is con-

sidered. We show how one can reach a desired state or gradient of state given only

on a part of the system domain. The proposed approach combines the extension

of the Hilbert Uniqueness Method (HUM) and the fixed point techniques, leading

to an algorithm which is successfully performed through numerical examples.

Keywords: Semilinear systems - Parabolic systems - Regional - Controllability -

Gradient - Fixed point theorem.
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A structured Symplectic SVD-Like decomposition

Ahmed Kanber ∗

Abstract

We present in this paper a method to compute symplectic SV D-like decom-

position for a 2n-by-m triangular real matrix A : there exists a symplectic

real matrix S ∈ R2n×2n and an orthogonal real matrix Q ∈ Rm×m such that

SAQ=
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where Σp is positive diagonal. We also give an

ortho-symplectic SV D-like decomposition of a symplectic matrix if S ∈ R2n×2n

be a symplectic matrix : there exist orthogonal symplectic matrices U, V ∈

R2n×2n such that S=UT
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Approximation of curves and/or surfaces by ODE
variational splines

Abdelouahed Kouibia ∗

Abstract

In Geology, Geophysic and other Earth Sciences, it is usual to find the con-

struction problem of curves and surfaces from a Lagrange or Hermite data set.

It is convenient that such curve or surface verifies some physical or geometrical

conditions such as preserving shape, some fairness criteria (see for example [2]).

Likewise, in CAD and industrial design, the construction of curves and/or

surfaces contours are done traditionally by using geometric primitives such as

lines, conic and others which can be characterized by some simple equations.

However, in many problems of engineering, architecture, geology and others,

it is needed smooth curves and/or surfaces whose shapes cannot be described

by a simple equation. Particularly, this problem appears in the automotive or

aerospace industries where the section of manufactured objects are designed from

some interpolation or approximation data, and also verifying some hydrodynamic

properties that can be modeled by certain ODE. Hence, it is natural to use free-

form curves. In [1] the authors present a design method for free-form curves from

a set of approximation points and a boundary value problem for an ODE.

This paper deals with a construction problem of free-form curves and/or sur-

faces from data constituted by some approximation points and a boundary prob-

lem for an ODE. The solution of this problem is called an ODE variational spline.

We discretize the problem in a suitable finite dimensonal space. We study the ex-

istence and uniqueness of the solution of such problem. Then, we establish some

convergence and error estimations results. Finally, we analyze some numerical

and graphical examples to show the validity and effectiveness of our method.
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Purely algebraic domain decomposition methods for the
incompressible Navier-Stokes equations

Pawan Kumar ∗

Abstract

In the context of domain decomposition methods, an algebraic approximation

of the transmission condition (TC) is proposed in [2, 3, 1]. For the case of non

overlapping domains, approximation to the TCs are analogous to the approxima-

tion of the Schur complements (SC) in the incomplete block factorization. The

basic idea is to approximate the SC by a small SC approximations in patches.

The computation of these local transmissions are constructed independently, thus

enhancing the parallelism in the overall approximation.

In this work, a new computation of local Schur complement is proposed and

the method is tested on incompressible Navier-Stokes problems. The earlier at-

tempts used in the literature approximate the TC by building small patches

around each node. We generalize the method by aggregating the nodes and thus

reducing the overlapping computation of local TCs. Additionally, the approach

of aggregating the nodes is based on the “numbering” of the nodes rather than

on the “edge connectivity” between the nodes.

With the new aggregation scheme, the construction time is significantly less.

Furthermore, the new aggregation based approximation leads to a completely

parallel solve phase. The new method is tested on the difficult cavity problem

with high reynolds number on uniform and streatched grid. The parallelism of

the new method is also discussed.
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Adaptation of the M. N. El Tarazi theorem and application
to the variable parallel overlapping domain decomposition

method

Mohamed Laaraj ∗

Abstract

It’s very classic to associate to a Schwarz alternating method a property of

contraction with respect to the uniform weighted norm | |e,∞, where e is the

positive eigenfunction associated with the smallest eigenvalue of the operator.

We present here one parallel overlapping domain decomposition with method

based on two decompositions with domains and without overlapping, where the

first ones serve to define the operations of restriction and the second ones serve

to the resolution.

We shall also present an adaptation of the M. N. El Tarazi theorem. This is

going to assure us the convergence of the parallel asynchronous iterations with

multiple initializations associated to the overlapping domain decomposition which

can vary from an iteration to the other one

It is worthwhile to note that this kind of property can be used in order to

obtain a dynamic load balancing during the run of asynchronous iterations.
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On an algebraic optimized Schwarz preconditioning:
performance and applications

Lahcen Laayouni∗

Abstract

In this paper we investigate the performance of the algebraic optimized Schwarz

methods. These methods are based on the modification of the transmission block

matrices between subdomains. The transmission blocks are replaced by new

blocks to improve the convergence of the corresponding algorithms. In the op-

timal case, convergence in two iterations can be achieved. We are interested in

how the algebraic optimized Schwarz methods perform as preconditioners solving

differential equations. We are also interested in their asymptotic behavior with

respect to change in problems parameters. We present different numerical simu-

lations corresponding to different type of problems in two- and three-dimensions.
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Nonmonotone spectral projected gradient methods applying
to Thomson problem

Halima Lakhbab∗

Abstract

The problem of finding how electrons optimally distribute themselves on the

sphere is a well-known and difficult one. It is ranked 7 in Stephen Smale’s famous

list of 18 unsolved mathematical problems to be solved in the 21st century.

The original question was posed by J.J. Thomson [2] after his discovery of

the electron in 1897. Thomson conjectured that the knowledge of the positions

of the electrons inside the atoms is essential to understanding the regularity of

the chemical elements in the periodic table. Yet the problem turned out to be

important for many fields, from biology to telecommunications. Thomson’s prob-

lem is consisting in distributing a number N of equal charges on a sphere. In our

study we modelize this problem by minimizing the potential energy of N parti-

cles on sphere, and we apply Nonmonotone Spectral Projected Gradient Methods

(NSPG) [1] to find local minimums, and we give numerical results for various

number N of points. We intend afterward to combine the NSPG algorithm with

metaheuristics to approach global minimums.
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Mathematical analysis of a system modeling ions
electromigration through biological membranes

Hamid Lefraich ∗

Abstract

In this work we present the mathematical analysis of a system modeling ion

migration through biological membranes. The model includes both the effects

of biochemical reaction between ions and fixed charges.The model is a nonlinear

coupled system. In the first we describe the mathematical model. To develop

the mathematical analysis of our model, we define an approximating scheme and

by using Schauder fixed point theorem in ordered Banach spaces, we show the

existence of a solution for this approached problem. Finally by making some

estimations we prove that the solution of the truncated system converge to the

solution of our problem.
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Time domain decomposition with time reversible
integration for initial value problem

Patrice Linel ∗

Abstract

This paper concerns the development of a parallel method to solve ODE.

