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Abstract

Let m be a random tessellation in Rd, d ≥ 1, observed in a bounded Borel subsetW and f(·) be a measurable
function defined on the set of convex bodies. A point z(C), called the nucleus of C, is associated with each cell
C of m. Applying f(·) to all the cells of m, we investigate the order statistics of f(C) over all cells C ∈ m with
nucleus in Wρ = ρ1/dW when ρ goes to infinity. Under a strong mixing property and a local condition on m
and f(·), we show a general theorem which reduces the study of the order statistics to the random variable f(C),
where C is the typical cell of m. The proof is deduced from a Poisson approximation on a dependency graph via
the Chen-Stein method. We obtain that the point process

{
(ρ−1/dz(C), a−1

ρ (f(C)− bρ)), C ∈ m, z(C) ∈Wρ

}
,

where aρ > 0 and bρ are two suitable functions depending on ρ, converges to a non-homogeneous Poisson point
process. Several applications of the general theorem are derived in the particular setting of Poisson-Voronoi and
Poisson-Delaunay tessellations and for different functions f(·) such as the inradius, the circumradius, the area,
the volume of the Voronoi flower and the distance to the farthest neighbor.

Keywords: Random tessellations; extreme values; order statistics; dependency graph; Poisson approximation;
Voronoi flower; Poisson point process; Gauss-Poisson point process.
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1 Introduction
A tessellation of Rd, d ≥ 1, endowed with its Euclidean norm | · |, is a countable collection of nonempty compact
subsets, called cells, with disjoint interiors which subdivides the space and such that the number of cells intersecting
any bounded subset of Rd is finite. The set T of tessellations is endowed with the σ-algebra generated by the
sets

{
m ∈ T,

⋃
C∈m ∂C ∩K = ∅

}
where ∂K is the boundary of K for any compact set K in Rd. By a random

tessellation m, we mean a random variable with values in T. It is said to be stationary if its distribution is invariant
under translations of the cells. For a complete account on random tessellations, we refer to the books [35, 40] and
the survey [7].

Given a fixed realization of m, we associate with each cell C ∈ m in a deterministic way a point z(C), which is
called the nucleus of the cell, such that z(C + x) = z(C) + x for all x ∈ Rd. To describe the mean behaviour of the
tessellation, the notions of intensity and typical cell are introduced as follows. Let B be a Borel subset of Rd such
that λd(B) ∈ (0,∞), where λd is the d-dimensional Lebesgue measure. The intensity γ of the tessellation is defined
as γ = 1

λd(B) · E [#{C ∈ m, z(C) ∈ B}] and we assume that γ ∈ (0,∞). Since m is stationary, γ is independent
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of B and we suppose, without loss of generality, that γ = 1. The typical cell C is a random polytope whose the
distribution is given by

E[f(C)] = 1
λd(B) · E

 ∑
C∈m,
z(C)∈B

f(C − z(C))

 (1.1)

for all f : Kd → R bounded measurable function on the set of convex bodies Kd, i.e. convex compact sets, endowed
with the Hausdorff topology.

We are interested in the following problem: only a part of the tessellation is observed in the window Wρ = ρ1/dW ,
where W is a bounded Borel subset of Rd, i.e. included in a cube C(W ), and such that λd(W ) 6= 0. Let f : Kd → R
be a translation invariant measurable function, i.e. f(C + x) = f(C) for all C ∈ Kd and x ∈ Rd. For all r ∈ N∗,
we denote by M (r)

f,Wρ
the r-th order statistic of f over the cells C ∈ m such that z(C) ∈Wρ. We have chosen the

convention to call the r order statistics the r largest values. When r = 1, the 1-st order statistic is denoted by
Mf,Wρ

, i.e.

Mf,Wρ
= M

(1)
f,Wρ

= max
C∈m,

z(C)∈Wρ

f(C).

In this paper, we investigate the limit behaviour of M (r)
f,Wρ

when ρ goes to infinity.
The study of extremes could describe the regularity of the tessellation (e.g. presence of elongated cells). For

instance, in finite element method, the quality of the approximation depends on some consistency measurements
over the partition, see e.g. [14]. Another potential application field is statistics of point processes. The key idea
would be to identify a point process from the extremes of a tessellation induced by the point process.

To the best of our knowledge, one of the first works on extreme values in stochastic geometry is due to Penrose.
In chapters 6,7 and 8 in [26], he investigates the maximum and minimum degrees of random geometric graphs. More
recently, Schulte and Thäle [36] establish a theorem to derive the order statistics of a functional fk(x1, . . . , xk) of
k points on a homogeneous Poisson point process. Nevertheless, their approach cannot be applied to our problem.
Indeed, studying extremes of the tessellation requires to use functionals which depend on the whole point process of
nuclei and not only on a fixed number of points. Besides, we consider any translation invariant measurable function
f(·) and we restrict our investigation to a certain kind of random tessellation satisfying a strong mixing property
(Condition (FRC), p. 3). Our general theorem (Theorem 1, p. 3) is followed by numerous examples, with rates
of convergence, in the particular setting of Poisson-Voronoi and Poisson-Delaunay tessellations. This improves in
particular some extremes that are investigated in [8]. Before stating our main theorems, we need some preliminaries
which contain notation and conditions on the random tessellation.

Preliminaries. Let C(W ) be a cube in Rd containing W . We partition C(W )
ρ = ρ1/dC(W ) into a set Vρ of Nρ

sub-cubes of equal size, such that N1/d
ρ is an integer and Nρ −→

ρ→∞
∞. These sub-cubes are indexed by the set of

i = (i1, . . . , id) ∈
[
1, N1/d

ρ

]d
. With a slight abuse of notation, we identify a cube with its index. Let us define a

distance between sub-cubes i and j as d(i, j) = max1≤r≤d{|ir − jr|}. Moreover, if A, B are two sets of sub-cubes,
we let d(A,B) = mini∈A,j∈B d(i, j). For each i ∈ Vρ, we denote by

Mf,i = max
C∈m,

z(C)∈i∩Wρ

f(C). (1.2)

When {C ∈ m, z(C) ∈ i ∩Wρ} is empty, we take Mf,i = −∞.
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Let us consider a threshold vρ depending on ρ. Studying the order statistics amounts to investigate the number
of exceedance cells of vρ denoted by

Uρ(vρ) =
∑
C∈m,

z(C)∈Wρ

1f(C)>vρ . (1.3)

Since f is translation invariant, the mean of this random variable is, according to (1.1):

E [Uρ(vρ)] = λd(Wρ) · P (f(C) > vρ) . (1.4)

We assume the following condition which is referred as the typical cell property (TCP):

Condition (TCP): the mean number of exceedance cells converges to a limit denoted by τ ≥ 0, i.e.

λd(Wρ) · P (f(C) > vρ) −→
ρ→∞

τ.

Moreover, we denote by G1(ρ) the rate of convergence, i.e.

G1(ρ) = |λd(Wρ) · P(f(C) > vρ)− τ | . (1.5)

We assume also a (global) condition of R-dependence associated with m and f which is referred as the finite
range condition (FRC).

Condition (FRC): there exists an integer R and an event Aρ with P (Aρ) −→
ρ→∞

1 such that, conditional on Aρ,
the σ-algebras σ{Mf,i, i ∈ A} and σ{Mf,i, i ∈ B} are independent when d(A,B) > R.

Finally, in order to present our first theorem, we introduce a second function defined as

G2(ρ) = NρE

 ∑
(C1,C2) 6=∈m2,
z(C1),z(C2)∈Cρ

1f(C1)>vρ,f(C2)>vρ

 , (1.6)

where

Cρ =
[
0, (2R+ 1) · λd(Wρ)1/dN−1/d

ρ

]d
(1.7)

and where (C1, C2)6= ∈ m2 means that (C1, C2) is a pair of distinct cells of m.

Order statistics. We are now prepared to present our first theorem.

Theorem 1. Let m be a stationary random tessellation of intensity 1 such that Conditions (TCP) and (FRC)
hold and let r ∈ N∗ be fixed. Then∣∣∣∣∣P(M (r)

f,Wρ
≤ vρ)− e−τ

r−1∑
k=0

τk

k!

∣∣∣∣∣ = O
(
G1(ρ) +G2(ρ) +N−1

ρ + P(Acρ)
)
, (1.8)

where φ(ρ) = O(ψ(ρ)) means that φ(ρ)/ψ(ρ) is bounded as ρ goes to infinity.
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To derive useful applications, we assume a second condition on the random tessellation referred as the local
correlation condition (LCC).

Condition (LCC): the function G2(ρ) converges to 0 as ρ goes to infinity.

This (local) condition means that with high probability two neighboring cells are not simultaneously exceedances.
Under this assumption, we obtain the following result:

Corollary 1. Let m be a stationary random tessellation of intensity 1 such that Conditions (TCP), (FRC) and
(LCC) hold and let r ∈ N∗ be fixed. Then

P(M (r)
f,Wρ

≤ vρ) −→
ρ→∞

e−τ
r−1∑
k=0

τk

k!

with rate of convergence O
(
G1(ρ) +G2(ρ) +N−1

ρ + P(Acρ)
)
.

Remark 1. When Condition (LCC) does not hold, we can show that limρ→∞ P
(
Mf,Wρ

≤ vρ
)

= e−θτ for some
constant θ ∈ [0, 1], provided that the limit of P

(
Mf,Wρ ≤ vρ

)
exists. Its proof relies notably on the adaptation to

our setting of several arguments included in [17]. According to Leadbetter, we say that θ is the extremal index. In
a future work, we hope to develop a general method to estimate this quantity.

