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Abstract
The linear response (LR) eigenvalue problem
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arises from excitation state (energies) caluclations in the study of collective motion of many par-
ticle systems, where A− B and A+ B are symmetric positive semi-definite matrices and one of
them is definite. There are a great deal of interests in developing efficient simulation techniques
for excitation state calculations of molecules for materials design in energy science.

The first part of this talk is to present theoretical results for the LR eigenvalue problem, which
include a minimization principle for the sum of the smallest positive eigenvalues and Cauchy-like
interlacing inequalities. Although the LR eigenvalue problem is a nonsymmetric eigenvalue prob-
lem, these results mirror the well-known trace minimization principle and Cauchy’s inequalities
for the symmetric eigenvalue problem.

The second part of the talk is to present the best approximation of the few smallest postive
eigenvalues via a structure-preserving projection, and a four-dimensional subspace search conju-
gate gradient-like algorithms for simultaneously computing these eigenvalues and their associated
eigenvectors. We will also present numerical examples to illustrate convergence behaviors of the
proposed methods with and without preconditioning.
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Symplectic Information Geometry of Toeplitz 
and Toeplitz-Block-Toeplitz Hermitian Positive 
Definite Matrices: Busemann Barycenter & 
Frechet Median by Berger/Mostow Fibration 
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Abstract 

   The median of a set of Toeplitz and Toeplitz-Block-Toeplitz Hermitian Positive Definite Matrices 
(THPD and TBTHPD matrices) is addressed in this paper [6]. Obviously “mean” computation is 
also solved but is of less interest due to its lack of robustness to outliers. As there is no “Total 
Order” for THPD/TBTHPD matrices, median could only be defined geometrically by Frechet’s 
median in metric space [1] and solved by Weiszfeld/Karcher flow [2,3,7].  

  In a first step, the problem is solved for HPD matrices. In order to introduce with no arbitrary, the 
“good” metric, we prove that metrics deduced from Information Geometry (Fisher metric that is 
invariant by all changes of parameterization) and from Cartan-Siegel Homogenous Bounded 
Domains [4,5] Symplectic geometry (Siegel metric, deduced from Symplectic geometry , that is 
invariant by all automorphisms of these bounded domains) are exactly the same. Unfortunately, 
the Weiszfeld/Karcher flow will not preserve Toeplitz structure of HPD matrices. 

   To solve this drawback, we use the Trench theorem [8] proving that all THPD could be inverted 
by a new parameterization using the matrix block structure. By analogy, if we consider this THPD, 
as a covariance matrix of a stationary signal, this parameterization could be exactly identified with 
Complex Auto-Regressive (CAR) model of this signal. All THPD matrices are then diffeomorphic 
to (r0, 1,…, n)R+xDn (r0  is a  real “scale” parameter, k are called reflection/Verblunsky 
coefficients of CAR model in D the complex unit Poincare disk, and are “shape” parameters). This 
result has been found previously by Samul Verblunsky in 1936 [9,10]. We have observed that this 
CAR parameterization of the THPD matrix could be also interpreted as Partial Iwasawa 
decomposition of the matrix in Lie Group Theory [21,6]. At this step, to introduce the “natural” 
metric of this model, we used jointly Burbea/Rao [14] results in Information Geometry and Koszul 
[13] results in Hessian geometry, where the conformal metric is given by the Hessian of the 
Entropy of the CAR model. This metric has all good properties of invariances. Median of N THPD 
matrices is then easily computed by classical median for r0 on R+, and Weiszfeld/Karcher flow for 
k in Dn Poincare unit polydisk. To regularize the CAR inverse problem, we have used a 
“regularized” Burg reflection coefficient [11] avoiding prior selection of AR model order. 

   To extend the problem for TBTHPD matrices, we have introduced the notion of Berger 
Fibration/Mostow Decomposition and modify the Weiszfeld/Karcher flow. The point driven by the 
flow is fixed at the origin of the unit disk and then others points are moved from Weiszfeld/Karcher 
drift through unit disk automorphism. Inverse automorphism of this drift at each step provides the 
median point in unit disk coordinates. This is done by using the polar decomposition of points in 
the unit disk where at each step, the drift is only deduced from the polar phases. For TBTHPD 
matrices, we used matrix extension of Verblunsky theorem [12] (given the diffeomorphism of 
TBTHPD matrix with (R0, M1,…, Mn)Herm(n)+xSDn ) and Matrix-Burg like algorithm [15,16,17] to 
compute a Matrix CAR model, where Verblunsky coefficients Mk are no longer in unit Poincare 
disk but in unit Siegel disk SD. As Siegel disk SD can be fibered by associating geodesically to 
each point, one point on its Shilov Boundary, this Fibration, given by Mostow Decomposition [18] 
can be interpreted as matrix extension of Poincare disk polar decomposition for the Siegel disk. 

   Finally, we make the remark that respectively the Frechet’s median in unit Poincare disk/Siegel 
disk is equivalent to conformal Douady-Earle[19]/Busemann[20] Barycenters of same points 
geodesically pushed on their Shilov’s boundaries. 
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Rational Krylov revisited
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Abstract
Since his PhD thesis in 1970 [1], Axel Ruhe has investigated efficient algorithms for solving the
algebraic eigenvalue problem. In particular, he was advocating the use of rational Krylov spaces
[2, 3, 4, 5, 6], and pointed out the usefulness in model reduction [6]. Further work along these lines
include [9, 12]. Over the last ten years, extended Krylov spaces and more generally rational Krylov
spaces have regained interest for approaching matrix functions times a vector. This includes both
efficient algorithms [8, 13], and new error estimates [7, 11], see for instance the recent summary
[10]. In this talk we intend to intend to give a summary of these developments, and present some
new results.
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[10] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection.
Submitted (2012).

