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Abstract

Given a fixed integer exponent r ≥ 1, the mantissa sequences of (nr)n and

of (prn)n, where pn denotes the nth prime number, are known not to admit any

distribution with respect to the natural density. In this paper however, we show

that, when r goes to infinity, these mantissa sequences tend to be distributed

following Benford’s law in an appropriate sense, and we provide convergence speed

estimates. In contrast, with respect to the log-density and the loglog-density, it is

known that the mantissa sequences of (nr)n and of (prn)n are distributed following

Benford’s law. Here again, we provide previously unavailable convergence speed

estimates for these phenomena. Our main tool is the Erdős-Turán inequality.

1 Introduction

Given a sequence (un)n of positive real numbers, a classical question consists in deter-

mining whether the sequence of the first significant digit of un, in base 10 say, follows

some specific distribution, such as Benford’s law for instance. More generally, one may

consider the mantissa sequence of the un, and ask again whether it satisfies any dis-

tribution. Recall that the mantissa of a positive real number x is the unique number

M(x) ∈ [1, 10[ such that x = M(x)10k for some integer k.

To be more specific, let ν be a probability measure on the interval [1, 10[. We

say that the mantissa of (un)n are distributed following ν, in the sense of the natural

density, if

lim
N→+∞

(1/N)
N
∑

n=1

1[1,t[(M(un)) = ν([1, t[) (1)

for all t ∈ [1, 10[, where 1A denotes the indicator function of the subset A.

A probability measure on [1, 10[ of particular interest is Benford’s law µB, charac-

terized by

µB ([1, t[) = log10 t (1 ≤ t < 10)
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where log10 denotes the logarithm in base 10. Several sequences are known whose man-

tissa are distributed following Benford’s law, such as αn whenever log(α) is irrational,

or n!, or nn, or the nth Fibonacci number Fn (see [9]).

On the other hand, it is known that the mantissa of nr for a fixed exponent r ≥ 1,

or of prn where pn is the nth prime number, do not follow any distribution in the sense

of the natural density.

However, when r goes to infinity, experimental observation suggests that the man-

tissa of nr and of prn tend to be distributed following Benford’s law (see Figure 1).

Our first purpose in this paper is to provide a setting where this phenomenon can be

formally defined (see next section) and established.
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Figure 1: Frequency of 1, 2, . . . , 9 as first digit of pri for i ≤ 10000 and r = 1, 2 and 20.
The unmarked curve is Benford’s law.

Now, the fact that the mantissa of nr and of prn do not follow any distribution can

be fixed by considering weaker distribution conditions.

Consider again a probability measure ν on [1, 10[. We say that the mantissa of

(un)n is log-distributed following ν if, for all t ∈ [1, 10[,

lim
N→+∞

(1/ logN)
N
∑

n=1

(1/n)1[1,t[(M(un)) = ν([1, t[) (2)

where log denotes the natural logarithm. Similarly, we say that the mantissa of (un)n

is loglog-distributed following ν if, for all t ∈ [1, 10[,

lim
N→+∞

(1/ log logN)
N
∑

n=1

(1/n log n)1[1,t[(M(un)) = ν([1, t[). (3)

In (3) n log n can be replaced by pn. Conditions (1), (2) and (3) are gradually weaker

in a strict sense. See [8] for a survey on these questions. When un = n and un = pn, it
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is known that

(M(un))n is log-distributed (and so loglog-distributed) following µB (4)

(see [4], [5] and [14]). Our second purpose in this paper is to provide previously

unavailable convergence speed estimates for these phenomena.

Remark. More precisely, it is proved in [4], [5] and [14] that, as regards the first digit,

(M(n))n is log-distributed following µB and that (M(pn))n is distributed following µB

in the sense of the so-called logarithmic density relative to the prime numbers. This

relative density is equivalent to the loglog-density defined in (3). The calculations used

in these papers can be quite easily adapted to prove (4). See also [1] for closely related

questions.