Theorem 1 could be extended in several directions. First, its result remains true for random tessellations satis-
fying some β-mixing property (see examples of Voronoi tessellations given in [11]). Moreover, it can be generalized
to marked point processes satisfying three properties: two conditions similar to Conditions (FRC) and (LCC),
and one condition on the mark distribution. In particular, we could investigate extremes of Boolean models with
bounded grains. When the random tessellation is ergodic with respect to the group of translations of Rd, the order
statistics are asymptotically independent of the choice of nuclei z(·). Indeed, they only depend on the asymptotic
behaviour of G1(ρ) and the typical cell C itself does not depend on the set of nuclei thanks to the ergodic theorem
(see [9], p. 339). This will be the case for examples that we deal with. Moreover, we notice that the order statistics
do not depend on the shape of the window W . Actually, a method similar to Proposition 3 of [8] shows that the
contribution of boundary cells is negligible. Besides, we do not know if our rate of convergence is optimal. The
technique that we use is similar to the method employed by Penrose and Yukich [27]. Nevertheless, their rate of
convergence is sub-optimal (e.g. better estimates can be found in [15]). So we suppose that the improvement of the
results might be achieved by using other techniques, different from ours.

As mentioned above, Conditions (FRC) and (LCC) concern global and local properties of the tessellation
respectively. In fact, there exists an analogy between Conditions (FRC) and (LCC) and Conditions D(un) and
D′(un) of Leadbetter [16] respectively. The general theory of extreme values deals with sequences [12] or random
fields [19], see also the reference books [10] and [32]. Unfortunately, we are unable to apply it in our setting. Indeed,
the set of random variables that we consider is not a discrete random field in a classical meaning. More precisely, the
process {Mf,i}i∈Vρ is a triangular array indexed by Nd and the process {f(Cx)}x∈Rd is not a Gaussian continuous
random field, where Cx is the cell of the tessellation containing x.

Point process of exceedances. Concretely, the threshold is often of the form vρ = vρ(t) = aρt + bρ, t ∈ R
with aρ > 0. In this case, we can be more specific about the joint distributions of the order statistics. Before
stating our second theorem, we need some preliminaries. We denote by τ(t) ∈ [0,+∞], t ∈ R, the limit of
λd(Wρ) · P(f(C) > vρ(t)) as ρ goes to infinity and by ∗x = inf{t ∈ R, τ(t) < ∞} and x∗ = sup{t ∈ R, τ(t) > 0}
the lower and upper endpoints of τ(·). Since aρ is positive, the function τ(·) is not increasing so that τ(·) is finite
on (∗x, x∗].

Under Conditions (FRC) and (LCC), we consider the random collection

Φρ =
{(
ρ−1/dz(C), a−1

ρ (f(C)− bρ)
)
, C ∈ m and z(C) ∈Wρ

}
⊂W ×R.
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Moreover, we consider a Poisson point process Φ ⊂W × (∗x, x∗], with intensity measure ν given by

ν(B × (s, t]) = E [#Φ ∩ (B × (s, t])] = λd(B)
λd(W ) · (τ(s)− τ(t))

for all Borel subset B ⊂W and all segment (s, t] ⊂ (∗x, x∗]. We then obtain the following limit theorem.

Theorem 2. Let m be a stationary random tessellation of intensity 1 such that Conditions (TCP), (FRC) and
(LCC) hold for each vρ = vρ(t) = aρt+ bρ, t ∈ R. Then the family of point processes Φρ converges in distribution
to the Poisson point process Φ, i.e. for any Borel subsets B1, . . . ,Bk ⊂W × (∗x, x∗] with ν(∂Bi) = 0, 1 ≤ i ≤ k

(#Φρ ∩B1, . . . ,#Φρ ∩Bk) D−→ (#Φ ∩B1, . . . ,#Φ ∩Bk) ,

where ∂Bi denotes the boundary of Bi.

This result suggests that the largest order statistics can be seen as points of a (non homogeneous) Poisson point
process. Theorem 2 gives their joint distributions so that Corollary 1 is a particular case of the latter when k = 1 and
B = W × (t, x∗]. For a wider panorama on results of the point process of exceedances associated with the extremes
of a sequence of non independent random variables, we refer to chapter 5 in [18]. When W = C(W ) = [0, 1]d and
when τ(·) is not constant, the function τ(·) belongs to either the Fréchet, the Gumbel or the Weibull family. This
fact is a rewriting of the proof of Theorem 4.1 in [19].

The paper is organized as follows. In Section 2, we show how to reduce our problem to the study of extreme
values on a dependency graph. We use a result of [2] to derive an estimate of exceedances by a Poisson distribution.
We then deduce Theorems 1 and 2 from a discretization of W into sub-cubes. Sections 3, 4 and 5 are devoted to
numerous applications on Delaunay and Voronoi random tessellations. We investigate the asymptotic behaviours
with the rates of convergence of:

• the minimum of circumradii of a Poisson-Delaunay tessellation in any dimension and the maximum and
minimum of the areas in the planar case (Section 3),

• the minimum of distances to the farthest neighboring nucleus and the minimum of the volume of flowers for
a Poisson-Voronoi tessellation (Section 4),

• the maximum of inradii for a Voronoi tessellation induced by a Gauss-Poisson process (Section 5).

For each tessellation and each characteristic, we need to find a suitable threshold vρ and to check Condition
(LCC) which requires some delicate geometric estimates.

In the rest of the paper, c or c′ denotes a generic constant which does not depend on ρ but may depend on other
quantities. The term vρ = vρ(t) denotes a generic function of t, depending on ρ, which is specified in Sections 3, 4
and 5.

2 Proofs of Theorems 1 and 2
2.1 Extreme values on a dependency graph and proof of Theorem 1
We first outline the methodology of the proof of Theorem 1 with some additional notation. A classical method in
extreme value theory is to investigate the exceedances. We consider two random variables that are the number of
exceedance cells Uρ(vρ), introduced in (1.3), and the number of exceedance cubes U ′Vρ(vρ) defined as

U ′Vρ(vρ) =
∑
i∈Vρ

1Mf,i>vρ , (2.1)
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where Vρ and Mf,i are introduced in the preliminaries, p. 2. We denote by µρ the mean of U ′Vρ(vρ), i.e.

µρ = E

[
U ′Vρ(vρ)

]
=
∑
i∈Vρ

P (Mf,i > vρ) . (2.2)

The proof of Theorem 1 is divided into the three following lemmas.

Lemma 1. Under the same assumptions as in Theorem 1, we get for all r ∈ N∗∣∣∣P (Uρ(vρ) ≤ r − 1)− P

(
U ′Vρ(vρ) ≤ r − 1

)∣∣∣ ≤ 2 ·G2(ρ). (2.3)

The above lemma is a consequence of Condition (LCC).

Lemma 2. Let µρ be as in (2.2). Under the hypothesis of Theorem 1, we get for all r ∈ N∗∣∣∣∣∣P(U ′Vρ(vρ) ≤ r − 1)− e−µρ
r−1∑
k=0

µkρ
k!

∣∣∣∣∣ = O
(
G2(ρ) +N−1

ρ + P(Acρ)
)
. (2.4)

The derivation of Lemma 2 constitutes the major part of the proof of Theorem 1. It means that the number
of exceedance cubes is approximately a Poisson random variable. The fundamental concept to prove this lemma
is that of a dependency graph. We first establish a Poisson approximation on the number of exceedances on such
graph and we show how our problem can be reduced to this setting. Finally, the following result gives an estimate
for µρ.

Lemma 3. Let µρ as in (2.2). Under the assumptions as in Theorem 1, we get

|µρ − τ | ≤ G1(ρ) +G2(ρ).

Proof of Theorem 1. Since M (r)
f,Wρ

is lower than vρ if and only if Uρ(vρ) ≤ r− 1, we deduce Theorem 1 from the
three lemmas above and the fact that the function x 7→ e−x

∑r−1
k=0

xk

k! is Lipschitz. �

In the rest of this subsection, we proceed as follows. We first establish the Poisson approximation on a dependency
graph (Proposition 3) and we deduce from it Lemma 2. The key idea is to apply Conditions (TCP) and (FRC).
Then we prove Lemmas 1 and 3.

Extreme values on a dependency graph. Given a collection of real random variables Xi, i ∈ V (not necessarily
stationary), we say that the graph G = (V,E) is a dependency graph for Xi if for any pair of disjoint sets A1, A2 ⊂ V
such that no edge in E has one endpoint in A1 and the other in A2, the σ-fields σ(Xi, i ∈ A1) and σ(Xi, i ∈ A2) are
mutually independent. Introduced by Petrovskaya and Leontovitch in [28], this concept was applied by Baldi and
Rinott (e.g. [5]) to obtain central limit theorems and normal approximations. Furthermore, Arratia et al. give a
Poisson approximation of a sum of (non independent) Bernoulli random variables indexed by a countable set (see
Theorem 1 in [2]). We write their result in our context to approximate the number of exceedances on a dependency
graph by a Poisson random variable.

We denote by |V |, D and J ⊂ R, the number of vertices of G, its maximal degree and a finite union of disjoint
intervals respectively. Let U′V (J) be

U′V (J) =
∑
i∈V

1Xi∈J
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and pi = P(Xi ∈ J), pij = P(Xi ∈ J,Xj ∈ J) for all i ∈ V and j ∈ V (i)− {i}, where V (i) is the set of neighbors of
i, i.e.