[11] Leonid Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace method for
matrix function evaluations, Numerical Linear Algebra w/Appl. v.17, n.4, pp.615-638 (2010)

[12] Michiels, W., Jarlebring, E., Meerbergen, K. (2011). Krylov based model order reduction of time-delay sys-
tems. SIAM Journal on Matrix Analysis and Applications, 32 (4), 1399-1421.
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Abstract
This paper is devoted to present an algorithm that permits to solve the problem of blind image de-
convolution by computing approximate greatest common divisors (GCD) of polynomials. Specifi-
cally, we design a specialized algorithm for computing the GCD of bivariate polynomials of blurred
images which corresponding to z-tansforms to recover the original image. The new algorithm is
based on the fast GCD algorithm for univariate polynomials in which the successive transformation
matrices are upper triangular Toeplitz matrices. The complexity of our algorithm is O(n2 log(n))
where the size of blurred images is n × n. All algorithms have been implemented in Matlab and
experimental results with synthetically blurred images are included to illustrate the effectiveness
of our approach.



A step towards a symplectic exponential integrator
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Abstract
Based on the Hamiltonian Lanczos process and the eponentially fitted Euler method, we con-
struct an almost symplectic exponential integrator. For computing the exponential of the projected
Hamiltonian matrix, we derive a structure-preserving variant of the scaling-and-squaring approach,
that can also be used to compute phi-functions. Though the resulting method cannot be proven to
be exactly symplectic yet, numerical results demonstrate that the Hamiltonian is preserved with
high accuracy while implementations based on a standard Arnoldi process fail completely in pre-
serving the Hamiltonian.



Structured matrix geometric means: theory
and algorithms
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Abstract
The geometric mean of a set of positive definite matrices A1, . . . , Ap is usually identified with
the Karcher mean G which verifies most of the desirable properties of the scalar geometric mean.
Unfortunately, the Karcher mean does not generally preserve the structure of the input matrices.
Say, if Ai, i = 1, . . . , p are Toeplitz, then G is not Toeplitz. In this talk we introduce a definition of
geometric mean which preserves the structure of the input matrices, satisfies most of the Ando-Li-
Mathias properties and is easily computable. The definition relies on the Riemannian geometry of
the cone of positive definite matrices and the algorithms for its computation are obtained by using
optimization techniques. Numerical experiments which show the effectiveness of the algorithms
are presented.

References
[1] T. Ando,C.-K. Li, R. Mathias. Geometric means. Linear Algebra Appl. 385:305–334,

2004.

[2] R. Bhatia. Positive definite matrices. Princeton University press, Princeton, NJ, 2007

[3] J. Lapuyade-Lahorgue, F. Barbaresco. Radar detection using Siegel distance between
autoregressive processes, application to HF and X-band radar. In Radar Conference,
2008. RADAR ’08, IEEE, Rome, May 2008.

[4] M. Moakher. A differential geometric approach to the geometric mean of symmetric
positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3):735–747, 2005.



A fast structured QZ method
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Abstract
We present a fast structured version of the QZ algorithm designed to compute the generalized
eigenvalues of a class of matrix pencils. This class includes colleague pencils arising from the
rootfinding problem for polynomials expressed in the Chebyshev basis.

The method relies on quasiseparable matrix structure and it is based on the representation of
the relevant matrices as low rank perturbations of Hermitian or unitary matrices. The complexity
for an N ×N pencil is O(N2) flops, with O(N) memory.

Numerical experiments performed using a Matlab implementation confirm the effectiveness
and practical stability of the method.
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A new procedure to compute analytic polar
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Abstract
Polar decomposition of time-varying matrices has proved to be useful in several contexts. Thus,
for instance, it appears in numerical methods for computing singular value decompositions [4]
and inversion of time dependent nonsingular square matrices [1]. It is also used in computer
graphics and in the study of stress and strain in continuous media [3]. Since both factors possess
best approximation properties, polar decomposition can be applied in optimal orthogonalization
problems [2]. It has been generalized to abstract Lie groups and even to semigroups. In this
setting, the polar decomposition is equivalent to expressing a group element as the product of a
term in a symmetric subspace and a term in a subgroup of the given Lie group [5].

In this work we propose a new constructive procedure to compute the polar decomposi-
tion of the fundamental real matrix of the linear system dU/dt = A(t)U in the form U(t) =
exp(X(t)) exp(Y (t)), where X(t) is a symmetric matrix and Y (t) is skew-symmetric. Both ma-
trices are explicitly constructed as series of the form X(t) =

∑
i≥1Xi(t), Y (t) =

∑
i≥1 Yi(t),

where each term Xi, Yi is computed recursively. The procedure is shown to converge for times
t < tc, with

∫ tc
0
‖A(t)‖dt ≤ Si(π)/2 ' 0.9259. An additional advantage of the algorithm

proposed here is that, if A(t) belongs to a certain Lie algebra, it provides approximations to the
fundamental matrix in the corresponding Lie group, and thus it preserves important qualitative
properties of the exact solution.