This kind of systems are involved in most of the modeling as mechanical systems

modeling or chemical reactor modeling. These systems are usually nonlinear with

a large number of unknowns and a large computational cost.

We propose a time domain decomposition method based on the Schwarz al-

gorithm that breaks the sequentiality of the integration scheme for system of

ODEs[4]. For system of linear ODEs(Helmholtz equations for example), the al-

gorithm shows a linear divergence or convergence allowing to apply the Aitken’s

acceleration of the convergence technique[1] to obtain the solution at the bound-

aries of the subdomains. For nonlinear problems, we apply some acceleration of

the convergence of nonlinear sequences algorithms[3] to the domain decomposi-

tion methods.

A second approach is developed using time-reversible integration scheme and

a system of conditions satisfied by the subdomains’s solution.In case of nonlinear

system of ODEs, the system of constraints is solved by a Newton method[2].

Implementation, numerical results and efficiency will be discussed and illus-

trated by examples.
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A dual decomposition method for color image restoration

Cédric Loosli ∗

Abstract

We study a dual decomposition method for a weighted total variation regular-

ization term for 3D vectors with L1-norm as data fidelity term. By introducing

a suitable auxiliary unknown, the unconstrained minimization problem is trans-

formed into a saddle-point problem. Applying a Uzawa block relaxation method,

we obtain a iterative algorithm in which each component of the unknown is

treated independently.

Let Ω be a bounded domain in R
2. A color image can be interpreted as a vector-

valued function u = (ur, ug, ub) defined on Ω, where r, g and b stand for RGB channels.

We define the weighted total variation for 3D vectors by

J(u) =

∫

Ω

√

|∇ur|2 + |∇ug|2 + |∇ub|2dx, (1)

where | · | stands for Euclidean norm. Given a noisy image f = (fr, fg, fb), the original

image u can be recover through the minimization problem

min
u
E(u) = J(u) + F (u) (2)

where

F (u) = λ

∫

Ω
|u− f |dx

is the (L1) fidelity term. By introducing the auxiliary unknown p = f − u we replace

the unconstrained minimization problem (2) by the constrained minimization problem

min
(u,p)∈K

E(u, p) = J(u) + F (p), (3)

where K = {(u, p) ∈ X × X | u + p − f = 0 in X}. We then apply a Uzawa block

relaxation algorithm to the corresponding augmented Lagrangian to obtain an fast

iterative restoration algorithm using Chambolle scheme [1] and explicit calculations

(for p) in every iteration, using results of [2] on gray-scale images.
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On semifields of order q4 : a computational approach

Mashhour Al-Ali Bani Ata ∗

Abstract

Semields are an interesting subject of study in Mathematics and have ap-

plications in engineering areas such as coding theory and cryptography, in par-

ticular in the problem of linear and non-linear secure net work coding. Recently

nite projective plane geometry and in particular semields play a signicant role

in optimization techniques for structural design and automated techniques for

nite element modeling, also in le organization for records with multiple-valued

attributes. This talk is mainly based on linear algebra techniques and compu-

tational methods related to eigenvalue problems to investigate semields of order

q4 over the Galos eld Fq admitting a Klein 4-group of automorphims and having

nite Galos elds GF (q2) in their left nuclei. Some applications will be mentioned.
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A fast algorithm for solving Toeplitz plus Hankel structured
total least squares problems

Nicola Mastronardi ∗

Abstract

The Structured Total Least Squares (STLS) problem is a natural extension of

the Total Least Squares (TLS) problem when constraints need to be imposed on

the matrix structure of the overdetermined linear system to be solved. Similar

to the ordinary TLS approach, the STLS approach can be used to determine the

parameter vector of a linear model, given some noisy measurements. In many

signal processing applications, the imposition of this matrix structure constraint

is necessary for obtaining Maximum Likelihood (ML) estimates of the parameter

vector. In this talk we consider the Toeplitz plus Hankel STLS problem, i.e. an

STLS problem in which the Toeplitz plus Hankel structure needs to be preserved.

A fast implementation of a numerical method, based on the generalized Schur

algorithm [2, 3], for solving this frequently occurring STLS problem is proposed.

The performance of the latter algorithm is compared to the one of another

Toeplitz pus Hankel STLS algorithm recently proposed [2], and applied to esti-

mate the frequencies of signals made by the sum of sinusoids.
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Stopping rules for iterative methods in nonnegatively
constrained deconvolution

Ornella Menchi ∗

Abstract

An interesting inverse problem is the two-dimensional discrete deconvolution,

whose goal is to reconstruct an object x∗ from its image b. In addition to the

blurring introduced by the optical system, represented by a matrix A, b is af-

fected by a noise η, assumed to be ruled by uncorrelated Poisson and Gaussian

statistics. The model for this problem is Ax∗ = b − η, where A, x∗ and b are

nonnegative. Because of the ill-determined rank of A and the presence of the

noise, regularization is required, coupled with strategies for enforcing nonnega-

tivity. When the large size of the problem prevents regularization by filtering,

an iterative regularization method is required. In [2] the performance of some

methods, belonging to the class of Scaled Gradient Projection methods, has been

analyzed from various points of view. We consider here three of them, which have

been found the most efficient ones for the reconstruction accuracy and the con-

vergence speed, namely EM, SGP and WMRNSD. These three methods enjoy

the semiconvergence property, i.e. the computed iterations x(k) first approach

x∗, then go away and the choice of the index K at which the iteration should

be stopped is critical. Ideally, the iteration should be stopped when the solution

error ǫ(k) = ‖x(k)−x∗‖ is minimum. Our aim is to compare the behavior of three

widely used stopping rules, GCV, UPRE and the discrepancy principle, with the

selected methods. GCV and UPRE have been designed originally for regulariza-

tion methods whose influence matrix is explicitly known, then they have been

generalized [1, 3] for iterative methods through the use of the Trace Lemma.
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Inner-iteration GMRES methods for
underdetermined least squares problems

Keiichi Morikuni ∗

Abstract

Inner-iteration preconditioners combined with the GMRES methods are pro-
posed for solving underdetermined least squares problems

min
x∈Rn

‖b−Ax‖2, (1)

where A ∈ Rm×n, b ∈ Rm, and m < n.
We can precondition (1) from the right

min
u∈Rn

‖ABu− b‖2, x = Bu (2)

or from the left

min
x∈Rn

‖Bb−BAx‖2 (3)

by using a preconditioner B ∈ Rn×m. The results in [2] gave conditions for B for
the convergence of GMRES. However, as noted in [1], when solving inconsistent
systems (b ∈/ R(A)), the effective condition number becomes dangerously large.
Hence, GMRES for (2) will practically breakdown before it determines a least
squares solution.