V (i) = {j ∈ V, (i, j) ∈ E} ∪ {i}.

Let us consider a Poisson random variable Z of mean

µJ = E[Z] = E[U′V (J)] =
∑
i∈V

P (Xi ∈ J) .

The Chen-Stein method can be applied to approximate the number of occurrences of dependent events by a Poisson
random variable (e.g. [2]). In particular, this is a powerful tool to derive some results in extreme value theory for
a sequence of real random variables (e.g. [38]). We write below a slightly modified version of Theorem 1 of [2]
to derive an upper bound for the total variation distance between U′V (J) and its Poisson approximation Z for a
dependency graph.

Proposition 3. (Arratia et al. 1990) Let p(V ) = supi∈V pi and q(V )2 = sup(i,j)∈E pij. Then

sup
A⊂N

|P(U′V (J) ∈ A)− P(Z ∈ A)| ≤ 2D · |V | ·
(
p(V )2 + q(V )2) . (2.5)

In particular, for all r ∈ N∗, we get∣∣∣∣∣P(U′V (J) ≤ r − 1)− e−µJ

r−1∑
k=0

µkJ
k!

∣∣∣∣∣ ≤ 2D · |V | ·
(
p(V )2 + q(V )2) . (2.6)

Proof of Proposition 3. The upper bound (2.6) is a direct consequence of (2.5). From Theorem 1 of [2], we get

sup
A⊂N

|P(U′V (J) ∈ A)− P(Z ∈ A)| ≤ 2(b1 + b2 + b3), (2.7)

where

b1 =
∑
i∈V

∑
j∈V (i)

pipj, b2 =
∑
i∈V

∑
i6=j∈V (i)

pij and b3 =
∑
i∈V

E [|P (Xi ∈ J |σ(Xj : j 6∈ V (i)))− pi|] .

Since |V (i)| ≤ D+1, we obtain b1 ≤ |V | ·D ·p(V )2 and b2 ≤ |V | ·D ·q(V )2. Moreover, using the fact that if j 6∈ V (i),
the random variable Xj is independent of Xi, we get b3 = 0. We then deduce (2.5) from (2.7). �

The technique of dependency graphs, combined with a discretization technique, has been used on several occasions
to derive central limit theorems in geometric probability (see e.g. [3]). In the same spirit, we derive Lemma 2 from
Proposition 3. We need first to explain how we construct the dependency graph from our random tessellation.

Construction of the dependency graph. We define a graph Gρ = (Vρ, Eρ) as follows. The set Vρ consists
of the sub-cubes i (|Vρ| = Nρ) which cover Wρ and an edge (i, j) ∈ Eρ if d(i, j) ≤ R, where R is introduced in
Condition (FRC). The maximal degree Dρ of this graph satisfies

Dρ ≤ (2R+ 1)d. (2.8)

For all i ∈ Vρ, we define the random variable Xi as Xi = Mf,i. From Condition (FRC), conditional on Aρ, the
graph Gρ is a dependency graph for (Mf,i)i∈Vρ .
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Proof of Lemma 2. We apply Proposition 3 to Xi = Mf,i and J = (vρ,∞). It is enough to derive upper bounds
for P(Mf,i > vρ|Aρ) and P(Mf,i > vρ,Mf,j > vρ|Aρ). According to (1.2), we get

P(Mf,i > vρ) = P

 ⋃
C∈m,

z(C)∈i∩Wρ

{f(C) > vρ}

 ≤ E

 ∑
C∈m,

z(C)∈i∩Wρ

1f(C)>vρ

 .
Since f is translation invariant and λd(i) = 1

Nρ
λd

(
C(W )
ρ

)
= c(W ) · 1

Nρ
λd(Wρ), where c(W ) = λd(C(W ))

λd(W ) , we deduce
from (1.1) that

P(Mf,i > vρ) ≤ c(W ) · 1
Nρ

λd(Wρ) · P(f(C) > vρ). (2.9)

Using the inequalities P(Mf,i > vρ|Aρ) ≤ P(Mf,i > vρ)/P(Aρ) and λd(Wρ) ·P(f(C) > vρ) ≤ G1(ρ)+τ , where G1(ρ)
is defined in (1.5), we obtain

pi := P(Mf,i > vρ|Aρ) ≤ c(W ) · G1(ρ) + τ

P(Aρ)Nρ
. (2.10)

Moreover, for any i ∈ Vρ and j ∈ Vρ(i)− {i}, we get

P(Mf,i > vρ,Mf,j > vρ) = P

 ⋃
C1∈m,

z(C1)∈i∩Wρ

⋃
C2∈m,

z(C2)∈j∩Wρ

{f(C1) > vρ, f(C2) > vρ}



≤ E

 ∑
(C1,C2)6=∈m2

z(C1),z(C2)∈Vρ(i)

1f(C1)>vρ,f(C2)>vρ

 ,
(2.11)

where (C1, C2) 6= ∈ m2 means that (C1, C2) is a pair of distinct cells. By a slight abuse of notation, we will write in
the rest of the paper Vρ(i) for the union of the sub-cubes

⋃
j∈Vρ(i) j.

Besides, the set of neighbors Vρ(i) can be re-written as Vρ(i) = {j ∈ Vρ, d(i, j) ≤ R}. Hence Vρ(i) is a convex
union of disjoint sub-cubes of volume λd(Wρ)/Nρ, which are at most (2R + 1)d, and can be included in the cube
Cρ defined in (1.7) up to a translation. Since f is translation invariant, we obtain

E

 ∑
(C1,C2)6=∈m2

z(C1),z(C2)∈Vρ(i)

1f(C1)>vρ,f(C2)>vρ

 ≤ G2(ρ)
Nρ

. (2.12)

Using the fact that P(Mf,i > vρ,Mf,j > vρ|Aρ) ≤ P(Mf,i > vρ,Mf,j > vρ)/P(Aρ) we deduce from (2.11) that

pij := P(Mf,i > vρ,Mf,j > vρ|Aρ) ≤
G2(ρ)

P(Aρ)Nρ
. (2.13)

Applying (2.6) to the conditional probability given Aρ, we deduce from (2.8), (2.10), (2.13) and from the fact
|Vρ| = Nρ that∣∣∣∣∣P(U ′Vρ(vρ) ≤ r − 1|Aρ)− e−µρ

r−1∑
k=0

µkρ
k!

∣∣∣∣∣ ≤ 2(2R+ 1)d

P(Aρ)2 ·
(
c(W )2 · (G1(ρ) + τ)2

Nρ
+ P(Aρ)G2(ρ)

)
.
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The rate of convergence (2.4) results directly from the previous upper bound and the fact that P(Aρ) and G1(ρ)
converge respectively to 1 and 0 according to Conditions (TCP) and (FRC). �

Proof of Lemma 1. Let us notice that Lemma 1 is trivial when r = 1. More generally, for all r ∈ N∗, we have∣∣∣P (Uρ(vρ) ≤ r − 1)− P

(
U ′Vρ(vρ) ≤ r − 1

)∣∣∣ ≤ 2P
(
Uρ(vρ) 6= U ′Vρ(vρ)

)
. (2.14)

According to (1.3) and (2.1), the above random variables differ if and only if there are at least two exceedances in
the same sub-cube i, i.e.

P

(
Uρ(vρ) 6= U ′Vρ(vρ)

)
= P

⋃
i∈Vρ

⋃
(C1,C2) 6=∈m2,

z(C1),z(C2)∈i∩Wρ

{f(C1) > vρ, f(C2) > vρ}



≤
∑
i∈Vρ

E

 ∑
(C1,C2)6=∈m2

z(C1),z(C2)∈i∩Wρ

1f(C1)>vρ,f(C2)>vρ

 .
Since |Vρ| = Nρ, the right-hand side is bounded by G2(ρ) thanks to (2.12). This shows that P

(
Uρ(vρ) 6= U ′Vρ(vρ)

)
≤

G2(ρ) and consequently we deduce (2.3) from (2.14). �

Proof of Lemma 3. From (2.2) and the triangle inequality, we get

|µρ − τ | ≤ |E [Uρ(vρ)]− τ |+ E

[
Uρ(vρ)− U ′Vρ(vρ)

]
,

where Uρ(vρ) ≥ U ′Vρ(vρ) a.s. According to (1.4) and (1.5), we obtain that

|µρ − τ | ≤ G1(ρ) + E

[
Uρ(vρ)− U ′Vρ(vρ)

]
. (2.15)

To give an upper bound for the second term of the right-hand side of (2.15), we use the fact that the family Vρ covers
Wρ. Intuitively, the number of exceedance sub-cubes U ′Vρ(vρ) can be approximated by the number of exceedance
cells Uρ(vρ) when G2(ρ) is negligible. We prove this fact below. From (1.3) and (2.1), we obtain a.s. that

Uρ(vρ)− U ′Vρ(vρ) =
∑
i∈Vρ

∑
C∈m,

z(C)∈i∩Wρ

1f(C)>vρ − 1Mf,i>vρ

=
∑
i∈Vρ

 ∑
C∈m,

z(C)∈i∩Wρ

1f(C)>vρ − 1

 1Mf,i>vρ

≤
∑
i∈Vρ

∑
(C1,C2)6=∈m2

z(C1),z(C2)∈i∩Wρ

1f(C1)>vρ,f(C2)>vρ .