The procedure can be easily implemented in a symbolic algebra package and is extended
without difficulty to get convergent approximations to the analytic polar decomposition of a more
general class of nonsingular time dependent matrices and also of the exponential of constant ma-
trices.
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On geometric integrators for polynomial Hamil-
tonian systems.
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Abstract
There has been a fair amount of work in the last two decades characterizing one step integration
methods having certain geometric properties when applied to general Hamiltonian systems: sym-
plectic integrators; energy/integral-preserving integrators; conjugate-to-symplectic integrators.

A different point of view arises if we restrict the class of problems from the case of general
Hamiltonian functions to the case of polynomial Hamiltonian functions and polynomial Hamilto-
nian vector fields. Then, it becomes often easier to preserve geometric properties. For example
while for general Hamiltonian systems no Runge-Kutta method can preserve exactly the Hamiltio-
nan, this becomes possible if we restrict to polynomial Hamiltonians. I will discuss the example of
the Kahan’s method which is a method defined originally for quadratic vector fields. This method
has remarkable geometric properties when applied for example to cubic Hamiltonians. Such prop-
erties can be explained by studing the B-series of a Runge-Kutta method which reduces to the
Kahan’s method when applied to quadratic vector fields. This is joint work with R.I. McLachlan,
B. Owren, G.W.R. Quispel and Ya Juan Sun.
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Abstract
We consider the refinement of the estimates of invariant (or deflating) subspaces for a large and
sparse matrix A (or pencil A − λB) in Rn, through some (generalized) nonsymmetric algebraic
Riccati equations or their associated (generalized) Sylvester equations [1, 2, 3, 4, 5]. The crux of
the method is the inversion of the dense matrix P>2 AP2−γIn−m (or P>l2 (A−γB)Pr2), for some
unitary projection P2 (or unitary projections Pl2, Pr2) in Rn×(n−m), via the efficient inversion of
A− γIn (or A− γB). All computations have an O(n) complexity. Some numerical examples are
given.
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The unwinding matrix
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Abstract
We introduce the unwinding matrix: the primary matrix function corresponding to the unwinding
number introduced by Corless and Jeffrey in 1996. We show that the unwinding matrix is a valu-
able tool for deriving correct identities involving the matrix logarithm, matrix fractional powers,
and other multivalued functions f and their inverses. We use it to derive new results as well as
simple proofs of known results.



Exponential integrators: linear algebra aspects

Marlis Hochbruck1

1Karlsruhe Institute of Technology

Abstract
In this talk we present a short overview about exponential integrators for evolution equations. We
discuss different options for constructing such integrators and explain some convergence results.

For practical applications it is crucial to approximate the products of certain matrix functions
related to the matrix exponential with vectors efficiently. We will thus also present some recent
advances on the linear algebra aspects arising in exponential integrators.



On a generalization of inverse iteration for eigen-
vector nonlinearities
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Abstract
Let A : Rn → Rn×n be a given, sufficiently smooth function mapping a vector to a symmetric
matrix. We will consider the corresponding nonlinear eigenvalue problem where the parameter
v ∈ Rn equals an eigenvector of the symmetric matrix A(v). That is, we wish to find (λ, v) ∈
R× Rn\{0} such that

A(v)v = λv,

where we also assume that A is invariant of scaling in the sense that A(αv) = A(v) for any
α ∈ R\{0}. We will study the following generalization of inverse iteration

vk+1 = αk(J(vk)− σI)−1vk

where J(v) is the Jacobian of A(v)v and αk = 1/‖(J(vk)− σI)−1vk‖.
We characterize the convergence of this iteration in several ways. If the shift σ is kept

constant then the convergence factor to a simple eigenvalue λ∗ with eigenvector v∗ is given by
ρ = |σ−λ∗|

|λ∗,2−λ∗| where λ∗,2 6= λ∗ is the eigenvalue of J(v∗) which is closest to λ∗. The conver-
gence factor is hence proportional to the distance between the shift and the eigenvalue problem,
consistent with inverse iteration for standard eigenvalue problems.

We also show that the iteration can be interpreted as a discretization of the differential equation

y′(t) = p(y(t))y(t)−A(y(t))y(t) where p(y) :=
yTA(y)y

yT y
,

whose stationary points are solutions to A(y)y = λy. In particular, the algorithm is equivalent
to implicit time-stepping of the differential equation for a particular choice of the step-length and
discretization. The trajectories y(t) automatically satisfy ‖y(t)‖ = 1 if ‖y(0)‖ = 1 . The implicit
time-stepping takes this into account by the standard projection approach. In several examples, we
observe that an appropriate choice of the step-length often leads to convergence to the left-most
eigenvalue.



Subspace methods for computing the numer-
ical range and associated quantities
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Abstract
For a matrix A ∈ Cn×n the numerical range (also called field of values) is defined as the set of all
Rayleigh quotients:

W (A) :=

{
x∗Ax

x∗x
: x ∈ Cn, x 6= 0

}
. (1)

It is well known that the real parts of W (A) are contained in the interval
[
λmin

(
H(A)

)
, λmax

(
H(A)

)]
,

where H(A) = (A+A∗)/2 denotes the Hermitian part of A. By rotation, the intervals
[
λmin

(
H(eiθA)

)
, λmax

(
H(eiθA)

)]
,

with θ ∈ [0, π], completely determine W (A). Essentially all algorithms for computing the nu-
merical range are based on this idea and approximate W (A) by solving a number of parameter-
dependent eigenvalue problems. In this talk, we propose to accelerate these algorithms by (im-
plicitly) exploiting the piecewise smoothness of the eigenvalues of H(eiθA). Our algorithm sub-
sequently constructs an orthonormal basis U for a k-dimensional subspace containing samples of
the eigenvectors belonging to the extremal eigenvalues of H(eiθA), very much in the spirit of the
methods from [1]. It turns out that W (U∗AU) often gives an excellent approximation to W (A)
already for very small values of k. This algorithm can be easily adapted to only compute certain
quantities associated with W (A), such as the Crawford number. In ongoing joint work with Timo
Betcke from UC London, this algorithm is used for the computation of coercivitiy constants in 2D
and 3D wave propagation problems.
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The construction and analysis of
variational integrators
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Abstract
Variational integrators are a class of geometric structure-preserving numerical methods that are
based on a discrete Hamilton’s variational principle, and are automatically symplectic and mo-
mentum preserving.