2 Notations and definitions

The fractional part of a real number x will be denoted by {x}.
Let S = (vn)n be a sequence of real numbers, N ∈ N

∗ and (wn)n a sequence of

non-negative weights summing to infinity. The discrepancy modulo 1 of order N of S

(see [3, 12]), associated to (wn)n, is the number

D
(wn)
N (S) := sup

0<a<b<1

∣

∣

∣

∣

∣

(

1/
N
∑

n=1

wn

)

N
∑

n=1

wn1[a, b[({vn})− (b− a)

∣

∣

∣

∣

∣

.

It represents the distance between the uniform distribution in [0, 1[ and the distribution,

with respect to (wn)n, of the first N terms of ({vn})n . For the weights wn = 1, wn = 1/n

and wn = 1/pn (or wn = 1/n log n), these numbers will be denoted DN(S), D
log
N (S) and

Dloglog
N (S) , respectively. If we set un = 10vn , this number is also the distance between

µB and the distribution, with respect to (wn)n, of the first N terms of (M(un))n. This

is because {log10 un} = log10 M(un). So

D
(wn)
N (S) = sup

1<c<d<10

∣

∣

∣

∣

∣

(

1/
N
∑

n=1

wn

)

N
∑

n=1

wn1[c, d[(M(un))− log10(d/c)

∣

∣

∣

∣

∣

.

See [7, p. 100–131] and [3, p. 252–259] for two examples of the study of the discrepancy.

We say that the mantissa of the terms in the rows of the array of positive real

numbers (ur,n)r,n tends to be distributed following µB when r → +∞ if there exists a

non-decreasing function φ from N
∗ to N

∗, of infinite limit, such that

lim
r→+∞

Dφ(r)(Sr) = 0

where Sr = (ur,n)n. This definition is most useful when the mantissa of the terms in the

rows of the array do not admit any distribution (like in the sequel). The introduction

of a truncation function φ as above is then necessary.

The last notation we need is eh(x) := exp(2iπhx) with i2 = −1.
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3 Results

We present here the main results of this paper. See Section 2 for the link between the

discrepancy of (log10 un)n and the convergence speed in the study of the distribution

of (M(un))n . We denote by O the standard big O of Landau.

To the best of our knowledge, the only preceding results on Benford’s law concerning

sequences of sequences, or arrays of numbers, are due to Diaconis [2] and concern the

binomial coefficients.

Theorem 1. The mantissa of the terms in the rows of the arrays (nr)r,n and (prn)r,n

tends to be distributed following µB when r → +∞. Moreover, setting φ(r) = [er] and

Sr = (log10 n
r)n, Sr = (log10(n log n)r)n or Sr = (log10 p

r
n)n (r ∈ N

∗), we have

Dφ(r)(Sr) = O(r−1) .

The speed of convergence of Dlog
N cannot be better than 1/ logN and the speed

of convergence of Dloglog
N cannot be better than 1/ log logN (see [3, p. 252]). As a

particular case of theorem 2.40 in [3] we get that, if S ′
1 = (log10 n)n, then Dlog

N (S ′
1) =

O ((logN)−1). The following theorem gives a bound for Dloglog
N (S ′

1) close to the best

possible speed.

Theorem 2. If we set S ′
1 = (log10 n)n, we have

Dloglog
N (S ′

1) = O
(

(log logN)−1(log log logN)2
)

.

We now treat the rates of convergence for un = pn in place of un = n.

Theorem 3. If we set S ′
2 = (log10 pn)n, we have

Dlog
N (S ′

2) = O
(

(logN)−
1

2 (log logN)2
)

and

Dloglog
N (S ′

2) = O
(

(log logN)−
1

2 (log log logN)2
)

.

4 Preliminaries

We present here the properties, already known or purely technical, used in the proofs

of the results in the preceding section.

The following result appears in various guises in the literature, in particular due to

the still ongoing search for the best possible constants. We shall use those found in [3]

and [12]. We want to point out the fact that, in the next three inequalities, the choice

of the integer H ≥ 1 is free.