(2.16)

The last inequality comes from the fact that if there is 0 or 1 exceedance cell inside a sub-cube i, the sums over
C ∈ m, z(C) ∈ i∩Wρ and (C1, C2) 6= ∈ m2, z(C1), z(C2) ∈ i∩Wρ are null. Otherwise, if the number of exceedances
is k ≥ 2, we use the fact k − 1 ≤ k(k−1)

2 which is the number of exceedance pairs.
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Taking expectations in (2.16) and using the fact that the mean of the right-hand side of (2.16) is bounded by
G2(ρ) as in the proof of Lemma 1, we get

E

[
Uρ(vρ)− U ′Vρ(vρ)

]
≤ G2(ρ). (2.17)

It results from the previous inequality and (2.15) that |µρ − τ | is bounded by G1(ρ) +G2(ρ). �

Remark 2. As mentioned in Section 1, p. 4, Theorem 1 can be extended to more general tessellations. Indeed,
Condition (FRC) can be replaced by the following property: “β(ρ) := Nρ supi∈Vρ β (σ(Mf,i), σ(Mf,j, d(i, j) > R))
converges to 0 as ρ goes to infinity”, where β(A,B) is the β-mixing coefficient between two σ-algebras A and B.
This comes from the fact that b3, which appears in (2.7), can be bounded by β(ρ).

2.2 Proof of Theorem 2
By Kallenberg’s theorem (see Proposition 3.22, p. 156 in [32], see also the proof of Theorem 2.1.2 in [10]) it is
enough to check that:

• for all Borel subset B ⊂W and ∗x < s ≤ t ≤ x∗

E [#Φρ ∩ (B × (s, t])] −→
ρ→∞

E [#Φ ∩ (B × (s, t])] , (2.18)

• for all P =
⋃L
l=1B

(l) × (sl, tl], where B(l) is the intersection of W and a rectangular solid in C(W ) and
∗x < sl ≤ tl ≤ x∗

P (#Φρ ∩P = 0) −→
ρ→∞

P (#Φ ∩P = 0) . (2.19)

Proof of (2.18). From (1.1), we have

E [#Φρ ∩ (B × (s, t])] = E

 ∑
C∈m,
z(C)∈Bρ

1aρs+bρ<f(C)≤aρt+bρ

 = λd(Bρ) · (P (f(C) > aρs+ bρ)− P (f(C) > aρt+ bρ)) ,

where Bρ = ρ1/dB. Since λd(Bρ) = λd(B)
λd(W ) · λd(Wρ) and λd(Wρ) · P (f(C) > vρ(t)) converges to τ(t) for all t ∈ R,

we get

E [#Φρ ∩ (B × (s, t])] −→
ρ→∞

λd(B)
λd(W ) · (τ(s)− τ(t)) = E [#Φ ∩ (B × (s, t])] (2.20)

and consequently we obtain (2.18). �

Proof of (2.19). We can write P as a disjoint union of strips, i.e.

P =
L⊔
l=1

B(l) × J (l) (2.21)

such that the Borel subsets B(l) ⊂W are disjoint and such that J (l) is a finite union of half-open intervals, 1 ≤ l ≤ L.
The following lemma shows that it is enough to investigate the case where P is a strip.
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Lemma 4. Let P be as in (2.21). Under the hypothesis of Theorem 2, we have

P (#Φρ ∩P = 0)−
L∏
l=1

P

(
#Φρ ∩ (B(l) × J (l)) = 0

)
−→
ρ→∞

0.

The proof of Lemma 4 is postponed at the end of the subsection. Thanks to Lemma 4, we can assume that P,
defined in (2.21), is only a strip P = B × J , where J is a finite union of half-open intervals and B ⊂ W . Without
loss of generality, we can assume that these intervals are disjoint, i.e.

J =
k⊔
j=1

(sj , tj ] (2.22)

with ∗x < sj ≤ tj ≤ x∗ and tj ≤ sj+1, 1 ≤ j ≤ k. In the same spirit as in the proof of Theorem 1, we introduce the
two random variables

Uρ(B × J) = #Φρ ∩ (B × J) =
∑
C∈m,
z(C)∈Bρ

1a−1
ρ (f(C)−bρ)∈J and U ′Vρ(B × J) =

∑
i∈Vρ

1a−1
ρ (Mf,i(B)−bρ)∈J , (2.23)

where

Mf,i(B) = max
C∈m,

z(C)∈i∩Bρ

f(C).

In particular, Uρ(W × (s,∞)) = Uρ(vρ(s)) and U ′Vρ(W × (s,∞)) = U ′Vρ(vρ(s)), where Uρ(vρ(s)) and U ′Vρ(vρ(s)) are
defined in (1.3) and (2.1). We denote by µρ(B × J) the mean of U ′Vρ(B × J), i.e.

µρ(B × J) = E

[
U ′Vρ(B × J)

]
=
∑
i∈Vρ

P
(
a−1
ρ (Mf,i(B)− bρ) ∈ J

)
.

As in the proof of Theorem 1, we subdivide the proof into three steps. More precisely, we show that

P (Uρ(B × J) = 0)− P

(
U ′Vρ(B × J) = 0

)
−→
ρ→∞

0, (2.24a)

P

(
U ′Vρ(B × J) = 0

)
− e−µρ(B×J) −→

ρ→∞
0, (2.24b)

µρ(B × J) −→
ρ→∞

ν(B × J). (2.24c)

Notice that the convergences (2.24a), (2.24b) and (2.24c) are generalisations of Lemmas 1, 2 and 3 respectively. For
the proof of (2.24a), it is enough to show that P

(
Uρ(B × J) 6= U ′Vρ(B × J)

)
converges to 0 as ρ goes to infinity.

Since Uρ(B × J) ≥ U ′Vρ(B × J) for all Borel subsets, we have

P

(
Uρ(B × J) 6= U ′Vρ(B × J)

)
≤

k∑
j=1

P

(
Uρ(B × (sj , tj ]) 6= U ′Vρ(B × (sj , tj ])

)

≤
k∑
j=1

P

(
Uρ(W × (sj ,∞)) 6= U ′Vρ(W × (sj ,∞))

)

=
k∑
j=1

P

(
Uρ(vρ(sj)) 6= U ′Vρ(vρ(sj))

)
.

11



The proof of Lemma 1 shows that the right-hand side converges to 0.
Secondly, we prove (2.24b). In the same spirit as in the proof of Lemma 2, we apply Proposition 3 conditional

on Aρ to Xi = a−1
ρ (Mf,i(B) − bρ) and J =

⊔k
j=1(sj , tj ]. Let i ∈ Vρ and j ∈ Vρ(i) − {i}. Since Mf,i(B) ≤ Mf,i, we

get

pi = P
(
a−1
ρ (Mf,i(B)− bρ) ∈ J |Aρ

)
≤ P (Mf,i(B) > vρ(s1)|Aρ) = O(N−1

ρ )

according to (2.9). Moreover

pij = P
(
a−1
ρ (Mf,i(B)− bρ) ∈ J, a−1

ρ (Mf,j(B)− bρ) ∈ J |Aρ
)

≤ P (Mf,i(B) > vρ(s1),Mf,i(B) > vρ(s1)|Aρ) = O
(
G2(ρ) ·N−1

ρ

)
according to (2.13). We deduce (2.24b) from the previous inequalities and Proposition 3.

Thirdly, we prove (2.24c). According to (2.22) and (2.23), we have a.s.

Uρ(B × J) =
k∑
j=1

#Φρ ∩ (B × (sj , tj ]).

Taking expectations in the previous equality, we deduce from (2.20) that

E [Uρ(B × J)] −→
ρ→∞

λd(B)
λd(W )

k∑
j=1

(τ(sj)− τ(tj)) = ν(B × J). (2.25)

Moreover

E [Uρ(B × J)]− µρ(B × J) = E

[
Uρ(B × J)−U ′Vρ(B × J)

]
≤ E

[
Uρ(vρ(s1))− U ′Vρ(vρ(s1))

]
(2.26)

converges to 0 according to (2.17). We deduce (2.24c) from (2.25) and (2.26).
Finally, according to (2.24a), (2.24b), (2.24c) and the fact that Uρ(B × J) = #Φρ ∩ (B × J), we deduce that

P (#Φρ ∩ (B × J) = 0) −→
ρ→∞

e−ν(N×J) = P (#Φ ∩ (B × J) = 0)

and consequently we obtain (2.19). �

The end of the subsection is devoted to the proof of Lemma 4.

Proof of Lemma 4. Let P =
⊔L
l=1B

(l) × J (l) and B(l) = Bl ∩W such that the rectangular solids Bl ⊂ C(W ) are
disjoint. We denote respectively by Vρ(B(l)), Sρ(B(l)) and V ◦ρ (B(l)) the sets

Vρ(B(l)) = {i ∈ Vρ, i ∩Bl 6= ∅},
Sρ(B(l)) = {i ∈ Vρ, i ∩ ∂Bl 6= ∅},
V ◦ρ (B(l)) = {i ∈ Vρ(B(l)), d(i, Sρ(B(l))) > R}.