On the other hand, we show that (3) can be consistent when R(BT ) = R(A).
Thus, GMRES can practically determine a least squares solution for (1) even if
m < n and b ∈/ R(A). To form such a preconditioner B, we propose using inner-
iteration preconditioners. The inner iterations do not require a preconditioning
matrix and can save storage memory.

Numerical experiments illustrate that the methods are efficient and robust for
large ill-conditioned and rank-deficient problems, outperforming previous meth-
ods.
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Identification of Priestley-Taylor transpiration parameters
used in TSEB model by genetic algorithm method over olive

irrigated area.
Abdelhaq Mouida ∗

Abstract

The accuracy degree of extracted canopy latent heat from canopy net radia-
tion is depending extremely to the proposed Priestley-Taylor approximation. This
extracting canopy latent heat is an initial approximation to compute iteratively
partitioned energy components to soil and vegetation using in Two Source Energy
Balance (TSEB) Model. This approximation is using a Priestley-Taylor coefficient
(ap) and fractional of Leaf Area Index (fg) that is green. These standard values
(ap) and (fg), are empirically estimated. Many studies forced to proceed empir-
ically, and asked whether it was still a principal component of evaporation from
a wet region. They looked that a value of coefficient (ap= 1.26) was found to fit
data from several sources especially for wet regions. The TSEB Model uses ei-
ther this formula adding an other coefficient (fg=1) which is a fractional of Leaf
Area Index that is green (Norman et al, 1995; Kustas et al 1999). These studies
are also proposed values of (ap) and (fg) ranging respectively from 0.5 to 3 and
0 up to 1 (Lhomme et al 1996; McNaughton et al 1989); This study is focused
to identify these two transpiration parameters (ap) and (fg) by Genetic Algorithm
method to accurately predict patterns of turbulent energy fluxes by TSEB Model
(Norman et al. 1995), over irrigated olive orchard in semi-arid area (Marrakech,
Morocco). The (ap) and (fg) are depending on local climatic characteristics and
data measurements accuracy for different periods of the year 2003. In this work, for
a semi-arid areas, we suggest to use stochastic method as Genetic algorithms (GAs)
to identify Priestley-Taylor transpiration Parameters over olive irrigated area (in
wet and dry conditions). GAs approach are used for solving parameters estimation
for its independency to problem types, such as non linear, multimodal and/or non-
differentiable functions (Goldberg, David E, 1989). GAs are a way of addressing
hard search and optimization problems which provides a good solution although it
requires large execution time.

References

[1] Norman et al.1995, Source approach for estimating soil and vegetation energy fluxes
in observations of directional radiometric surface temperature; Agricultural and For-
est , Meteorology 77 (1995) 263-293.

[2] Lhomme et al. 1996,A Theoretical basis for the Priestley-Taylor coefficient;,
ORSTOM, Laboratoire dHydrologie, B.P, 5045, 34032 Montpellier; France.

[3] Goldberg et al. 1989, Genetic Algorithms in Search, Optimization and Machine
Learning

[4] McNaughton et al 1989, An evaluation of the Priestley and Taylor equation and the
complementary relationship using results from a mixed-layer model of the convective
boundary layer, Spriggs Plant Physiology Division, D.S.I.R. Private Bag, Palmerston
North New Zealand.
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A enhanced combined genetic algorithm-fuzzy logic
controller (GA-FLC): application to free boundary problem

Mourad Nachaoui∗

Abstract

This work presents a enhanced combined genetic algorithm-fuzzy logic method

to solve a free boundary problem of welding processus. In the standard Genetic

algorithms, the upper and lower limits of the search regions should be given by

the decision maker in advance to the optimization process. In general a large

search region is used in fear of missing the global optimum outside the search

region. Therefore, if the search region is able to adapt toward a promising area

during the optimization process, the performance of GA will be enhanced greatly.

A combined genetic algorithm with fuzzy logic controller This controller monitors

the variation of the design variables during the first run of the genetic algorithm

and modifies the initial bounding intervals to restart a second round of the genetic

algorithm. A new defuzzification method proposed to performs a fuzzy logic

controller. Compared to previous works use the classical Genetic algorithms, our

method proved to be more efficient in computation time and accuracy of the final

solution.
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Preconditioning of systems arising from finite element
discretizations of phase-field models

Maya Neytcheva ∗

Abstract

Flows dominated by capillarity and wetting are important in many processes

in nature and are of increasing interest, in particular, in microfluidic applications.

Accurate and computationally efficient numerical simulations of such flows remain

a challenging task and put extra demands on the numerical solution methods

used.

In this talk we consider preconditioned iterative solution methods to solve

the algebraic systems of equations arising from finite element discretizations of

multiphase flow problems, modeled using the phase-field model, coupled with the

Navier-Stokes equation. The model allows us to simulate the motion of a free

surface in the presence of surface tension and surface chemistry energy.

We focus on the phase-field model, described by the Cahn-Hilliard equation.

The problem is time-dependent and nonlinear. We consider the task to solve the

linear systems with the arising Jacobian matrices by a preconditioned iterative

solution method. When discretized, the Cahn-Hilliard equation gives raise to

large scale algebraic systems of equations with matrices of a particular two-by-

two block form. The block structire is utilized when constructing preconditioners

to be used in an iterative procedure. Interestingly enough, the preconditioning

techniques are applicable to solving systems with symmetric complex matrices as

well as for problems arising from some optimization problems with a constraint

gived by a partial differential equation.

We illustrate the performance of the preconditioners with numerical experi-

ments.
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Generalized circulant preconditioners for Toeplitz systems

Silvia Noschese ∗

Abstract

An {eiϕ}-circulant is a generalized circulant matrix whose columns are ob-

tained by multiplying the first entry of a circular shift of the preceding column

by eiϕ. Matrix-vector products with generalized circulants can be evaluated ef-

ficiently with the aid of the Fast Fourier Transform (FFT) algorithm, similarly

as matrix-vector products with circulant matrices. This makes the application

of generalized circulants as preconditioners for linear systems of equations with

a Toeplitz matrix attractive. We describe several ways to determine generalized

circulant preconditioners and show convergence properties of preconditioned con-

jugate gradient iteration. Numerical results illustrate that generalized circulant

preconditioners can give faster convergence than circulant preconditioners.
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A nonlinear four-point subdivision scheme

Otheman Nouisser ∗

Abstract

Subdivision schemes are efficient methods for generating curves and surfaces

from discrets sets of control points. The important schemes for applications are

schemes for surfaces, yet schemes generating curves constitute a basic tool for the

design, study, and understanding of schemes generating surfaces.