The Erdős-Turán inequality. Let S = (vn)n be a sequence of elements in [0, 1[ and

let N be a natural number. Then, for every natural number H, we have

DN(S) ≤
1

H + 1
+

H
∑

h=1

1

h

1

N

∣

∣

∣

∣

∣

N
∑

n=1

eh(vn)

∣

∣

∣

∣

∣

,
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Dlog
N (S) ≤ 3

2

(

2

H + 1
+

H
∑

h=1

1

h

1

(
∑N

n=1
1
n
)

∣

∣

∣

∣

∣

N
∑

n=1

eh(vn)

n

∣

∣

∣

∣

∣

)

and

Dlog log
N (S) ≤ 3

2

(

2

H + 1
+

H
∑

h=1

1

h

1

(
∑N

n=1
1
pn
)

∣

∣

∣

∣

∣

N
∑

n=1

eh(vn)

pn

∣

∣

∣

∣

∣

)

.

We now give four elementary lemmas. The first one may be found, for instance, in

[11].

Lemma 1. For all n ∈ N
∗, pn ≥ n log n and there exists a real number C0 > 0 such

that, for all integer n ≥ 3,

|pn − n log n| ≤ C0n log log n .

Lemma 2. For all integer n ≥ 1 and all θ 6= 0, we have
∣

∣

∣

∣

∣

n
∑

j=1

exp(2iπθ log j)

∣

∣

∣

∣

∣

≤ n

2π|θ| + 1 + π|θ| log n .

Proof. Fix n ≥ 1 and θ 6= 0. Then

1

n

n
∑

j=1

j2iπθ = n2iπθRn(f)

where Rn(f) is the Riemann sum of f : t 7→ t2iπθ on [0, 1] with n regular steps of length

n−1. Since

∫ 1

0

f(t) dt =
1

2iπθ + 1
, thanks to the mean value inequality, we have

∣

∣

∣

∣

Rn(f)−
1

2iπθ + 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n−1
∑

j=0

∫
j+1

n

j

n

(

(

j + 1

n

)2iπθ

− t2iπθ

)

dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ 1

n

0

(

(

1

n

)2iπθ

− t2iπθ

)

dt

∣

∣

∣

∣

∣

+
n−1
∑

j=1

∫
j+1

n

j

n

(

j + 1

n
− t

)

2π|θ|
j

n

dt

≤ 1

n

∣

∣

∣

∣

2iπθ

2iπθ + 1

∣

∣

∣

∣

+ 2π|θ|
n−1
∑

j=1

1

2jn
.

Lemma 3. There exists C2 > 0 such that, for all integer n ≥ 3 and all θ ∈ R, we have

∣

∣ exp(2iπθ log pn)− exp(2iπθ log(n log n))
∣

∣ ≤ C2|θ|
log log n

log n
.

Proof. For all integer n ≥ 3 and all θ ∈ R, we have

∣

∣ exp(2iπθ log pn)− exp(2iπθ log(n log n))
∣

∣ =

∣

∣

∣

∣

∣

(

pn
n log n

)2iπθ

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1 +
pn − n log n

n log n

)2iπθ

− 1

∣

∣

∣

∣

∣

≤ 2π|θ| |pn − n log n|
n log n
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as follows from the mean value inequality and taking Lemma 1 into account. Therefore,

we may choose C2 = 2πC0, where C0 is the constant involved in Lemma 1.

Lemma 4. There exists C3 > 0 such that, for all integer N ≥ 3 and all sequence (θn)n

of real numbers, we have

N
∑

n=3

∣

∣

∣

∣

exp(iθn)

n log n
− exp(iθn)

pn

∣

∣

∣

∣

≤ C3 .

Proof. Let N ≥ 3 and a sequence (θn)n be fixed. Then we have

N
∑

n=3

∣

∣

∣

∣

exp(iθn)

n log n
− exp(iθn)

pn

∣

∣

∣

∣

≤ C0

N
∑

n=3

log log n

pn log n
,

where C0 is the constant involved in Lemma 1. And
log log n

pn log n
∼ log log n

n log2 n
is the general

term of a convergent series.

The proofs of theorems 2 and 3 rely mainly on Lemma 8 below. To prove it we

need two famous estimates that we now recall. The first one is Lemma 4.10 in [13, p.

76].

Lemma 5. Let f(x) and g(x) be two functions with continuous derivatives in the inter-

val [a, b] such that f ′(x) and |g′(x)| are non-increasing and g is positive and decreasing.