We will review the role of Jacobi’s solution of the Hamilton–Jacobi equation in the variational
error analysis of variational integrators, and demonstrate how it leads to two systematic methods
for constructing variational integrators. In particular, Jacobi’s solution can be characterized either
in terms of a boundary-value problem or variationally, and these lead to shooting-based variational
integrators and Galerkin variational integrators, respectively.

Computable discrete Lagrangians can be obtained by choosing a numerical quadrature for-
mula, and either a finite-dimensional function space or an underlying one-step method. We prove
that the resulting variational integrator is order-optimal, in that the order of the resulting varia-
tional integrator is only limited by the order of accuracy of the numerical quadrature formula, and
either the approximation properties of the finite-dimensional function space or the order of accu-
racy of the underlying one-step method. Furthermore, when spectral basis elements are used in the
Galerkin formulation, one obtains geometrically convergent variational integrators.

We will also discuss generalizations of variational integrators to Lie groups and homogeneous
spaces. Time permitting, we will also describe efforts to generalize the error analysis to the setting
of Lagrangian PDEs.
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Differential equations for Hamiltonian and sym-
plectic matrix nearness problems

Christian Lubich1

1Mathematisches Institut Universitt Tbingen Auf der Morgenstelle 10 D-72076 Tbingen

Abstract
We propose and study algorithms for structured matrix optimization problems such as the follow-
ing:
(A) Given a Hamiltonian matrix with no eigenvalues on the imaginary axis, find a nearest Hamil-

tonian matrix having some purely imaginary eigenvalue.
(B) Given a Hamiltonian matrix with all eigenvalues on the imaginary axis, find a nearest Hamil-

tonian matrix such that arbitrarily close to that matrix there exist Hamiltonian matrices with
eigenvalues off the imaginary axis.

The notion of “nearest” depends on the choice of norm, for which we consider the matrix 2-norm
in this talk. The Hamiltonian matrices can be allowed to be complex or restricted to be real.
Both problems (A) and (B) are closely related to the problem of finding extremal (leftmost or
rightmost) points of the structured pseudospectrum of a given matrix with respect to perturbed
matrices on a given matrix manifold. We follow up on earlier work by Guglielmi and Lubich
on computing extremal points of unstructured pseudospectra, where we used rank-1 differential
equations for the perturbations that lead monotonically to the desired extremal points. In the
Hamiltonian and symplectic cases we obtain rank-2 differential equations in the complex case,
and rank-4 differential equations in the real case, to compute extremal points of the structured
pseudospectrum. Combined with an iteration for the perturbation size this gives us algorithms for
matrix nearness problems such as (A) and (B) and their symplectic analogues. We conclude the
talk with an application to a stability problem of symplectic integrators for Hamiltonian differential
equations. The talk is based on joint work with Nicola Guglielmi and Daniel Kressner.



What are the “natural” classes of scalar products?

D. Steven Mackey1, Niloufer Mackey1, Françoise Tisseur2
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Abstract
Many important types of structured matrices, such as symplectic, Hamiltonian, and orthogonal
matrices, are associated with an underlying scalar product. Any scalar product is defined by a
nonsingular matrix M via xTMy (or x∗My), but historically only restricted classes of matrices M
have been considered, e.g., M symmetric, Hermitian, or skew-symmetric. Are there compelling
mathematical reasons to focus attention on just these few scalar product classes, or is it just a
matter of convenience? Are there other scalar products worthy of serious study? We consider an
extensive list of useful properties that a scalar product may or may not possess, and investigate
the logical relations between them. From a careful analysis of these relationships, two classes of
scalar products naturally emerge as the ones of primary interest.



Computing the distance to the nearest unsta-
ble quadratic pencil

Alexander Malyshev1

1University of Bergen, Department of Mathematics, Postbox 7800, N-5020 Bergen, Norway

Abstract
A bisection method for computing the distance of a discrete (continuous)-time stable quadratic
pencil to the set of unstable quadratic pencils is described. It amounts to finding the nearest palin-
dromic (even) quadratic pencil with an eigenvalue on the unit circle (the imaginary axis). This task
is accomplished by several structure preserving eigensolvers. Their advantages and disadvantages
are highlighted.

Joint work with M. Sadkane (Brest).



On solving indefinite least squares–type prob-
lems via anti–triangular factorization

Nicola Mastronardi1, Paul Van Dooren2

1Istituto per le Applicazioni del Calcolo M. Picone, sede di Bari, Consiglio Nazionale delle Ricerche, Via G. Amendola,
122/D, I-70126 Bari, Italy
2Department of Mathematical Engineering, Catholic University of Louvain, Bâtiment Euler, Avenue Georges Lemaitre 4,
B-1348 Louvain-la-Neuve, Belgium

Abstract
The indefinite least squares problem and the equality constrained indefinite least squares problem
are modifications of the least squares problem and the equality constrained least squares problem,
respectively, involving the minimization of a certain type of indefinite quadratic form. Such prob-
lems arise in the solution of Total Least Squares problems [3], in parameter estimation and in H∞
smoothing [4, 5]. Algorithms for computing the numerical solution of indefinite least squares and
indefinite least squares with equality constraint are described in [1, 3] and [2], respectively.