In this paper, we propose to study the scheme
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with anyM that is originally defined as a positive-valued function for positive ar-

guments and is extended to the whole of R2 by setting M(x, y) = −M (| x |, | y |)
if x < 0, y < 0 and M(x, y) = 0 if xy ≤ 0.

We study analytic properties, such as convexity preservation, convergence, smooth-

ness of the limit function, stability and approximation order.
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Mathematical techniques for image retoration

Fatima Zohra Nouri ∗

Abstract

Many techniques have been used for image processing, such as restoration,

contour detection, segmentation ect... Among these techniques, partial differen-

tial equations (PDEs) have been our main interest, in particular second order

ones Nouri et al (2006) and fourth order PDEs, Maouni et al (2008). Image in-

painting is a fondamental problem in image processing and has many applications

Bertozzi et al (2007) and Chan et al (2006) motivated by the recent tight frame

based method on image restoration in either the image or the transform domain.

In this work, we present an inpainting model based on non-Newtonian fluids due

to Igehy et al (1997), for damaged wavelet coefficients. The advantage of this

model is to make a benefit from the smoothing model and correct the lying out

of the contours by putting them more clearly. Numerical results show that better

inpainting quality can be achieved with much less computing time, compare to

the model by Hadji et al (2010).
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Universitée Badji Mokhtar, Annaba (Algérie)

65



Nearest stable polynomial using successive convex
approximations

Francois-Xavier Orban de Xivry ∗

Abstract

The stability of systems has always been a central question in the system

and control area. The litterature on the subject is abundant and still growing.

Finding the smallest pertubation to make a stable system unstable has been a

well explored problem. However, to the best of our knowledge, the question of

finding a nearest stable system to an unstable one is still open. In this paper, our

interest goes to the case of polynomials which can be used to represent systems,

for example, in signal processing and other domains. The goal is to obtain a

locally optimal solution in a reasonable computational time. We build our theory

in the general framework of stable matrices but will specially emphasize the case

of polynomials, given its simplicity.

In order to achieve a moderate complexity, we need to avoid the use of general

optimization scheme such as interior point methods. Rather we write the first

optimality conditions of our problem and solve them to obtain a close form solu-

tion, on which we can iterate until the tolerance is met. Exploiting the structure

of the problem is also of prime importance for reaching the goal of moderate

complexity.

Given a unstable polynomial in companion matrix form A, the problem can

be formulated as finding the companion matrix X such that X is stable and the

squared Frobenius norm of X −A is minimum.

The need for characterizing the set of stable matrices is apparent and is

achieved using the well-known Lyapunov functions. Given a starting point, we

built convex approximations of this stable set we defined. Convex approxima-

tions are at the core of convex optimization and are derived from the theory of

barrier function . In our case, those approximations are Dikin ellipsoid obtained

by computing the Hessian of a log-det barrier function. The main advantage of

those approximations is that they are contained in the domain on which the bar-

rier is defined [1]. Hence, once the approximation is built, any search direction

gives an acceptable stable solution.
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A fully-implicit Galerkin-characteristic method for nonlinear
convection-dominated problems

Ahmed-Naji Ould Esouid∗

Abstract

Our goal in the present work is to develop a robust numerical method to approximate

solutions to the nonlinear convection-dominated problems. The key idea is to combine the

modified method of characteristics and finite element discretization. In the modified method

of characteristics, the time derivative and the advection term are combined as a directional

derivative along the characteristics, leading to a characteristic time-stepping procedure. Con-

sequently, the method allows for large time steps in a simulation without loss of accuracy, and

eliminates the excessive numerical dispersion and grid orientation effects occurred in many

upwind methods, compare for example [2, 3, 1]. A finite element characteristic method has

been successfully applied for solving the unsteady semi-linear convection-dominated problems

in [2]. Application of this method to shallow water flows has recently been investigated by the

authors in [1]. In the current work we propose a new finite element method for the numerical

simulation of nonlinear convection-dominated problems. To stabilize the method we consider

the modified method of characteristics in the same manner as implemented in [2, 1]. The main

drawback of these techniques is that, due to explicit time marching, the method is subject to

the CFL stability conditions that put a restriction on the size of timesteps taken in numeri-

cal simulations. For problems that need long real-time computations (weeks and months) as

those arising in tidal models, this restriction deteriorates the robustness and effectiveness of

the method for solving such problems. Therefore, our new method differs from the approach

in [2, 1] in that the time integration was based on the explicit method, whereas in the present

work we use a fully-implicit time stepping scheme. The discrete system is formulated as a

fixed point problem and a Newton-GMRES method is implemented for its numerical solu-

tion. We examine the performance of the proposed Galerkin-characteristic method for several

test examples in nonlinear convection-dominated problems. We also apply the method to the

numerical simulation of tidal flows in the Strait of Gibraltar. The governing equations are

derived from the incompressible Navier-Stokes equations with assumptions of shallow water

flows including bed frictions, eddy viscosity, wind shear stresses and Coriolis forces.
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An output controllability of bilinear systems:
A numerical approach and simulations

Maawiya Ould Sidi ∗

Abstract

In this work, we consider a regional controllability problem for a class of

distributed bilinear systems evolving in a spatial domain Ω. A feedback control

is used to steer the system state close to a desired profile at a final time T, only on

a subregion ω ⊂ Ω which my be interior or on the boundary of the system domain.

Our purpose is to prove that an optimal control exists, and characterized as a

solution to an optimality system. Numerical algorithm is given and successfully

illustrated by simulations.
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Solvents of non-monic matrix polynomials

Edgar Pereira ∗

Abstract

Let P (X) be a matrix polynomial of degree m

P (X) = AmX
m + . . .+A1X +A0, (1)

where Am, . . . , A1, A0 are complex matrices of order n and the argument X is

also a complex matrix. A very special case of this definition is to consider the

argument as a complex variable λ, this P (λ) is also known as lambda matrix. An

matrix S, such that P (S) = 0n is called a solvent of P (X). The characterization

of solvents can be done in terms of the spectral properties of P (λ) [1]. We develop

a theory of solvents of non-monic matrix polynomials in terms of the concept of

eigenpair [4]. We also study some iterative methods for the computation of such

solvents ([2] and [3]).
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∗Departamento de Informática, Universidade da Beira Interior - 6201-001 Covilhã, Portugal,
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A domain decomposition method for the Canadian global
numerical weather prediction model