Then

∑

a≤j≤b

g(j) exp(2iπf(j)) =
∑

α−η<ν<β+η

∫ b

a

g(x) exp(2iπ(f(x)− νx)) dx

+O(g(a) log(β − α + 2)) +O(|g′(a)|)

where β = f ′(a), α = f ′(b) and η is an arbitrary constant such that 0 < η ≤ 1.

Here is the second estimate. To prove it, it suffices to rewrite the proof of Lemma

2.43 in [3, p. 253] for a non-integer parameter θ.

Lemma 6. Fix θ 6= 0. For all integer ν and all real number B > 1, we have
∣

∣

∣

∣

∫ B

1

exp(2iπ(θ log x− νx))

x
dx

∣

∣

∣

∣

≤ C
(

|θ|−1 + |θ|− 1

2

)

,

where C is an absolute constant.

We can now prove a property from which we will derive Lemma 8.

Lemma 7. There exists C1 > 0 and an integer n0 ≥ 1 such that, for all integer n ≥ n0

and all θ 6= 0, we have
∣

∣

∣

∣

∣

n
∑

j=n0

exp(2iπθ log j)

j

∣

∣

∣

∣

∣

≤ C1

(

|θ|−1 + |θ|− 1

2 +
|θ| 12
n0

)

.
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Proof. Without loss of generality, we may assume θ > 0. We apply Lemma 5 with

a = n0, b = n, g(x) = 1/x and f(x) = θ log x. This gives

n
∑

j=n0

1

j
exp(2iπθ log j) =

∑

θ
n
− 1

2
<ν< θ

n0
+ 1

2

∫ n

n0

exp(2iπ(θ log x− νx))

x
dx

+O ((1/n0) log (θ(1/n0 − 1/n) + 2)) +O(1/n2
0) .

Observing that log (θ(1/n0 − 1/n) + 2) ≤ θ
1

2/n0
1

2 + 2
1

2/n0
1

2 , that 1 ≤ θ−
1

2 + θ
1

2 and

that n0 ≥ 1 we obtain

O ((1/n0) log (θ(1− 1/n) + 2)) +O(1/n2
0) ≤ C

(

θ−
1

2 +
θ

1

2

n0

)

,

where C is a constant. Applying Lemma 6, and observing that the number of terms

in the above sum does not exceed 1 + θ(1/n0 − 1/n), it follows that there exists an

absolute constant, still denoted C, such that

∣

∣

∣

∣

∣

∣

∣

∑

θ
n
− 1

2
<ν< θ

n0
+ 1

2

∫ n

n0

exp(2iπ(θ log x− νx))

x
dx

∣

∣

∣

∣

∣

∣

∣

≤ C
(

θ−1 + θ−
1

2

)

(

1 + θ

(

1

n0

− 1

n

))

≤ 2C

(

θ−1 + θ−
1

2 +
θ

1

2

n0

)

.

This concludes the proof.

Lemma 8. There exists C > 0 (depending only on b > 1) such that, for all integer

n ≥ 1 and all h ∈ Z
∗, we have

∣

∣

∣

∣

∣

n
∑

j=1

exp(2iπh logb j)

j

∣

∣

∣

∣

∣

≤ C + log |h|.

Proof. Without loss of generality, we assume that n ≥ |h|+ 1. Then

∣

∣

∣

∣

∣

n
∑

j=1

exp(2iπh logb j)

j

∣

∣

∣

∣

∣

≤ 1 + log |h|+

∣

∣

∣

∣

∣

∣

n
∑

j=|h|+1

exp(2iπh logb j)

j

∣

∣

∣

∣

∣

∣

.

Using Lemma 7 with θ = h/ log b, we obtain

∣

∣

∣

∣

∣

∣

n
∑

j=|h|+1

exp(2iπh logb j)

j

∣

∣

∣

∣

∣

∣

≤ C1

(

log b+ log b
1

2 + log b−
1

2

)

because |h| ≥ 1. This concludes the proof.
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5 Proofs

We shall now prove the results stated in Section 3. We set θh = h
log 10

,

γh = C1 log |h|
(

log 10 +
√

log 10 +
1√

log 10

)

and Bn =
∑n

j=1 j
2iπθh−1 for h ∈ Z

∗ and n ≥ 1. The following estimates will be useful

in the proofs of the theorems 2 et 3:

H
∑

h=1

θh
h

= O(H) ,

H
∑

h=1

γh
h

= O(logH)2 and
H
∑

h=1

θhγh
h

= O (H logH) . (5)

Recall that Lemma 8 gives an upper bound of |Bn| by γh which is independent of n.