The indefinite least squares problem and the equality constrained indefinite least squares prob-
lem can be expressed in an equivalent fashion as augmented square linear systems. Exploiting
the particular structures of the coefficient matrices of such systems, new algorithms for comput-
ing the solution of such problems are proposed relying on the anti–triangular factorization of the
coefficient matrix [6, 7]. Some results on their stability are shown together with some numerical
examples.
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Structured backward errors for eigenvalues
of Hermitian pencils

Shreemayee Bora1, Michael Karow2, Christian Mehl2, Punit Sharma1

1IIT Guwahati, Department of Mathematics, Guwahati 781039, India
2TU Berlin, Institute of Mathematics, MA 4-5, 10623 Berlin, Germany

Abstract
In this talk we consider the structured backward errors for eigenvalues of Hermitian pencils or, in
other words, the following question:

Given a value λ ∈ C and two Hermitian matrices A1, A2 ∈ Cn×n, what is the smallest
perturbation (∆1,∆2) with ∆1,∆2 being Hermitian such that λ is an eigenvalue of the Hermitian
pencil (A1 + ∆1) + %(A2 + ∆2)?

The answer is well known for the case that the eigenvalue λ is real, but not for the case λ ∈
C \ R. In this case, only the structured backward error for eigenpairs (λ, v) has been considered
so far, i.e., the question of finding the smallest structured perturbation that makes the given pair an
eigenpair of the perturbed Hermitian pencil.

In this talk, we give a complete answer to the question by reducing the problem to an eigen-
value minimization problem of Hermitian matrices depending on two real parameters. We will
show that the structured backward error of complex nonreal eigenvalues may be significatly dif-
ferent from the corresponding unstructured backward error - which is in conrast to the case of real
eigenvalues where the structured and unstructured backward errors coincide.



The Newton polygon and structured eigenvalue
perturbation

Julio Moro1, Marı́a J. Peláez2

1Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés (Spain)
2Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta (Chile)

Abstract
The Newton polygon, an elementary geometric construction first devised by Sir Isaac Newton,
has been often used in the context of perturbation theory as a tool for deriving explicit first-order
eigenvalue perturbation expansions. On one hand, this usually gives useful information on the
directions in which perturbed eigenvalues move, something which is crucial in practical situations
when eigenvalues need to be pushed in certain specific directions, or must be moved as fast as
possible away from a critical (or dangerous) region by a perturbation, which is typically small. On
the other hand, these asymptotic expansions often lead to sharp bounds on the condition number
of eigenvalues.

When the matrix or operator under study belongs to a specific class of structured operators, it
makes sense, of course, to consider only perturbations having the same structure, thereby restrict-
ing the admissible Newton polygons. So far, it seems that the structures most amenable to such
a structured perturbation analysis via the Newton polygon are those defined via indefinite scalar
products for which structured canonical forms are available.

In this talk we will both survey classic results for unstructured perturbation, as well as show
some more recent, specific results for structured ones. Taking as a guide a specific example,
involving zero eigenvalues of complex skew-symmetric matrices, we will illustrate the interplay
between matrix structure and the Newton polygon.



Matrix functions for exponential integrators
via interpolation at Leja points

Alexander Ostermann
Department of Mathematics, University of Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria
alexander.ostermann@uibk.ac.at

Abstract
Exponential integrators constitute a class of competitive integration schemes for stiff systems of
differential equations. In contrast to standard Runge–Kutta methods, which require the solution
of large systems of linear equations, exponential integrators are based on the matrix exponential
(and related matrix functions) of the Jacobian of the problem. More precisely, the action of such
matrix functions on certain vectors is required. There are various methods for carrying out this
task; among those are Krylov subspace methods and interpolation methods.

In this talk we will concentrate on interpolation methods based on Leja points. Leja points
are defined recursively which makes them attractive for interpolation where the degree of the in-
terpolation polynomial is not known a priory. Moreover, they guarantee superlinear convergence
of the interpolant. Recent progress consists in new a priory and a posteriory error estimates for
determining the optimal degree of the interpolation polynomial. The main computational task in
interpolation methods are matrix-vector multiplications. They can be implemented quite efficiently
on graphics processing units (GPUs).

This is joint work with Peter Kandolf and Stefan Rainer, University of Innsbruck, and Marco
Caliari, University of Verona.



Integral preserving Lie group integrators

Brynjulf Owren1, Elena Celledoni1

1Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway

Abstract
We present a general method for constructing integral preserving numerical schemes on Lie groups,
a sort of generalization of the discrete gradient method of Gonzalez. In our setting the discrete gra-
dient will be replaced by the trivialized discrete differential (TDD), a map from GxG into the dual
of the Lie algebra of the Lie group G. We give a general definition and show a few examples of
TDDs, each of them can be chosen to be symmetric. The differential equation to be solved is ex-
pressed by means of a dual two-form on the Lie group, and the corresponding numerical object is
a trivialized approximation to this, an exterior two-form on the dual of the Lie algebra. We present
methods which preserve arbitrary first integrals in this setting, and show examples of symmetric
schemes. We briefly discuss how the approach can be generalized to preserve more than one first
integral. Numerical experiments show excellent behavior on some mechanical systems.
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MATRIX POWER MEANS AS THE ONLY AFFINE
FAMILY

MIKLÓS PÁLFIA

Means of two positive definite matrices are characterized by Kubo-
Ando theory by relating each 2-variable matrix mean function to an op-
erator monotone function. Since every operator monotone function ad-
mits an integral characterization due to Loewner’s theory, this provides
us strong properties which are fulfilled by 2-variable matrix means.