Abdessamad Qaddouri ∗

Abstract

Currently, the deterministic Global Environmental Multiscale (GEM) oper-

ational model (Yeh et al. 2002) uses the latitude-longitude grid system which

leads to singularities and convergence of meridians in the polar regions. Using

today’s computer architectures with distributed memory, this may even result

in an unbalanced computational load in the context of domain decomposition

with message passing interfaces. In this paper, we use a domain decomposition

method to solve the system of primitives equations in the context of atmospheric

modeling, using the Yin-Yang grid on the sphere (Kageyama et al. 2004). The

solution of the global problem is obtained by, iteratively solving the correspond-

ing two subproblems separately on the Yin and the Yang subgrids and updating

the values at the interfaces. Because the two subgrids of the Yin-Yang grid do not

match, the update is done by bicubic-Lagrange interpolation and this corresponds

to the Dirichlet interface condition. To improve the performance of the classical

domain decomposition methods we use optimized Schwarz methods (Qaddouri

et al. 2008) and we replace the fixed point iterative formulation by a Krylov

method, implemented by substructuring the algorithm in terms of interface un-

knowns ( Qaddouri 2008). Preliminary results are encouraging and demonstrate

that when comparing to observations, the new Yin-Yang system model performs

as well as the GEM global model. Our model parallelization is performed by a

hybrid use of MPI and OpenMP
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A theory for preconditioning the inner-iteration in inexact
inverse subspace iteration for generalized eigenproblems

Mickaël Robbé ∗

Abstract

This work focuses on the inner-iteration that arises in inexact inverse subspace

iteration for computing a small deflating subspace of a large matrix pencil. The

inner-iteration is illustrated by preconditioned GMRES. Sufficient conditions on

the preconditioner are provided that help to maintain the number of iterations

needed by GMRES to approximately constant. Further conditions lead to a small

constant an hence to an efficient preconditioner. Several numerical examples of

such preconditioners are given to illustrate the theory.
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Multiresolution analysis and supercompact multiwavelets
for surfaces over non-uniform meshes

Miguel L. Rodŕıguez ∗

Abstract

It is a well-known fact that Haar wavelet can exactly represent any piecewise

constant function. Beam and Warming proved later, in [1], that the supercom-

pact wavelets can exactly represent any piecewise polynomial function in one

variable. Higher level of accuracy is attained by higher order polynomials of su-

percompact wavelets. The orthogonal basis used by these authors was defined

as separable functions given by the product of three Legendre polynomials. In

[2], the authors developed an extension of the work [1] to the case of surfaces

defined over uniform meshes of the domain of the surface. Such construction

keeps the same advantages attained by [1] in relation with orthogonality, short

support, approximation of surfaces with no border effects, detection of disconti-

nuities, higher degree of accuracy and compressibility. In the present work we

propose to extend the multiresolution scheme developed for surfaces in [2] to the

case of non-uniform meshes.
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Existence of solutions for a seawater intrusion problem
in a free aquifer

Carole Rosier ∗

Abstract

In this paper we propose a model to simulate the movement of the saltwater

front in coastel free aquifers.

In a first approach, we will assume that saltwater and freshwater are no miscible

then the domains occupied by each fluid are separated by an interface called sharp

interface. This modeling approach does not describe the nature and the behavior

of the transition zone but does give information concerning the movement of the

saltwater front. That is an important point for the control of seawater intrusion

and for the optimal exploitation of fresh groundwater.

Let us mention that the seawater intrusion problem has been treated in the case

of confined aquifers (Cf. ([2])). In this case, the confined aquifer is bounded by

two horizontal and impermeable layers. The upper surface corresponds to z = ht

and the lower to z = hb, hb−ht is the thickness of the aquifer assumed to be such

that (hb − ht) > δ > 0 then Ts(h) = hb − h is the thickness of saltwater zone.

For a free aquifer, the shape and position of the phreatic surface are a priori

unknown. Since the pressure on the phreatic surface is taken as atmospheric

(with patm = 0), the piezometric head at a point on the upper surface is equal to

its elevation (Cf. ([1])).

The model is formulated in terms of a two-dimensional coupled system consisting

of degenerate parabolic equations. We establish the global in time existence

of variational solutions for this problem. The analysis of this system presents

two difficulties: the coupling between equations and the degeneracy due to the

possibility to have no saltwater in some zones of the free aquifer.We propose the

Lagrange P1 Finite element method to numerically solve the coupled system. We

establish a priori estimates in order to justify the choice of the approximation.

Finally, we use the package FreeFem++ to test the efficiency and the accuracy

of the model.
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Orthogonalization with a non-standard inner product with
the application to approximate inverse preconditioning

Miro Rozložńık ∗

Abstract

In this contribution we review the most important schemes used for orthog-

onalization of column vectors (stored in the matrix B) with respect to the non-

standard inner product (induced by some symmetric positive definite matrix A)

and give the worst-case bounds for corresponding quantities computed in finite

precision arithmetic. We formulate our results on the loss of orthogonality and

on the factorization error for the classical Gram-Schmidt algorithm (CGS), mod-

ified Gram-Schmidt algorithm (MGS) algorithm and for yet another variant of

sequential orthogonalization, which is motivated originally by the AINV pre-

conditioner and which uses oblique projections. Although all orthogonalization

schemes are mathematically equivalent, their numerical behavior can be signifi-

cantly different. It follows from our analysis that while the factorization error is

quite comparable for all these schemes, the orthogonality between computed vec-

tors can be significantly lost and it depends on the condition number κ(A). This

is the case also for the expensive implementation based on eigenvalue decompo-

sition (EIG) and Gram-Schmidt with reorthogonalization (CGS2). The classical

Gram-Schmidt algorithm and AINV orthogonalization behave very similarly and

generate vectors with the orthogonality that besides κ(A) depends also on the

factor κ(A1/2B)κ(B) (it essentially means the quadratic dependence on the con-

dition number of the matrix A1/2B). Since the orthogonality in the modified

Gram-Schmidt algorithm depends only linearly on κ(A1/2B), MGS appears to

be a good compromise between expensive EIG or CGS2 and less accurate CGS

or AINV. Indeed in the context of approximate inverse preconditioning the stabi-

lization of AINV has lead to the SAINV algorithm which uses exactly the MGS

orthogonalization. We treat separately the particular case of a diagonal A which

is extremely useful in the context of weighted least squares problems. One can

show then that local errors arising in the computation of a non-standard inner

product do not play an important role here and that the numerical behavior of

these schemes is almost identical to the behavior of the orthogonalization schemes

with the standard inner product. For all these results we refer to [1].
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Quadratic choreographies

Philippe Ryckelynck ∗

Abstract

Discrete variational problems constitute an active field of research and have

been thoroughly studied by many authors. One of the basic ideas consists in

replacing the derivative ẋ(t) of the dynamical variable x(t) with a three terms

scale derivative 2ε,Qx(t) =
∑N

i=−N cix(t + iε)χ−i(t), for some time delay ε.

In this way, the principle of least action may be extended to the case of non-

differentiable dynamical variables.