5.1 Proof of Theorem 1

We have divided the proof in three stages.

1) Let us first study the rows of the array (nr)r,n with respect to the natural density

(and hence, here, Sr = (log10 n
r)n for r ∈ N

∗). Let us fix the integers N ≥ 1, h ≥ 1

and r ≥ 1. From Lemma 2, we have
∣

∣

∣

∣

∣

N
∑

n=1

eh(log10 n
r)

∣

∣

∣

∣

∣

≤ N log 10

2πhr
+ 1 +

πhr logN

log 10
.

Thus, for all N ≥ 1 and all r ≥ 1,

H
∑

h=1

1

h

∣

∣

∣

∣

∣

N
∑

n=1

eh(log10 n
r)

∣

∣

∣

∣

∣

= O(1)
N

r
+O(logH) +O(H)r logN .

The Erdős-Turán inequality then gives

DN(Sr) ≤ O(H−1) +O(1)
1

r
+

O(logH)

N
+O(H)r

logN

N
. (6)

We have infinitely many choices for the values of N = φ(r) and values of H de-

pending on r that lead to

lim
r→+∞

Dφ(r)(Sr) = 0.

In particular, taking H = r and N = φ(r) = berc, we obtain Dφ(r)(Sr) = O(r−1),

which is the best that can be expected from relation (6).

2) Let us now study the rows of the array (nr logr n)r,n with respect to the natural

density (and hence, here, Sr = (log10(n
r logr n))n). Let us fix the integers N ≥ 3,

h ≥ 1 and r ≥ 1, and set θ = rh(log 10)−1 and, for n ≥ 1, An =
∑n

j=1 j
2iπθ and

vn = log10(n
r logr n). We first remark that, for n ≥ 2, we have

∣

∣(log n)2iπθ − (log(n+ 1))2iπθ
∣

∣ = 2π|θ|
∣

∣

∣

∣

∫ n+1

n

(log x)2iπθ

x log x
dx

∣

∣

∣

∣

≤ 2π|θ|
n log n

.
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Therefore, because of Abel’s transformation and Lemma 2, we have

∣

∣

∣

∣

∣

N
∑

n=2

eh(vn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=2

n2iπθ(log n)2iπθ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

AN(logN)2iπθ − A1(log 2)
2iπθ +

N−1
∑

n=2

An

(

(log n)2iπθ − (log(n+ 1))2iπθ
)

∣

∣

∣

∣

∣

≤ N

2π|θ| + 2 + π|θ| logN +
N−1
∑

n=2

(

n

2π|θ| + 1 + π|θ| log n
)

2π|θ|
n log n

.

Thus, from the properties of the integral logarithm function, there exists a constant

K > 0 such that
∣

∣

∣

∣

∣

N
∑

n=1

eh(vn)

∣

∣

∣

∣

∣

≤ N

2π|θ| + 3 +
KN

logN
+ π|θ|(logN + 2 log logN) + 2π2θ2 logN .

Therefore, for all integer r ≥ 1 and all N ≥ 3,

H
∑

h=1

1

h

∣

∣

∣

∣

∣

N
∑

n=1

eh(vn)

∣

∣

∣

∣

∣

= O(1)
N

r
+O(logH)

N

logN
+O(H)r logN +O(H2)r2 logN . (7)

This, together with the Erdős-Turán inequality, gives

DN(Sr) ≤ O(H−1) +O(1)
1

r
+

O(logH)

logN
+O(H)r

logN

N
+O(H2)r2

logN

N
.

And, for H = r and N = φ(r) = berc, we again obtain

Dφ(r)(Sr) = O(r−1).