There are several different ways to extend a 2-variable matrix mean
to several variables. Most of the extension methods build on analogies
from metric geometry. Recently a one-parameter family of means were
considered and generalized to several variables by Lim and Pálfia, these
are the matrix power means. The extension builds on an idea following
from differential geometry. The applicability of the construction is
due to the special and unique affine geometric structures related to
power means. We will study various properties of this one-parameter
family of multivariable means and their corresponding affine geometric
structures. One of the most important property of this one-parameter
family is that as we take the limit of the chraracterizing parameter
t → 0, we end up with the geometric mean (Riemannian mean or
center of mass) of several positive definite matrices.

Department of Mathematics, College of Science, Yeungnam Univer-
sity

E-mail address: palfia.miklos@aut.bme.hu

Date: June 17, 2012.
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Eigenvalue perturbation theory of classes of
structured matrices under generic structured
rank one perturbations

A.C.M. Ran1

1Department of Mathematics, Faculty of Exact Sciences, VU university Amsterdam, De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands and unit for BMI, North West University, Potchefstroom, South Africa

Abstract
In this talk the perturbation theory of structured matrices under structured rank one perturbations
will be discussed. Let J = −JT be an invertible skew-symmetric matrix, and let H = H∗ be
a hermitian matrix. We consider the following classes of matrices: a complex matrix A is called
J-Hamiltonian when JA = −ATJ , and A is called H-selfadjoint when HA = A∗H , and finally,
A is called H-skew-symmetric if HA+A∗H = 0.

We shall discuss the behaviour of the eigenvalues under generic structured rank one perturba-
tions; that is, the eigenvalues of B = A + uuTJ in the case where A is J-Hamiltonian, and of
B = A± uu∗H in the case where A is H-selfadjoint. Here the vector u is generic.

Generic Jordan structures of perturbed matrices are identified. It is shown in [2] that the per-
turbation behavior of the Jordan structures in the case of J-Hamiltonian matrices is substantially
different from the corresponding theory for unstructured generic rank one perturbation as it has
been studied in [1, 4, 5, 6].

Related perturbation results for H-selfadjoint matrices are given in [3]. In that case the re-
sult concerning the Jordan structure is less surprising, as it is in line with the result for unstruc-
tured generic perturbations. However, there the relation between the sign characteristic of the pair
(A,H) and that of the pair (A+ uu∗H,H) is of interest.

Finally, we shall discuss recent work on H-skew-symmetric matrices. A rank one perturbation
of the form B = A + uu∗H is not in the class of H-skew-symmetric matrices, however, it is
a so-called H-positive real matrix. It will be shown that a-typical behaviour similar to the J-
Hamiltonian case occurs also in this case. In addition, it will be shown that the eigenvalues of
B which are not also eigenvalues of A are necessarily off the imaginary axis. These results arise
as a special case of the study of low rank perturbations of H-positive real matrices. This is joint
work (in preparation) with D.B. Janse van Rensburg, J.H. Fourie and G.J. Groenewald, NWU,
Potchefstroom, South Africa.
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Structured matrices in the rational Lanczos
method

Lothar Reichel1

1Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Abstract
The need to evaluate expressions of the form f(A)v or uT f(A)v, where A is a large symmetric,
sparse or structured matrix, v is a vector, and f is a nonlinear function arises in many applications.
The rational Lanczos method can be an attractive scheme for computing approximations of such
expressions. This method projects the approximation problem onto a rational Krylov subspace of
fairly small dimension, and then solves the small approximation problem so obtained. We pay
particular attention to the case when approximants with few distinct poles are determined. Then an
orthonormal basis for the rational Krylov subspace can be generated with short recursion formulas.
We discuss the structure of the recursion formulas.



Gram-Schmidt process: from the standard to
the non-standard inner product

Miroslav Rozložnı́k1, Jiřı́ Kopal2, Alicja Smoktunowicz3, Miroslav Tůma1

1Institute of Computer Science, Czech Academy of Sciences,Prague, Czech Republic, miro@cs.cas.cz
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3Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland, A.Smoktunowicz@mini.pw.edu.pl

Abstract
In this contribution we consider the most important schemes used for orthogonalization with re-
spect to the standard and non-standard inner product and review the main results on their behavior
in finite recision arithmetic. Although all the schemes are mathematically equivalent, their numer-
ical behavior can be significantly different. We treat separately the particular case of the standard
inner product and show that similar results hold also for the case when the inner product is induced
by a positive diagonal matrix. We will show that in the case of general inner product the orthog-
onality between computed vectors besides the linear independence of initial vectors depends also
on the condition number of the matrix that induces the non-standard inner product. Finally we
discuss the possible extension of this theory to some bilinear forms used in the context of various
structure-preserving transformations.

References
[1] M. Rozloznik, J. Kopal, M. Tuma, A. Smoktunowicz: Numerical stability of orthog-

onalization methods with a non-standard inner product, BIT Numerical Mathematics,
Online First.