In this talk, we study the equations of motion occuring when we consider a

fairly quadratic lagrangian L of n particles in R
d, where d denotes the “physical”

dimension. The particles interact each to the other through quadratic terms in L.
We investigate the existence of pseudo-periodic solutions of classical and discrete

Euler-Lagrange equations. The search for periodic solutions of those equations

leads to complicated problems in linear algebra. We focus on a problem which mix

solving the matrix equation exp(iΩT ) = Id together with generalized eigenvalues

problems linking the n matrices exp(ij TnΩ) ∈ C
d×d, j = 1, . . . , n. Numerical

experiments are provided.
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Töeplitz minimal eigenvalues in signal and image processing

Khalid Saeed ∗

Abstract

Effertz [1] explored the application of bounded series theory due to

Carathéodory [2] on Brune positive real function prf to find the necessary and

sufficient conditions for their coefficients. His solution was based on the results of

Carathéodory and Töeplitz. Effertz solution is of interest in both circuit theory

and image processing. The results and assertions present an appropriate math-

ematical model derived from these analytical functions. The author has proved

that and shown their applications in digital filter design, speech signal process-

ing, speaker identification in addition to the image processing. The relations

between Töeplitz matrices and Carathéodory functions were used to prove and

apply Brune function. Töeplitz matrix lowest eigenvalues are constructed by the

coefficients of the bounded power series representing Carathéodory function and

hence Brune function to establish a new simple and general algorithm for testing

the nonnegativeness of real rational functions. The interest in these methods

has recently drawn the attention of researchers due to the increasing demand in

electrical and mechanical network synthesis.

Theorem 1: f(s) is prf if it is real for real s and Re[f(s)] ≥ 0 if Re(s) ≥ 0.

The author has modified this theorem with an easy-to-implement algorithm. The

worked out approach is based on the transformation of Brune into Carathéodory

function (regular in |p| < 1) of Taylor’s series type. The coefficients of this series

form the elements of Töeplitz matrix, for which the minimal eigenvalues λ’s are

calculated. Then it is shown that the sequence of λ’s decreases monotonically

and that limN→∞ λN = min{Re[f(jω)]}.
Assertion 1: For f to be prf, it is necessary that λk ≥ 0 for 0 ≤ k < ∞.

Lemma 1: It is sufficient to test λk in 0 ≤ k ≤ i and that λi = limn→∞ λn.

Lemma 2: If limi→N λi ≥ 0, then λk ≥ 0 for 0 ≤ k < i and hence f is prf.

Direct Application in image processing: The λ sequence can represent any

object as its image feature vector for classification and recognition.

References

[1] F.H. Effertz, On the Synthesis of Networks Containing Two Kinds of Elements,

Sympos. Modern Network Synthesis, Pol. Inst. of Brooklyn (1955), 145-173.
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Error analysis of SRDECO Algorithm

Ahmed Salam ∗

Abstract

The SRDECO algorithm computes a SR decomposition based on three kind

of symplectic transformations and constitutes the central task of a symplectic QR

like algorithm for the solution of real algebraic Riccati equation. The purpose

of this paper is to provide a detailed error analysis of the SRDECO algorithm,

showing and predicating its behavior. Numerical experiments are given.
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Identification of parameters in hydrogeology: using genetic
algorithm.

Wenddabo Olivier Sawadogo ∗

Abstract

The problem of numerical modeling of flow and transfer of substances through
a porous medium requires knowledge of the physical parameters of geological lay-
ers to assess the impact of a possible spread of polluants. As these parameters
(permeability, storage, etc..) are not directly accessible, a method of the envis-
aged methods consists in finding them by resolving an inverse problem.
In most cases, the boundary values and the value of the source term are known.
In this work, we assume that these values in addition to permeability are un-
known and we propose to determine them in 2-D using genetic algorithm. We
solved the direct problem using the finite elements of Galerkin on Freefem++
and the genetic algorithm was programmed in Matlab. Then we established a
communication between Matlab and Freefem++ to solve the problem of param-
eter identification.
We tested these programs on actual data used in the project TRANSPOL II
(INERIS 2003). We obtain values more accurate than the method used in this
project.

Keywords: hydrodynamics parameters,inverse problem, genetic algorithm.
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Discussion on optimal control via direct search optimization

Emile Simon ∗

Abstract

This works considers the idea of performing optimal control design via direct search

(DS) methods for Linear Time Invariant (LTI) systems. It has been suggested surpris-

ingly recently for the Static Output Feedback (SOF) problem in [3]. There it appears that

this idea is pretty successful for SOF stabilization. It has also been used for some other

control problems, with generally quite satisfying results. However DS methods may fail

to converge to a local optimum and stagnate instead to a ’dead point’. Such particular

cases can be found i.e. in [1] where non-smoothness causes the failure of DS methods.

The motivation is to see how well DS methods compare with other techniques for

optimal control design. For problems with limited number of states and that admits a

Linear Matrix Inequality representation, it is fair to say that interior point methods are

the best. However when the number of states increases or when the problems yield a non-

convex set of solution and non-smooth cost function, other methods compete for these

still open problems. Here will be illustrated how DS methods (mostly the Nelder-Mead

algorithm and a bit Torczon’s multidirectionnal search) can compete with a method con-

sidered (one of) the most numerically efficient for SOF and fixed-order problems: Hifoo

[2] (an alternative would be [1] but there are no freely available implementations yet, un-

like Hifoo). Around these results, the discussion will be about what improvements can

be made to more often avoid non-stationary solutions or find better optima while keep-

ing reasonable computational times. Along this discussion on the optimization methods,

more control-specific concerns will be addressed.

Good results are for example obtained with large systems: SOF stabilization of un-

stable models with 4489 states. In general, classical SOF problems like stabilization but

also H 2 and H ∞ norm will be shown to be solved very well. For fixed-order design,

clearly the increasing number of variables increases the difficulty for the DS methods

(and the number of minima). However good results are still attainable and two possibil-

ities to try to improve the resolution these problems will be suggested.
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Iterative refinement for symmetric saddle point problem

Alicja Smoktunowicz ∗

Abstract

We study the numerical properties of some iterative refinement techniques for

improving numerical solutions of a symmetric saddle point problem of the form

[

A B

BT 0

] [

x

y

]

=

[

f

g

]

,

where A(m × m) is symmetric positive definite and B(m × n) has full column

rank, n = rank(B) ≤ m.

Often existing numerical algorithms for solving saddle point problems do not

take into account the symmetry and block structure of the linear system. Nu-

merical stability aspects of direct or iterative methods are not precisely known.

We give blockwise analysis of the saddle point problem, introducing blockwise

condition numbers which measure the sensitivity of x and y with respect to the

perturbations of the blocks A and B. We prove that under natural requirements

iterative refinement techniques are able to produce blockwise stable solutions in

floating point arithmetic.