3) Finally, let us study the rows of the array (prn)r,n with respect to the natural density

(and hence, Sr = (log10(p
r
n))n here). Let us fix the integers N ≥ 3, h ≥ 1 and r ≥ 1,

and set again vn = log10(n
r logr n). Applying Lemma 3 to θ = rh(log 10)−1 and using

the properties of the integral logarithm, we obtain

H
∑

h=1

1

h

∣

∣

∣

∣

∣

N
∑

n=1

(eh(log10 pn)− eh(vn))

∣

∣

∣

∣

∣

= O(H)r
N log logN

logN
.

Relation (7) and the Erdős-Turán inequality then imply

DN(Sr) ≤ O(H−1)+O(1)
1

r
+
O(logH)

logN
+O(H)r

(

logN

N
+

N log logN

logN

)

+O(H2)r2
logN

N
.

And, for H = r and N = φ(r) = berc, we again obtain

Dφ(r)(Sr) = O(r−1).

This concludes the proof of Theorem 1.
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5.2 Proof of Theorem 2

We study the sequence (M(n))n with respect to the loglog-density, that is with wn =
1
pn

. Let us fix h ∈ Z
∗ and the integer N ≥ 3. Observe first that, for all n ≥ 2, we have

∣

∣

∣

∣

1

log n
− 1

log(n+ 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ n+1

n

−1

x(log x)2
dx

∣

∣

∣

∣

≤ 1

n(log n)2
. (8)

Then, thanks to Abel’s transformation and Lemma 8, we have

∣

∣

∣

∣

∣

N
∑

n=2

eh(log10 n)

n log n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=2

n2iπθh−1(log n)−1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

BN(logN)2iπθh − B1(log 2)
2iπθh +

N−1
∑

n=2

Bn

(

1

log n
− 1

log(n+ 1)

)

∣

∣

∣

∣

∣

≤ |BN |+ 1 +
N−1
∑

n=2

|Bn|
1

n(log n)2

≤ γh + 1 +
γh
log 2

.

This, together with Lemma 4, implies

∣

∣

∣

∣

∣

N
∑

n=2

eh(log10 n)

pn

∣

∣

∣

∣

∣

≤ C3 + γh + 1 +
γh
log 2

. (9)

Relations (9) and (5) show that, for all N ∈ N
∗,

H
∑

h=1

1

h

∣

∣

∣

∣

∣

N
∑

n=1

eh(log10 n)

pn

∣

∣

∣

∣

∣

= O(logH)2

and the Erdős-Turán inequality then gives

Dlog log
N (S ′

1) ≤
3

2

(

O(H−1) +
O(logH)2

log logN

)

where S ′
1 = (log10 n)n. Choosing H = blog logNc leads to the announced bound. This

concludes the proof of Theorem 2.

5.3 Proof of Theorem 3

Set S ′
2 = (log10 npn)n. We have divided the proof in four stages.

1) We first study the sequence (M(n log n))n with respect to the log-density. Let us

fix h ∈ Z
∗ and the integer N ≥ 3. Then, thanks to Abel’s transformation, relation (8)

and Lemma 8, we have
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∣

∣

∣

∣

∣

N
∑

n=2

eh(log(n log n))

n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=2

n2iπθh−1(log n)2iπθh

∣

∣

∣

∣

∣

=
∣

∣BN(logN)2iπθh −B1(log 2)
2iπθh

∣

∣

+

∣

∣

∣

∣

∣

N−1
∑

n=2

Bn

(

(log n)2iπθh − (log(n+ 1))2iπθh
)

∣

∣

∣

∣

∣

≤ |BN |+ 1 +
N−1
∑

n=2

|Bn|
2π|θh|
n log n

≤ γh + 1 + 2π|θh|γh(log logN − log log 2) . (10)

2) We now study the sequence (M(n log n))n with respect to the loglog-density. Let

us fix h ∈ Z
∗ and the integer N ≥ 3 and observe that, for all n ≥ 2, we have

∣

∣(log n)2iπθh−1 − (log(n+ 1))2iπθh−1
∣

∣ =

∣

∣

∣

∣

∫ n+1

n

(2iπθh − 1)
(log x)2iπθh−2

x
dx

∣

∣

∣

∣

≤ |2πθh − 1|
n(log n)2

.