They are used for the running heads.

Rational Krylov – further developments and
yet unsolved problems

Axel Ruhe1

1School of Science, Royal Institute of Technology, KTH. SE-10044 Stockholm, Sweden

Abstract
The rational Krylov algorithm is a development of the spectral transformation, or more properly
shift invert, Lanczos or Arnoldi algorithm, where several shifts are used in one run. It could also
be regarded as a Rayleigh quotient iteration where an orthogonal basis is formed by the iterates.
It was described nearly 30 years ago, and in the talk I will review some of the developments since
then, and list some questions that still wait for an answer.

The first application is model reduction for linear dynamic systems, where it is now a part of
standard tools in VLSI circuit simulation. Rational Krylov has been extended to problems with
a nonlinear eigenvalue parameter. It is used to compute a nonlinear matrix function acting on a
vector.

The traditional, linear Krylov methods can be analyzed with the well established theory of
polynomial approximation. The variant of rational approximation, that describes the behavior of
rational Krylov, is a current research subject.

There are issues of implementation that are not yet clarified. How can we use iterative algo-
rithms, when solving the systems that make up the denominator in the rational function? Some
better test, than just tracking the norm of the residual, must be developed. A detail still waiting
for its complete solution, is how to implement rational Krylov in real arithmetic for real matrix
pencils. The Francis double shift is still waiting in the sidelines.



Modified symplectic Gram-Schmidt, Householder
SR algorithm and structured matrices

Ahmed Salam1

1PRES University Lille Nord de France, ULCO, France.

Abstract
In this talk, we show that the SR factorization of a matrix A via the modified symplectic Gram-
Schmidt (MSGS) algorithm is mathematically equivalent to Householder SR algorithm applied to
an embedded matrix obtained from A by adding two blocks of zeros in the top of the first half and
in the top of the second half of the matrix A. Also, due to the special structures of the involved
matrices, we demonstrate that the Householder SR algorithm can be performed via ’simplified’
Householder transformations which are not only symplectic but also skew-Hamiltonian. Through-
out the computations, we stress that MSGS is also numerically equivalent to Householder SR
algorithm applied the mentioned embedded matrix.



Structured matrix polynomials and their sign
characteristic

Maha Al-Ammari1, Steve Mackey2, Yuji Nakatsukasa3, Françoise Tisseur3

1Mathematics Department, King Saud University, Riyadh, Saudi Arabia
2Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA
3School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

Abstract
Matrix polynomials P (λ) = λmAm+ · · ·+λA1+A0 with Hermitian or symmetric matrix coef-
ficients Ai or with coefficients which alternate between Hermitian and skew-Hermitian matrices,
or even with coefficient matrices appearing in a palindromic way, commonly arise in applications
(see the matrix collection NLEVP [4]).

Standard and Jordan triples (X, J, Y ) play a central role in the theory of matrix polynomials
with nonsingular leading coefficient. They extend to matrix polynomials the notion of Jordan
pairs (X, J) for a single matrix A, where A = X−1JX . Indeed, each matrix coefficient Ai

of P (λ) can be expressed in terms of X, J and Y . We show that standard triples of structured
P (λ) have extra properties [3]. In particular there is a nonsingular matrix M such that MY =
vS(J)X

∗, where vS(J) depends on the structure S of P (λ) and J is M -selfadjoint when S ∈
{Hermitian, skew-Hermitian}, M -skew-adjoint when S ∈ {∗-even, ∗-odd} and M -unitary when
S ∈ {palindromic, antipalindromic}. The underlying indefinite scalar product is orthosymmetric
[6] except for palindromic structures.

The property of J implies that its eigenvalues and therefore those of P (λ) occur in pairs
(λ, f(λ)) when λ 6= f(λ), where

f(λ) =





λ for M -self-adjoint J,
−λ for M -skew-adjoint J,
1/λ for M -unitary J.

The eigenvalues for which λ = f(λ), that is, those that are not paired, have a sign +1 or −1 at-
tached to them forming the sign characteristic of P (λ). We define the sign characteristic of P (λ)
as that of the pair (J,M), show how to compute it and study its properties [1]. We discuss applica-
tions of the sign characteristic in control systems, in the solution of structured inverse polynomial
eigenvalue problems and in the characterizatio of special structured matrix polynomials such as
overdamped quadratics, hyperbolic and quasidefinite matrix polynomials [2].
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Structured matrices and multivariate orthog-
onal polynomials

Marc Van Barel1

1Katholieke Universiteit Leuven, Department of Computer Science

Abstract
For polynomials orthogonal on the real line, the three term recurrence relation can be written in
a compact way using a tridiagonal (Jacobi) matrix. In this talk, the structure of the matrices con-
nected to the recurrence relation for multivariate orthogonal polynomials is described. When the
inner product is discrete, computing these generalized Hessenberg matrices is equivalent to solv-
ing an inverse eigenvalue problem. When looking for ”good points” for multivariate polynomial
interpolation, we will indicate that these generalized Hessenberg matrices could play an important
role.



An extension of the multi-shift QZ-algorithm
beyond the Hessenberg-upper triangular pencil

Raf Vandebril1, David S. Watkins2

1Department of Computer Science, K.U.Leuven, 3001 Leuven (Heverlee), Belgium. (raf.vandebril@cs.kuleuven.be).
2Department of Mathematics, Washington State University, Pullman, WA 99164-3113, USA. (watkins@math.wsu.edu).