Extensive numerical experiments in MATLAB will be presented to compare

the performance of some methods for the saddle point problem.
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Parallel solution of problem with unilateral constraints

Pierre Spiteri ∗

Abstract

The present study deals with the solution of problem arising in fluid mechanics

with unilateral constraints on the boundary. The problem to solve consists to

minimize a functional in a closed convex set included in a three-dimensionnal

domain. The characterization of the solution leads to the solution of the following

time dependent variational inequality:


















∂u(x,t)
∂t −∆u(x, t) = f(x, t), everywhere in Ω and for 0 < t ≤ T,

u(x, t) ≥ ψ(x), ∂u(x,t)∂n ≥ 0, (u(x, t)− ψ(x)).∂u(x,t)∂n = 0, ∀x ∈ Γ1 and ∀t > 0,

u(x, t) = ψ(x), ∀x ∈ Γ0 and ∀t > 0,

u(x, 0) = u0(x), ∀x ∈ Ω,

where Ω ⊂ R
3 is a bounded domain and Γ = Γ0

⋃

Γ1 is the boundary of Ω. An

implicit scheme is used for the discretization of the time dependant part of the

operator and the problem is then reduced to the solution of a sequence of station-

ary elliptic operator. For the solution of each stationary problem, an equivalent

form of the minimisation problem is formulated as the solution of a multivalued

equation, obtained by the perturbation of the previous elliptic operator by a di-

agonal monotone maximal multivalued operator. The spatial discretization of

such problem by appropriate scheme leads to the solution of large scale algebraic

systems. According to the size of theses systems, parallel iterative asynchronous

and synchronous subdomain methods are carried out on distributed architec-

tures; in the present study subdomain methods without and with overlapping

(like Schwarz alternating methods or more generally multisplitting methods) are

considered. The convergence of the parallel iterative algorithms is analysed by

various approaches, like contraction and partial ordering techniques. Finally the

parallel experiments are presented.
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Sequential and parallel methods for 4D anisotropic diffusion
of dynamic PET images

Clovis Tauber ∗

Abstract

In the present study, we propose accurate and fast computation of an original

set of coupled 3D problems of anisotropic diffusion. Existing spatial filters used

for dynamic positron emission tomography (PET) image sequences of the brain

are generally based on the voxel intensity of a single timeframe, which is not

necessarily a good representation of the underlying physiological process across

time. 4D methods have been proposed that either filter temporally adjacent

voxels or fit the intensity using models of the expected variations of intensity over

time. The proposed talk deals with an original spatiotemporal robust anisotropic

diffusion in which 3D spatial filtering is based on the distances between vectorial

representation of the voxel intensity across time. Consequently, if m denotes the

number of time frames, at each time step, it is necessary to solve m coupled

non linear boundary values problems of diffusion in a parallepipedic domain Ω =

[0, a1]× [0, a2]× [0, a3] with Neumann boundary conditions

(Pi)























∂ui

∂t − div(c(u1, u2, ..., um).grad(ui)) = 0, everywhere in Ω, 0 < t ≤ T,

∂ui(x,y,z,t)
∂n |∂Ω

= 0, ∀t ∈ [0, T ] (Boundaries Conditions),

ui(x, y, z, 0) = u0i (x, y, z), (Initial Conditions),

where ∂Ω is the boundary of the domain Ω, ui = ui(x, y, z, t) is the intensity,

T > 0, is a strictly positive real number and in which the positive coefficient of

diffusion c = c(x, y, z, t, u1, u2, ..., um) depends on the intensities from all time-

frames u1, u2, ..., um.

In this original study, we propose spatial discretization and time marching

semi-implicit discretization scheme in which the consistency and the stability of

the global scheme is verified. At each time step, it is necessary to solve m large

linear algebraic systems, possibly simultaneously by a parallel way, by iterative

sequential and parallel algorithms. Due to the choice of the spatial discretization

step, both linear algebraic systems are very well conditioned, independently of

the spatial resolution of images. More particularly, we consider the use of paral-

lel synchronous and asynchronous iterative methods for the solution of the linear

systems to solve. For both previous iterative methods, we analyse convergence.

Experimental sequential and parallel simulations concerning 4D anisotropic dif-

fusion of dynamic PET medical or synthetic images are presented.
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A New iterative technique for solving nonlinear problems

Helmi Temimi ∗

Abstract

We present a semi-analytical iterative method for solving nonlinear differen-

tial equations. To demonstrate the working of the method we consider some

nonlinear ordinary differential equations with appropriate initial/boundary con-

ditions. We consider an approach which tries to incorporate the various tools at

a problem solvers disposal, a combination of analytical, symbolic and numerical

computation. In essence our method attempts to linearize the problem and then

consider an iterative approach built around analytical and numerical computa-

tions. In each of the examples we demonstrate the accuracy and convergence of

the method to the solution. We demonstrate clearly that the method is accurate,

fast and has a high order of convergence.
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Using proper orthonogal decomposition in decouping
dynamical systems

Pham Toan ∗

Abstract

We investigate the proper orthogonal decomposition (POD) as a useful tool

in decoupling large dynamical systems suitable for parallel computing. POD is

well known to be applied to model reduction for different applications. It uses

snapshots of the solution at previous time steps to generate a low dimensional

approximation space for the solution. Here we focus on the potential of this

method in order to decouple a dynamical system into dynamical subsystems split

on a multiprocessors architecture. Each processor is in charge of a subsystem

in a non reduced form while it keeps a representation of the other subsystems

managed by the other processors under a reduced form. The analysis of the

behavior of the error on the decoupling of the dynamical system using the POD,

allows us to define a mathematical criterion for updating the basis of the reduced

model. Moreover, we enhance a technique to update the POD basis on the fly in

order to retrieve most part of dynamics of the solution on the simulation’s time

interval. Some parallelism results on dynamical systems as ODE and DAE show

the efficiency at wall clock of the method.
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A MATLAB program of spectral dichotomy of regular
matrix pencils

Ahmed Touhami ∗

Abstract

Given a regular matrix pencil λB−A and a positively oriented contour γ in the

complex plane, the spectral dichotomy methods applied to λB−A and γ consist

in determining whether λB − A possesses eigenvalues on or in a neighborhood

of γ. When no such eigenvalues exist, these methods compute iteratively the

spectral projector P onto the right deflating subspace of λB−A associated to the

eigenvalues inside/outside γ. The computation of the projector is accompanied

by the spectral norm ‖H‖ of a Hermitian positive definite matrix H called the

dichotomy condition number, which indicates the numerical quality of the spectral

projector P. The smaller ‖H‖ is, the better this quality.