Finally, we consider the random variable U ′V ◦ρ (B(l) × J (l)) ≤ Uρ(B(l) × J (l)) defined as

U ′V ◦ρ (B(l) × J (l)) =
∑

i∈V ◦ρ (B(l))

1a−1
ρ (Mf,i(B(l))−bρ)∈J(l) .
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Let 1 ≤ l ≤ L be fixed. Since Bl is a rectangular solid in C(W ) which is covered with at most Nρ sub-cubes i, we
have #Sρ(B(l)) ≤ c ·N (d−1)/d

ρ . This shows that

P

(
U ′V ◦ρ (B(l) × J (l)) 6= U ′Vρ(B

(l) × J (l))
)
≤ #Sρ(B(l)) · P (Mf,i > vρ) = O

(
N−1/d
ρ

)
according to (2.9) and Condition (TCP). Thanks to (2.24a), we deduce that

P

(
Uρ(B(l) × J (l)) = 0

)
− P

(
U ′V ◦ρ (B(l) × J (l)) = 0

)
−→
ρ→∞

0. (2.27)

Moreover, conditional on Aρ, the random variables U ′V ◦ρ (B(l) × J (l)) are independent since U ′V ◦ρ (B(l) × J (l)) is

σ
(
Mf,i, i ∈ V ◦ρ (B(l))

)
measurable and d

(
V ◦ρ (B(l)), V ◦ρ (B(l′))

)
> R for all 1 ≤ l 6= l′ ≤ L. In particular, we get

P

(
L⋂
l=1

{
U ′V ◦ρ (B(l) × J (l)) = 0

}∣∣∣Aρ) =
L∏
l=1

P

(
U ′V ◦ρ (B(l) × J (l)) = 0

∣∣∣Aρ) .
Lemma 4 is a consequence of the previous equality, the convergence (2.27) and the fact that

P (#Φρ ∩P = 0) = P

(
L⋂
l=1
{Uρ(B(l) × J (l))) = 0}

)
.

�

Remark 3. The inequalities appearing in (1.5), (1.6) and Theorem 1 have to be reversed when we deal with the r
smallest values. This fact will be extensively used in the rest of the paper.

In the three following sections, we apply Theorem 1 to derive the asymptotic behaviours of the order statistics
for different geometrical characteristics and random tessellations. For aesthetic reasons, we only investigate maxima
and minima for the particular case W = C(W ) = [0, 1]d keeping in mind that these results can be generalized to
order statistics and to any bounded set with λd(W ) 6= 0. Up to a normalization, all the thresholds vρ can be written
as vρ = vρ(t) = aρt+ bρ (excepted in Section 5) so that Theorem 2 is also available.

3 Extreme Values of a Poisson-Delaunay tessellation
Before applying Theorem 1 to different geometrical characteristics of a Poisson-Delaunay tessellation, we introduce
some notation and preliminaries.

Notation. For all z ∈ Rd and r ≥ 0, we denote by B(z, r) and S(z, r) the ball and the sphere of radius r centered
in z. When z = 0 and r = 1, we denote by Sd−1 = S(0, 1) the unit sphere and κd = λd(B(0, 1)). Let C be a
simplex in Rd, i.e. the convex hull of (d + 1) points. When the extremal points of C are affinely independent, we
denote by B(C), S(C), z(C) and R(C) the circumball, the circumsphere, the circumcenter and the circumradius of
C respectively. Otherwise, we take B(C) = S(C) = {0}, z(C) = 0 and R(C) = 0.

Let k be an integer and x1, . . . , xk be k points in Rd and let f be a function defined on Kd with values on some
measurable space.

• For all r ≥ 0, we denote by rx1:k the k-tuple (rx1, . . . , rxk) and by {rx1:k} the set of points {rx1, . . . , rxk}.

• When k = d+ 1, we denote by ∆(x1:d+1) the convex hull of x1, . . . , xd+1 and f(x1:d+1) = f (∆(x1:d+1)).
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• If k ≤ d+1 and if {yk+1:d+1} = {yk+1, . . . , yd+1} is a set of d+1−k points in Rd, we denote by ∆(x1:k,yk+1:d+1)
the convex hull of x1, . . . , xk, yk+1, . . . , yd+1 and f(x1:k,yk+1:d+1) = f (∆ (x1:k,yk+1:d+1)). In particular, if
k = 0, we take f(x1:0,y1:d+1) = f(y1:d+1).

• Finally, we denote by dσ(u) and dσ(u1:d+1) = dσ(u1) · · · dσ(ud+1) the uniform distribution over Sd−1 and the
product measure respectively.

Preliminaries. Let χ be a locally finite subset of Rd such that each subset of size n < d+1 are affinely independent
and no d + 2 points lie on a sphere. If d + 1 points x1, . . . , xd+1 of χ lie on a ball that contains no point of χ in
its interior, then the convex hull of x1, . . . , xd+1 is called a cell. The set of such cells defines a partition of Rd

into simplices and such partition is called the Delaunay tessellation (see [35], p. 478). Such model is the key
ingredient of the first algorithm for computing the minimum spanning tree [37]. It is extensively used in medical
image segmentation [39], in finite element method to build meshes [14] and is a powerful tool for reconstructing a
3D set from a discrete point set [34].

When χ = X is a Poisson point process, we speak about Poisson-Delaunay tessellation denoted by mPDT . For
each cell C ∈ mPDT which is a.s. a simplex, the nucleus z(C) is defined as the circumcenter of C. The relation
between the intensity γ of mPDT and the intensity γX of the underlying Poisson point process is given by (see
Section 7 in [22]) γ = β−1

d · γX, where

βd =
(d3 + d2)Γ

(
d2

2

)
Γd
(
d+1

2
)

Γ
(
d2+1

2
)

Γd
(
d+2

2
)

2d+1π
d−1

2
. (3.1)

In particular, we have β1 = 1, β2 = 1
2 and β3 = 35

24π2 . To be in the framework of Theorem 1, we assume
without loss of generality that γ = 1, i.e. γX = βd. Moreover, we partition the window Wρ = ρ1/d[0, 1]d into

Nρ :=
⌊(

ρ
2 log ρ

)1/d
⌋d

sub-cubes i ∈ Vρ, where bxc denotes the integer part of x for any x ∈ R. We think that

this choice for Nρ is quasi-optimal for the rate of convergence in Theorem 1. Indeed, according to (1.8), this rate
is of order G1(ρ) +G2(ρ) +N−1

ρ + P
(
Acρ
)
, where G1(ρ) is independent of Nρ. Besides, according to (3.4), we have

P
(
Acρ
)
≤ Nρe−ρ/Nρ . This implies that Nρe−ρ/Nρ has to converge to 0 so that Nρ = O

(
ρ

log ρ

)
. Moreover, the larger

Nρ is, the smaller N−1
ρ and G2(ρ) are. If Nρ ∼

ρ→∞
a·ρ

log ρ for some constant a < 1, the choice of a does not affect the

order of G2(ρ). Hence, Nρ seems to be optimal when it minimizes N−1
ρ +Nρe

−ρ/Nρ i.e. when Nρ is close to ρ
2 log ρ .

To apply Theorem 1, we first check Condition (FRC) for any measurable function f : Kd → R. To do it, we
define the event Aρ as

Aρ =
⋂

i∈Vρ

{X ∩ i 6= ∅}. (3.2)

Lemma 5. Let f : Kd → R be a measurable function. Then Condition (FRC) is satisfied for R = 2 ·
(
b
√
dc+ 1

)
and for the event Aρ defined in (3.2).

Proof of Lemma 5. We use the same arguments as in the proof of Proposition 3 in [3]. Let i ∈ Vρ be a sub-cube
in Wρ and let C ∈ mPDT such that z(C) ∈ i. Since a (d+ 1)-tuple of points of X is a Delaunay cell if and only if
its circumball contains no point in its interior, we have R(C) = minx∈X{|z(C)− x|}. Moreover, conditional on Aρ,
there exists a point x0 in X ∩ i. In particular, we have |z(C)− x0| ≤

√
d · cρ, where cρ is the length of the sides of

each sub-cube. Consequently, we obtain

R(C) ≤
√
d · cρ. (3.3)
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This shows that the circumsphere S(C) of C is included in Vρ(i, D) := {j ∈ Vρ, d(i, j) ≤ D}, where D = b
√
dc+ 1.

Indeed if not, there exists a point y ∈ S(C) such that y is in a sub-cube j with d(i, j) ≥ D + 1. This shows that
|y − z(C)| > (b

√
dc+ 1) · cρ and contradicts (3.3) since R(C) = |y − z(C)|.

Since S(C) is included in Vρ(i, D) for any cell C ∈ mPDT such that z(C) ∈ i, this shows that Mf,i is σ(X ∩
Vρ(i, D)) measurable. Because d(A,B) > 2D implies that {i, d(i, A) < D} and {i, d(i, B) < D} are disjoint
and because X ∩ {i, d(i, A) < D} and X ∩ {i, d(i, B) < D} are independent, the σ-algebras σ(Mf,i, i ∈ A) and
σ(Mf,i, i ∈ B) are independent, yielding R = 2D = 2 ·

(
b
√
dc+ 1

)
.