Abstract
Recently an extension of the class of matrices admitting a Francis type of multishift QR algorithm
was proposed by the authors. These so-called condensed matrices admit a storage cost identical
to that of the Hessenberg matrix and share all of the properties essential for the development of
an effective implicit QR type method. This talk continues along this trajectory by discussing
the generalized eigenvalue problem. The novelty does not lie in the almost trivial extension of
replacing the Hessenberg matrix in the pencil by a condensed matrix, but in the fact that both
pencil matrices can be partially of condensed form. Again, the storage cost and crucial features
of the Hessenberg–upper triangular pencil are retained, giving rise to an equally viable QZ like
method. The associated implicit algorithm also relies on bulge chasing and exhibits a sort of bulge
hopping from one to the other matrix. This talk presents the reduction to a condensed pencil form
and an extension of the QZ algorithm. Relationships between these new ideas and some known
algorithms are also discussed.



The error in the product QR decomposition
and applications

Erik S. Van Vleck1

1Department of Mathematics
University of Kansas
Lawrence, KS 66045 USA

Abstract
The QR decomposition is applied to sequences of matrices in many circumstances including the
approximation of eigenvalues of a matrix and the approximation of stability spectra (Lyapunov ex-
ponents, etc.) for dynamical systems. In this talk we present an error analysis for the product QR
based upon the recent works [2, 1]. The technique involves application of the classical Newton-
Kantorovich Theorem to an appropriate zero finding problem. The theory is shown to be useful
under certain conditions that are central to the perturbation theory for Lypapunov exponents. Time
permitting, applications of the theory will be presented for the approximation of stability spectra
for linear retarded delay differential equations, differential-algebraic equations, and linear Hamil-
tonian differential equations. This talk represents joint work with M. Badawy (Kansas), D. Breda
(Udine), V. Linh (Hanoi), and V. Mehrmann (Berlin).
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Computational methods based on structured
pseudospectra
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Abstract
Controllability and observability are important properties of dynamical systems. These are related
to the perturbability of the poles of the transfer function under structured perturbations. Therefore
we consider structured pseudospectra to analyze the behavior of dynamical systems. The focus
of this talk is the computation of the H∞-norm for large-scale descriptor systems. It can be
shown that for this purpose one has to find the pseudospectrum that touches the imaginary axis,
i.e., the right-most pseudopole is on the imaginary axis. A fast iterative scheme that converges
to the right-most pseudopole together with a root finder is used to efficiently find this particular
pseudospectrum.

Another aspect of this talk will be the fast computation of structured pseudospectral plots,
including a comparison of performance and quality of the plots.



Fast computation of eigenvalues of
companion, comrade, and related matrices

Jared Aurentz1, Raf Vandebril2, David Watkins1

1Washington State University
2KU Leuven

Abstract
The usual method for computing the zeros of a polynomial is to form the companion matrix and
compute its eigenvalues. In recent years several methods that do this computation in O(n2) time
with O(n) memory by exploiting the structure of the companion matrix have been proposed. We
propose a new class of methods of this type that utilizes a factorization of the comrade (or similar)
matrix into a product of essentially 2 × 2 matrices times a banded upper-triangular matrix. Our
algorithm is a non-unitary variant of Francis’s implicitly shifted QR algorithm that preserves this
factored form. We will present numerical results and compare our method with other methods.



Convergence of QR algorithm for normal matrices

Hongguo Xu1
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Abstract
The QR algorithm is considered as one of the top 10 algorithms in the 20th century. Yet, its
convergence behavior has not been fully understood even in then Hermitian matrix case.

The QR algorithm with both the Rayleigh-quotient shift and Wilkinson’s shift is considered
but limited to the normal matrix case. A complete characterization about its convergence behavior
is provided. Besides the well-known convergence properties, the results also give all other possi-
bilities. Another feature is that the results also show how the eigenvalue location and the vector
for the initial Hessenberg reduction govern the convergence of the QR algorithm.

The results may give a better understanding about the QR algorithm, and may help to improve
the QR and QR-type algorithms, particularly those developed for structured matrices normally
having eigenvalues with special patterns.
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Abstract
A remarkable number of different numerical algorithms can be understood and analyzed using
the concepts of symmetric spaces and Lie triple systems, which are well known in differential
geometry from the study of spaces of constant curvature and their tangents. In numerical anal-
ysis there exist numerous examples of objects forming a group, i.e. object that compose in an
associative manner, have an inverse and identity element. Semigroups, sets of objects close under
composition but not inversion, are also well studied in literature. However, there are important
examples of objects that are neither a group nor a semigroup. One important case is the class
of objects closed under a ’sandwich-type’ product, (a, b) 7→ aba. Spaces closed under the alge-
braically nicer product (a, b) 7→ ab−1a, are called symmetric spaces. For example, the collection
of all symmetric positive definite matrices and all selfadjoint Runge–Kutta methods. The theory
of symmetric spaces unifies a range of different topics, such as polar-type matrix decompositions,
splitting methods for computation of the matrix exponential, generalized polar coordinates for the
decompositions of flows in control theory, composition of self-adjoint numerical integrators, the
Scovel projection and dynamical systems with reversing symmetries, the Thue–Morse technique
and dynamical with symmetries, just to name a few. We also consider a new composition tech-
nique for systems with symmetries. The new technique allows to increase the order of preservation
of symmetries by two units, with an appropriate choice of stepsize. Since all the time-steps are
positive, the technique is particularly suited to stiff problems, where a negative time-step can cause
instabilities.
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