Therefore, because of Abel’s transformation and Lemma 8, we have

∣

∣

∣

∣

∣

N
∑

n=2

eh(log10(n log n))

n log n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=2

n2iπθh−1(log n)2iπθh−1

∣

∣

∣

∣

∣

=
∣

∣BN(logN)2iπθh−1 − B1(log 2)
2iπθh−1

∣

∣

+

∣

∣

∣

∣

∣

N−1
∑

n=2

Bn

(

(log n)2iπθh−1 − (log(n+ 1))2iπθh−1
)

∣

∣

∣

∣

∣

≤ |BN |
logN

+
1

log 2
+

N−1
∑

n=2

|Bn|
|2πθh − 1|
n(log n)2

≤ γh
logN

+
1

log 2
+ |2πθh − 1| γh

log 2
.

This, together with Lemma 4, implies

∣

∣

∣

∣

∣

N
∑

n=2

eh(log10(n log n))

pn

∣

∣

∣

∣

∣

≤ C3 +
γh

logN
+

1

log 2
+ |2πθh − 1| γh

log 2
. (11)

3) We know study the sequence (M(pn))n with respect to the log-density. Let us fix

h ∈ Z
∗ and the integer N ≥ 3. Then the Abel’s transformation, relation (10) and

Lemma 3 give
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∣

∣

∣

∣

∣

N
∑

n=3

eh(log10 pn)

n

∣

∣

∣

∣

∣

≤ γh + 1 + γh2π|θh|(1 + log logN) + C2|θh|
N
∑

n=3

log log n

n log n
. (12)

The Erdős-Turán inequality and relations (12) and (5) yield the bound

3

2

(

O(H−1) +
O(logH)2 +O(logH) +O (H logH) (1 + log logN) +O(H)(log logN)2

logN

)

for Dlog
N (S ′

2). Choosing H =
⌊

(logN)
1

2

⌋

leads to the announced bound.

4) We now study the sequence (M(pn))n with respect to the loglog-density. Let us fix

h ∈ Z
∗ and the integer N ≥ 3. Then, from relation (11) and Lemma 3, we have

∣

∣

∣

∣

∣

N
∑

n=3

eh(pn)

pn

∣

∣

∣

∣

∣

≤ C3 +
γh

logN
+

1

log 2
+ |2πθh − 1| γh

log 2
+ C2|θh|

N
∑

n=3

log log n

pn log n
. (13)

The Erdős-Turán inequality and relations (5) and (13) give

Dlog log
N (S ′

2) ≤
3

2

(

O(H−1) +
O(logH)2 +O(logH) +O (H logH) +O(H)

log logN

)

.

Then, by fixing H =
⌊

(log logN)
1

2

⌋

, we get the announced bound. The proof of

Theorem 3 is now complete.

6 Conclusion

All our results and proofs remain valid with an arbitrary numeration base b > 1,

even a non-integral one. It suffices to replace log10 by logb, the usual mantissa M
by the mantissa Mb in base b, and µB by the probability µB,b on [1, b[ defined by

µB,b([1, a[) = logb a. This is all the more remarkable since, for example, the sequence

(Mb(2
n))n is distributed following µB,b only if b is not a rational power of 2 and there

exists no random variable X such that the law of Mb(X) is µB,b for all b > 1 ([10] and

[6, p. 19–29]).

Note that, in our proofs, we have shown that, when r → +∞, the mantissa of the

row terms of the array ((n log n)r)r,n tends to be distributed following µB.

By the Weyl criterion (see [7, p. 7] or [3, p. 14]), it is easy to verify that if (M(un))n

is distributed (log-distributed and loglog-distributed, respectively) following µB, then

(M(ur
n))n also is for all r ∈ N

∗. Therefore, for all positive integer r, the sequences

(M(nr))n, (M(prn))n and (M((n log n)r))n are log-distributed and loglog-distributed

following µB.

It is well known to the arithmeticians that, for a real number α, the sequence of

fractional parts ({αn})n is distributed following U if and only if α is an irrational

number. Because of the properties recalled in Section 4, we deduce from this that the

12



mantissa of the terms of each column of the array (prn)r,n (and, up to rare exceptions, of

each column of (nr)r,n) is distributed following µB with respect to the natural density.

Moreover, the diagonal of the array (nr)r,n is the sequence (nn)n whose mantissa is

distributed, still with respect to the natural density, following µB [9].
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