Moreover the probability of the event Aρ converges to 1. Indeed, since X is a Poisson point process, we get

P(Acρ) = P

⋃
i∈Vρ

{X ∩ i = ∅}

 ≤ Nρe−ρ/Nρ = O
(
(log ρ)−1 × ρ−1) . (3.4)

�

Besides, the distribution function of the typical cell can be made explicit. Indeed, let f : Kd → R be a translation
invariant function on the set of convex bodies. An integral representation of f(C), due to Miles [20] (the proof can
also be found in Theorem 10.4.4. of [35]), is given by

E [f(C)] = δ′d·
∫ ∞

0

∫
(Sd−1)d+1

rd
2−1e−δdr

d

λd(u1:d+1)f(ru1:d+1)drdσ(u1:d+1) with δ′d = (d+1)βd and δd = κdβd. (3.5)

For practical reasons, we write below a generic lemma which gives an integral representation of the function G2(·)
defined in (1.6). To do it, we introduce some notation. As defined in (1.6), G2(·) involves two different simplices
∆1,∆2 such that f(∆i) > vρ and z(∆i) ∈ Cρ, i = 1, 2. The intersection of these cells is a k-dimensional simplex
with 0 ≤ k ≤ d − 1. Translating the circumcenter of the cell which has the largest circumradius say ∆1 at the
origin, the cells can be written as ∆1 = ∆(ru1:d+1) and ∆2 = ∆(ru1:k,yk+1:d+1) with r ≥ 0, u1, . . . , ud+1 ∈ Sd−1

and yk+1, . . . , yd+1 ∈ Rd. We consider the two properties:

P1 : f(ru1:k,yk+1:d+1) > vρ, R(ru1:k,yk+1:d+1) ≤ r and z(ru1:k,yk+1:d+1) ∈ Cρ, (3.6a)

P2 : yj 6∈ B(ru1:d+1) and ruj 6∈ B(ru1:k,yk+1:d+1) for all k + 1 ≤ j ≤ d+ 1. (3.6b)
The first property concerns the cell ∆2 which has the smallest circumradius whereas the second property means
that the two simplices are Delaunay cells. Moreover, we introduce the set

Ek,r,u1:d+1 = {yk+1:d+1 ∈ (Rd)d+1−k satisfying P1 and P2}. (3.7)

Finally, in the same spirit as in (3.5), we consider the volume of the union of the two circumballs, i.e.

λ
(∪)
d (r,u1:k,yk+1:d+1) = λd (B(0, r) ∪B(ru1:k,yk+1:d+1)) . (3.8)

We are now prepared to state the generic lemma.

Lemma 6. Let mPDT be a Poisson-Delaunay tessellation of intensity γ = 1. Then

G2(ρ) = 2 ·
d∑
k=0

G2,k(ρ), (3.9)

where

G2,k(ρ) = ρ

∫ ∞
0

∫
(Sd−1)d+1

∫
(Rd)d+1−k

g2,k(ρ, r,u1:d+1,yk+1:d+1)dyk+1:d+1dσ(u1:d+1)dr (3.10)
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and

g2,k(ρ, r,u1:d+1,yk+1:d+1) = rd
2−1e−βdλ

(∪)
d

(r,u1:k,yk+1:d+1)λd(u1:d+1)1f(ru1:d+1)>vρ1Ek,r,u1:d+1
(yk+1:d+1). (3.11)

Proof of Lemma 6. This will be sketched since it is in the same spirit as in the proof of (3.5). Considering that
the intersection of the two Delaunay cells ∆1, ∆2 which appear in (1.6) is a k-dimensional simplex with 0 ≤ k ≤ d
and assuming that R(∆1) ≥ R(∆2), we have

G2(ρ) = 2
d∑
k=0

E

[ ∑
(x1,...,xd+1)6=∈Xd+1

(y1,...,yk)6=∈Xk

1f(xd+1)>vρ1f(x1:k,yk+1:d+1)>vρ1R(x1:d+1)≥R(x1:k,yk+1:d+1)

× 1X∩B(∪)(x1:d+1,yk+1:d+1)\{x1:d+1}∪{yk+1:d+1} = ∅

]
,

where B(∪)(x1:d+1,yk+1:d+1) = B(x1:d+1) ∪ B(x1:k,yk+1:d+1). It results from Slivnyak-Mecke formula (see e.g.
Theorem 3.3.5 in [35]) that

G2(ρ) = 2
d∑
k=0

∫
(Rd)d+1

∫
(Rd)d+1−k

1f(xd+1)>vρ1f(x1:k,yk+1:d+1)>vρ1R(x1:d+1)≥R(x1:k,yk+1:d+1)

× P

(
#X ∩B(∪)(x1:d+1,yk+1:d+1) = 0

)
dyk+1:d+1dx1:d+1.

We conclude the proof of Lemma 6 by noting that #X ∩ B(∪)(x1:d+1,yk+1:d+1) is Poisson distributed with mean
βdλd

(
B(∪)(x1:d+1,yk+1:d+1)

)
and using for all yk+1, . . . , yd+1 the (Blaschke-Petkantschin type) change of variables

φ1 :R+ ×Rd × (Sd−1)d+1 −→ (Rd)d+1

(r, z,u1:d+1) 7−→ x1:d+1 with xi = z + rui,
(3.12)

where the Jacobian is |Dφ1(r, z,u1:d+1)| = rd
2−1λd(u1:d+1).

�

In (3.6a), we have assumed that R (ru1:k,yk+1:d+1) is less than r. This property will be needed in Sections 3.2
and 3.3 to bound λd+1−k(Ek,r,u1:d+1) with respect to r (see Lemmas 8 and 9) but not in Section 3.1 since we could
bound λd+1−k(Ek,r,u1:d+1) there with respect to vρ (as defined in (3.15)) instead of r.

3.1 Minimum of the circumradii
In this subsection, we investigate the minimum of circumradii, i.e.

Rmin,PDT (ρ) = min
C∈mPDT
z(C)∈Wρ

,
R(C).

The asymptotic behaviour of Rmin,PDT (ρ) is given in the following proposition.

Proposition 4. Let mPDT be a Poisson-Delaunay tessellation of intensity γ = 1 in Rd, d ≥ 2. Then for all t ≥ 0∣∣∣P(α1/d
d,1 ρ

1/dRmin,PDT (ρ)d ≥ t
)
− e−t

d
∣∣∣ = O

(
ρ−1/d

)
, (3.13)
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where

αd,1 = δdd
d! = (κdβd)d

d! = 1
d! ·

 (d3 + d2)Γ
(
d2

2

)
Γd
(
d+1

2
)
π1/2

2d+1Γ
(
d2+1

2
)

Γd+1
(
d+2

2
)

d

.

Notice that the asymptotic behaviour of the maximum of circumradii has been investigated in [8].

Proof of Proposition 4. First, we give the asymptotic behaviour of the distribution function of R(C). According
to (3.5), the random variable R(C)d is Gamma distributed with parameters

(
d2, δ−1

d

)
. Thanks to consecutive

integrations by parts, this proves that

P(R(C) < v) =
∞∑
i=d

1
i! (δdv

d)ie−δdv
d

(3.14)

for all v ≥ 0. A Taylor approximation of the right-hand side when v goes to 0 shows that |P(R(C) < v)− αd,1 · vd
2 |

is of order vd2+d. Hence, taking for all t ≥ 0

vρ = vρ(t) =
(
α−1
d,1ρ

−1
)1/d2

t1/d, (3.15)

we obtain

G1(ρ) = |ρP(R(C) < vρ)− td| = O
(
ρ−1/d

)
. (3.16)

To calculate an upper bound of G2(ρ), it is enough to give a suitable upper bound for G2,k(ρ), 0 ≤ k ≤ d
according to Lemma 6. Bounding the exponential in (3.11) by 1 (a suitable estimate when considering small cells)
and λd(u1:d+1) by a constant, we deduce for all r ∈ R+, u1:d+1 ∈ (Sd−1)d+1 and yk+1:d+1 ∈ (Rd)d+1−k that

g2,k(ρ, r,u1:d+1,yk+1:d+1) ≤ c · rd
2−1

1r<vρ1Ek,r,u1:d+1
(yk+1:d+1). (3.17)

When k = 0, we bound 1E0,r,u1:d+1
(y1:d+1) by 1R(y1:d+1)<r · 1z(y1:d+1)∈Cρ . Integrating the right-hand side of

(3.17) and taking the same change of variables as in (3.12), i.e. yi = z′ + r′u′i, 1 ≤ i ≤ d+ 1, we deduce from (3.10)
and (3.15) that

G2,0(ρ) ≤ c · ρλd(Cρ)
∫ vρ

0
rd

2−1
∫ r

0
r′d

2−1dr′dr = O
(
log ρ · ρ−1) . (3.18)

When 1 ≤ k ≤ d, we use the fact that R(ru1:k,yk+1:d+1) < r implies yi ∈ B(ru1, 2r) for all k + 1 ≤ i ≤ d + 1.
Bounding 1Ek,r,u1:d+1

(yk+1:d+1) by 1yk+1,...,yd+1∈B(ru1,2r) and integrating (3.17), we deduce from (3.10) that

G2,k(ρ) ≤ c · ρ
∫ vρ

0

∫
Sd−1

∫
(Rd)d+1

rd
2−1

1yk+1,...,yd+1∈B(ru1,2r)dyk+1:d+1dσ(u1)dr

≤ c · ρ
∫ vρ

0
rd

2−1 × rd(d+1−k)dr = O
(
ρ−(d+1−k)/d

)
.

(3.19)

Since 1 ≤ k ≤ d, the right-hand side of (3.19) is less than ρ−1/d for ρ large enough. Indeed, G2,k(ρ) is maximal when
k = d, i.e. when the two distinct Delaunay cells have d common vertices. From (3.9), (3.18) and (3.19) we deduce
that G2(ρ) = O

(
ρ−1/d) since d ≥ 2. This together with (3.16) and Theorem 1 concludes the proof of Proposition

4. �
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When d = 1, the same method shows that 2ρRmin,PDT (ρ) converges to a standard exponential distribution. The
only difference with the case d ≥ 2 is that the rate of convergence is log ρ · ρ−1 (and not ρ−1) according to (3.18)
and (3.19).