Based on the theory proposed in [1, 2, 3, 4], the talk discusses the implementa-

tion of a new Matlab code, called specdicho, gathering the main types of spec-

tral dichotomy methods, where γ is a circle, the imaginary axis (a straight line

can also be used), a parabola or an ellipse. The Matlab program (specdicho)

implements the algorithm of circular spectral dichotomy denoted by DichoC

and introduced in [4], to compute P and H. It also incorporates extensions of

DichoC to the problem of spectral dichotomy of regular pencils with respect to

the above mentioned geometries. These problems are transformed into a circular

spectral dichotomy problem. In all cases, we prove the equivalence between the

quality of dichotomy of the original problem which will be measured by the pa-

rameter supλ∈γ

∥

∥

∥
(λB−A)

−1
∥

∥

∥
and that of the transformed one.

keywords: invariant subspace, regular matrix pencil, spectral dichotomy, spec-

tral projector.
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On convergence of semi-discrete scheme for one nonlinear
abstract hyperbolic equation

Mikheil Tsiklauri ∗

Abstract

Let us consider the Cauchy problem for the following nonlinear abstract hy-

perbolic equation in the Hilbert space H:

d2u(t)

dt2
+A2u (t) + a

(

∥

∥

∥
A1/2u

∥

∥

∥

2
)

Au (t) +M (u (t)) = f (t) , t ∈ [0, T ] , (1)

u (0) = ϕ0,
du (0)

dt
= ϕ1. (2)

where A is a self-adjoint, positively defined operator with the definition domain

D (A), which is everywhere dense in H; a
(

∥

∥A1/2u
∥

∥

2
)

= λ +
∥

∥A1/2u
∥

∥

2
, λ > 0;

nonlinear operatorM (·) satisfies Liptschitz condition; ϕ0 and ϕ1 are given vectors

from H; u (t) is a continuous, twice continuously differentiable, searched function

with values in H and f (t) is given continuous function with values in H.

Abstract analogue of Kirchhoff beam equation represents a spacial case of

equation (1).

We are searching solution of the problem (1)-(2) by the following semi-discrete

scheme:

uk+1 − 2uk + uk−1

τ2
+A2uk+1 + uk−1

2
+ akA

uk+1 + uk−1

2
+M (uk) = fk, (3)

where ak = a
(

∥

∥A1/2uk
∥

∥

2
)

, fk = f (tk) , k = 1, ..., n− 1, τ = T/n (n > 1) .

Numerical realization of scheme (3) we perform by the following algorithm:

uk+1 = (I + α1τA)
−1

(I + α2τA)
−1
gk − uk−1, (4)

gk = 2uk + τ2 (fk −M (uk)) , u0 = ϕ0, u1 = ϕ0 + τϕ1 + τ2/2ϕ2,

ϕ2 = f0 −M (ϕ0)−A
2ϕ0 − a0Aϕ0,

where α1 and α2 parameters satisfy the following equations:

α1α2 = 1/2,

α1 + α2 = τak/2.

Studied stability and convergence of scheme (4). There is shown that con-

vergence order of scheme (4) in a class of smooth solutions is O
(

τ2
)

. Using this

scheme, there are carried out numerical calculations for different model problems.

∗Ilia State University, Kakutsa Cholokashvili Ave 3/5 Tbilisi 0162, Georgia.

Joint work with Jemal Rogava, Ilia Vekua Institute of Applied Mathematics, 2 University Street,
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Evolutionary computation for optimal knots allocation in
smoothing splines

Olga Valenzuela ∗

Abstract

In this paper, a novel methodology is presented for optimal placement and

selections of knots, for approximating or fitting curves to data, using smoothing

splines. It is well-known that the placement of the knots in smoothing spline ap-

proximation has an important and considerable effect on the behavior of the final

approximation [1]. However, as pointed out in [2], although spline for approxi-

mation is well understood, the knot placement problem has not been dealt with

adequately. In the specialized bibliography, several methodologies have been pre-

sented for selection and optimization of parameters within B-spline, using tech-

niques based on selecting knots called dominant points, adaptive knots placement,

by data selection process, optimal control over the knots, and recently, by using

paradigms from computational intelligent, and Bayesian model for automatically

determining knot placement in spline modeling. However, a common two-step

knot selection strategy, frequently used in the bibliography, is an homogeneous

distribution of the knots or equally spaced approach [3].

In order to optimize the placement and numbers of knots required for ap-

proximation using smoothing splines, an Evolutionary Computation Paradigms

(ECP) based on a Multi-Objective Genetic Algorithm has been developed, with

the main purpose of avoiding the large number of local minima (in terms of ap-

proximation error for different system complexity or number of knots) existing

in the problem of knots placement. The accuracy, computationally efficient and

robustness of the algorithm presented will be compared by different experimental

result, with other approaches presented in the bibliography, showing the main

advantages of the proposed methodology.
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A local restart procedure for iterative projection methods
for nonlinear large-scale eigenproblems

Heinrich Voss ∗

Abstract

We consider the nonlinear eigenvalues problem

T (λ)x = 0 (1)

where T (λ) ∈ Cn×n is a family of large and sparse matrices depending on a

real parameter λ. Similarly to linear problems, iterative projection methods of

Arnoldi [2] and of Jacobi–Davidson [1] type have turned out to be efficient. Here

approximations to the wanted eigenvalues and eigenvectors are obtained from

projections of the eigenproblem (1) to subspaces of small dimension which are

expanded in the course of the algorithm.

A crucial point in these methods for general nonlinear eigenvalue problems

when approximating more than one eigenvalue is to inhibit the method to con-

verge to the same eigenvalue repeatedly. However, if the underlying large problem

is symmetric such that its eigenvalues satisfy a minmax characterization, then

this property is inherited by the projected problems, and the eigenvalues can be

determined safely one after the other by safeguarded iteration.

This approach hits it limitations if a large number of eigenvalues (in particular

in the interior of the spectrum) of (1) is needed, since in this case one has to

project the problem under consideration onto a sequence of search spaces of

growing dimensions requiring an excessive amount of storage and computing time.

In this presentation we propose a new local restart technique which projects

problem (1) only to search spaces of limited dimension. Our presentation is

restricted to the Arnoldi method, but the local restart technique applies also

to any other iterative projection method. Its efficiency is demonstrated by a

large conservative gyroscopic eigenvalue problem which models the behavior of a

rotating tire.
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Implementation of scatter search to the scheduling problems

Hanna Zini ∗

Abstract

In many considerable disciplines of the Combinatorial optimization, the evo-

lutionary approach ”Scatter Search” Proposed at the beginning by ”Fred Glover”

in the years 70, is proved effective for the resolution of a Variety of NP-Hard prob-

lems. We identify the scatter search Method, which bases itself on a generation

Of Reference set and we implement this Approach on a scheduling problem.

Keywords: Scatter Search, heuristics, Combinatorial optimization, scheduling

problem.

∗Joint work with Souad El Bernoussi, Département de Mathématiques-Faculté des Sciences-Rabat
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