Let us remark that a slightly weaker version of Proposition 4 in Rd could have been deduced from a theorem
due to Schulte and Thäle (see Theorem 1.1 in [36]). It comes from the fact that Rmin,PDT (ρ) can be written as a
minimum of a U -statistic. More precisely

Rmin,PDT (ρ) = min
x1:d+1∈Xd+1

z(x1:d+1)∈Wρ

,
R(x1:d+1).

Indeed, if a simplex induced by a set of (d+1) distinct points x1:d+1 of X minimizes the circumradius, it is necessarily
a Delaunay cell: otherwise, the circumball B(x1:d+1) contains a point of X in its interior which contradicts the
minimality of R(x1:d+1). Nevertheless, the rate of convergence O

(
ρ−1/d) of Proposition 4 is more accurate than

the rate deduced from Theorem 1.1. in [36] since the latter is of order O
(
ρ−1/2d). To the best of our knowledge,

the convergence of the point process provided by Theorem 2 applied to the circumscribed radius of Delaunay cells
is new.

3.2 Maximum of the areas, d = 2
Here and in the subsequent subsection, we investigate the extremes of the areas of a planar Poisson-Delaunay
tessellation of intensity 1. The extension to higher dimension would be intricate since the integral formula for the
distribution function of the volume of the typical cell becomes intractable. The intensity of the underlying Poisson
point process is

γX = β2 = 1
2 . (3.20)

In this subsection, we investigate the maximum of the areas, i.e.

Amax,PDT (ρ) = max
C∈mPDT
z(C)∈Wρ

,
λ2(C).

The following proposition shows that Amax,PDT (ρ) is of order log ρ.

Proposition 5. Let mPDT be a Poisson-Delaunay tessellation of intensity γ = 1 in R2. Then for all t ∈ R∣∣∣∣P(α2Amax,PDT (ρ)− log
(

3
2ρ
)
≤ t
)
− e−e

−t
∣∣∣∣ = O (1/ log ρ) , (3.21)

where α2 = 2π
3
√

3 .

Proof of Proposition 5. Thanks to (3.5), the distribution function of λ2(C) can be made explicit. Indeed, when
d = 2, an integral representation of P (λ2(C) > v) due to Rathie (see (3.2) in [31]) is

P(λ2(C) > v) = 6
π

∫ ∞
α2β2v

xK2
1/6(x)dx, (3.22)

where K1/6(·) denotes the modified Bessel function of order 1/6. When x goes to infinity, a Taylor approximation
of K1/6(x) is given by (see Formula 9.7.2, p. 378 in [1])

K1/6(x) =
√

π

2xe
−x
(

1 +O

(
1
x

))
. (3.23)
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We deduce from (3.20), (3.22) and (3.23) that for v large enough∣∣∣∣P (λ2(C) > v)− 3
2e
−α2v

∣∣∣∣ ≤ c · ∫ ∞1
2α2v

e−2x

x
dx ≤ c · e

−α2v

v
. (3.24)

Taking for all t ∈ R

vρ = vρ(t) = 1
α2

(
log
(

3
2ρ
)

+ t

)
, (3.25)

we obtain from (3.24) that

G1(ρ) = |ρP (λ2(C) > vρ)− e−t| = O (1/ log ρ) .

In the rest of the proof, we give a suitable upper bound for G2(ρ). Taking f(·) = λ2(·) in (3.11) and using the
fact that λ2(ru1:3) = r2λ2(u1:3) and λ2(u1:3) ≤ c, we have

g2,k(ρ, r,u1:3,yk+1:3) ≤ c · r3e−
1
2λ

(∪)
d

(r,u1:k,yk+1:3)
1r2λ2(u1:3)>vρ1Ek,r,u1:3

(yk+1:3) (3.26)

for all k = 0, 1, 2. To bound g2,k(·), the key idea is to derive a suitable lower bound for the area of the union of two
disks (see Figure 1 (a)). This is provided in the following fundamental lemma.

Lemma 7. Let {x1:3} = {x1, x2, x3} and {x′1:3} = {x′1, x′2, x′3} be two sets of three points in R2 such that xi 6∈
B(x′1:3) and x′j 6∈ B(x1:3) for all i, j = 1, 2, 3. Let us assume that R := R(x1:3) ≥ R(x′1:3). Then

λ2 (B(x1:3) ∪B(x′1:3)) ≥
(π

2 − 1
)
R2 + λ2(x1:3) + λ2(x′1:3). (3.27)

Proof of Lemma 7. Let {x1:3} and {x′1:3} be fixed.
If the interior of B(x1:3) ∩B(x′1:3) is empty, we have

λ2(B(x1:3) ∪B(x′1:3)) = λ2(B(x1:3)) + λ2(B(x′1:3)) ≥ πR2 + λ2(x′1:3). (3.28)

Moreover, the maximal area of a triangle inscribed in a ball of radius R is 3
√

3
4 R2 which is the area of an equilateral

triangle. In particular, we have λ2(x1:3) ≤ 3
√

3
4 R2. This together with (3.28) implies that

λ2(B(x1:3) ∪B(x′1:3)) ≥
(
π − 3

√
3

4

)
R2 + λ2(x1:3) + λ2(x′1:3) ≥

(π
2 − 1

)
R2 + λ2(x1:3) + λ2(x′1:3).

If B(x1:3)∩B(x′1:3) has nonempty interior, the intersection of the circumspheres induced by the points x1:3 and
x′1:3 is reduced to two points, say p1, p2 ∈ R2. Let us denote by L the affine line (p1, p2) and H− (respectively
H+) the half plane delimited by L and containing (respectively not containing) the circumcenter z(x1:3). Since
xi 6∈ B(x′1:3) and x′j 6∈ B(x1:3), i, j = 1, 2, 3, the triangle ∆(x′1:3) is included in H+. Hence

λ2 (B(x1:3) ∪B(x′1:3)) = λ2
(
(B(x1:3) ∪B(x′1:3)) ∩H−

)
+ λ2

(
(B(x1:3) ∪B(x′1:3)) ∩H+)

≥ λ2(B(x1:3) ∩H−) + λ2(x′1:3).
(3.29)

In the rest of the proof, we provide a suitable lower bound for λ2(B(x1:3) ∩ H−). To do it, we denote by
θ ∈ [0, 2π] the angle ∠p1z(x1:3)p2. Actually θ ∈ [0, π]: this comes from the fact that λ2(B(x1:3)∩H−) ≥ π

2R
2 since

R := R(x1:3) ≥ R(x′1:3). The area of the cap B(x1:3) ∩H− is given by

λ2(B(x1:3) ∩H−) =
(
π − 1

2(θ − sin θ)
)
R2. (3.30)
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(a) (b)

Figure 1: (a). A union of two disks. (b). The triangle which maximizes the area.

We discuss below two cases depending on θ. When θ ∈ [0, 2π/3], we deduce from (3.30) that

λ2(B(x1:3) ∩H−) ≥
(

2π
3 +

√
3

4

)
R2. (3.31)

Since λ2(x1:3) is less than 3
√

3
4 R2, we deduce from (3.31) that

λ2(B(x1:3) ∩H−) ≥ λ2(x1:3) +
(

2π
3 −

√
3

2

)
R2 ≥ λ2(x1:3) +

(π
2 − 1

)
R2. (3.32)

In that case, the inequality (3.27) results from (3.29) and (3.32).
When θ ∈ [2π/3, π], with a standard method of geometry, we can show that the maximal areaM(θ) of a triangle

inscribed in B(x1:3) ∩H− is

M(θ) =
(

sin θ2 + 1
2 sin θ

)
R2. (3.33)

Actually, the triangle which maximizes the area is isoscele with central angles π − θ/2, π − θ/2 and θ (see Figure 1
(b)). We obtain from (3.30) and (3.33) that

λ2(B(x1:3) ∩H−) ≥M(θ) +
(π

2 − 1
)
R2 +

(
π

2 + 1−
(

1
2θ + sin θ2

))
R2.

The last term of the right-hand side is a decreasing function on [0, π]. Its minimum equals 0 at θ = π, i.e.

π

2 + 1−
(

1
2θ + sin θ2

)
≥ 0

for all θ ∈ [0, π]. This shows that

λ2(B(x1:3) ∩H−) ≥M(θ) +
(π

2 − 1
)
R2. (3.34)

The inequality (3.27) results from (3.29), (3.34) and the fact that M(θ) ≥ λ2(x1:3). �

We can now derive an upper bound for g2,k(·) for all k = 0, 1, 2. Indeed, if yk+1:3 ∈ Ek,r,u1:3 , where Ek,r,u1:3 has
been defined in (3.7), the sets of points {x1:3} = {ru1:3} and {x′1:3} = {ru1:k,yk+1:3} satisfy the assumptions of
Lemma 7 since R(ru1:3) = r and R(ru1:3) ≥ R(ru1:k,yk+1:3). Using the fact that B(ru1:3) = B(0, r), λ2(ru1:3) > vρ
and λ2(ru1:k,yk+1:3) > vρ, we deduce from (3.8), (3.26) and (3.27) that

g2,k(ρ, r,u1:3,yk+1:3) ≤ c · r3e−
1
2 ((π2−1)r2+2vρ)1r2λ2(u1:3)>vρ1Ek,r,u1:3

(yk+1:3).

Since 3
√

3
4 r2 ≥ r2λ2(u1:3) and α2 = 2π

3
√

3 , we deduce from (3.25) that r2λ2(u1:3) > vρ implies r > (2 (log ρ+ c′) /π)1/2,
where c′ = log(3/2) + t. Integrating the right-hand side with respect to yk+1:3, we obtain
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G2,k(ρ) ≤ c · ρ
∫ ∞

(2(log ρ+c′)/π)1/2

∫
(S1)3

r3e−
1
2 ((π2−1)r2+2vρ) × λ2(3−k)(Ek,r,u1:3)dσ(u1:3)dr. (3.35)

The following lemma gives a uniform upper bound for λ2(3−k)(Ek,r,u1:3).

Lemma 8. Let u1:3 ∈ (S1)3 and r > (2 (log ρ+ c′) /π)1/2. Then for ρ large enough

λ2(3−k)(Ek,r,u1:3) ≤ c · r2(3−k). (3.36)

Proof of Lemma 8. We discuss the three cases k = 0, 1, 2.
If k = 2, we show that E2,r,u1:3 is included in a ball of radius r up to a multiplicative constant and centered at

0. Let y3 be in E2,r,u1:3 . From the triangle inequality, we have

|y3| ≤ |y3 − z(ru1:2, y3)|+ |z(ru1:2, y3)| ≤ r + diam(Cρ). (3.37)

The last inequality comes from the fact that |y3− z(ru1:2, y3)| is the circumradius of ∆(ru1:2, y3), which is less than
r, and the fact that z(ru1:2) ∈ Cρ. Moreover

diam(Cρ) ≤ c · (log ρ)1/2 ≤ c · r, (3.38)

where the last inequality holds for ρ large enough since r > (2 (log ρ+ c′) /π)1/2 converges to infinity as ρ goes to
infinity. We deduce from (3.37) and (3.38) that |y3| ≤ c · r. This shows that E2,r,u1:3 ⊂ B(0, c · r). In particular, we
get λ2(E2,r,u1:3) ≤ c · r2.

If k = 1 or k = 0, proceeding along the same lines as in the case k = 2, we show that Ek,r,u1:3 ⊂ B(0, c · r)3−k

and consequently we get λ2(3−k)(Ek,r,u1:3) ≤ c · r2(3−k).
�

We can now derive an upper bound for G2,k(ρ). Indeed, integrating u1:3 over (S1)3, we deduce from (3.35) and
(3.36) that

G2,k(ρ) ≤ c · ρ
∫ ∞

(2(log ρ+c′)/π)1/2
r9−ke−

1
2 ((π2−1)r2+2vρ)dr.

Integrating the right-hand side, we obtain from (3.25) that

G2,k(ρ) ≤ c · (log ρ)8−2kρ(π+2−3
√

3)/2π = O
(
(log ρ)8ρ−ε

)
(3.39)

with ε = −π − 2 + 3
√

3 > 0. Proposition 2 results from (3.39), Lemma 6 and Theorem 1. �

Lemma 7 provides the main tool of the proof. We can note that inequality (3.27) is obvious when we replace
π
2 − 1 by a constant α ≤ π − 3

√
3

2 . Indeed, if ∆(x1:3) and ∆(x′1:3) are two triangles with R := R(x1:3) ≥ R(x′1:3), a
trivial inequality is λ2(B(x1:3) ∪B(x′1:3)) ≥ πR2. Consequently

λ2(B(x1:3) ∪B(x′1:3)) ≥
(
π − 3

√
3

2

)
R2 + λ2(x1:3) + λ2(x′1:3)

since λ2(x1:3) and λ2(x′1:3) are less than 3
√

3
4 R2. Nevertheless, the previous lower bound is not enough to guarantee

that G2,k(ρ) converges to 0. The important fact in Lemma 7 is that we consider the more precise constant π
2 − 1 >

π − 3
√

3
2 .
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Another remark deals with the shape of the cell maximizing the area. Indeed, the maximum of circumradii of a
planar Poisson-Delaunay tessellation, denoted by Rmax,PDT (ρ), satisfies (see (2c) in [8]):

P

(π
2Rmax,PDT (ρ)2 − log (ρ log ρ) ≤ t

)
−→
ρ→∞

e−e
−t

for all t ∈ R. This shows that the expectation of 3
√

3
4 Rmax,PDT (ρ)2, which is the area of an equilateral triangle

of circumradius Rmax,PDT (ρ), is of order 3
√

3
2π log ρ. According to (3.21), this is also the order of E [Amax,PDT (ρ)].

It seems that the shape of the cell maximizing the area tends to that of an equilateral triangle. This fact can be
connected to the D.G. Kendall’s conjecture and to the work of Hug and Schneider in [13].

3.3 Minimum of the areas, d = 2
In our third example, we calculate the asymptotic behaviour of the minimum of the areas of the cells of a Poisson-
Delaunay tessellation (of intensity 1) in R2, i.e.

Amin,PDT (ρ) = min
C∈mPDT
z(C)∈Wρ

,
λ2(C).

Proposition 6. Let mPDT be a Poisson-Delaunay tessellation of intensity γ = 1 in R2. Then for all t ≥ 0

P

(
α

3/5
3 ρ3/5Amin,PDT (ρ) ≥ t

)
−→
ρ→∞

e−t
5/3
, (3.40)

where α3 = 2−2/3 · 3−1/2 · 5−1 · π2/3 · Γ(1/6)2.

In [36], Schulte and Thäle investigate the behaviour of the smallest area Sρ of all triangles that can be formed
by three points of the Poisson point process, i.e.

Sρ = min
x1:3∈X3

z(x1:3)∈Wρ

,
λ2(x1:3).

The asymptotic behaviour of Sρ (see Theorem 2.5. in [36]) is given by P (ρSρ ≥ t) −→
ρ→∞

e−βt, where β is a constant
which can be made explicit. The previous limit compared to (3.40) shows that the smallest area of the Delaunay
cells is much larger than the smallest area of all triangles.

Proof of Proposition 6. First, we calculate the asymptotic behaviour of the distribution function of λ2(C) (see
(3.22)). A Taylor expansion of K1/6(x) as x goes to 0 is given by (see Formula 9.6.9, p. 375 in [1])

K1/6(x) = 2−5/6Γ (1/6)x−1/6 + o(x−1/6).

This together with (3.20) and (3.22) shows that

P (λ2(C) < v) = 6
π
· 2−5/3Γ (1/6)2

∫ α2β2v

0

(
x2/3 + o

(
x2/3

))
dx = α3 · v5/3 + o

(
v5/3

)
. (3.41)

Taking for all t ≥ 0

vρ = vρ(t) = (α−1
3 ρ−1)3/5t (3.42)

we obtain

G1(ρ) = |ρP (λ2(C) < vρ)− t5/3| −→
ρ→∞

0. (3.43)
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We investigate below the rate of convergence of G2(ρ). Taking f(ru1:3) = r2λ2(u1:3) and using the fact that
λ2(B(0, r) ∪B(ru1:k,yk+1:3)) is greater than πr2, for all k = 0, 1, 2, we have

g2,k(ρ, r,u1:3,yk+1:3) ≤ r3e−
1
2πr

2
λ2(u1:3)1r2λ2(u1:3)<vρ1Ek,r,u1:3

according to (3.8) and (3.11). Integrating with respect to y1:3, this gives

G2,k(ρ) ≤ ρ
∫ ∞

0

∫
(S1)3

r3e−
1
2πr

2
λ2(u1:3)λ2(3−k)(Ek,r,u1:3)1r2λ2(u1:3)<vρdσ(u1:3)dr. (3.44)

As in the proof of Proposition 5, we derive a suitable upper bound for the volume of Ek,r,u1:3 .

Lemma 9. Let u1:3 ∈ (S1)3 such that u1 6= u2 and r > 0. Then

λ2(E2,r,u1:3) ≤ c · vρ|u1 − u2|−1, (3.45a)

λ4(E1,r,u1:3) ≤ c · r2vρ, (3.45b)

λ6(E0,r,u1:3) ≤ c · log ρ · r2vρ. (3.45c)

Proof of Lemma 9. Let y3 be in E2,r,u1:3 . Since R(ru1:2, y3) is less than r, we have |y3−ru1| ≤ 2R(ru1:2, y3) ≤ 2r.
In particular, we obtain

|y3| ≤ 3r. (3.46)

Moreover, the area of the triangle ∆(ru1:2, y3) is given by

λ2(ru1:2, y3) = 1
2r|u1 − u2| · δ(y3,L(ru1, ru2)), (3.47)

where L(ru1, ru2) is the line through p1 = ru1, p2 = ru2 and where δ(y3,L(ru1, ru2)) denotes the distance between
this line and the point y3. Since λ2(ru1:2, y3) < vρ, it results from (3.47) that

δ(y3,L(ru1, ru2)) ≤ 2vρ
r|u1 − u2|

. (3.48)

The inequalities (3.46) and (3.48) show that E2,r,u1:3 is included in the intersection of a ball of radius 3r and a strip
of width 4vρ

r|u1−u2| , i.e.

λ2(E2,r,u1:3) ≤ 6r × 4vρ
r|u1 − u2|

= c · vρ|u1 − u2|−1.

Secondly, we bound λ4(E1,r,u1:3). Taking the (spherical coordinates type) change of variables φ2 : R+ × S1 →
R2, (s′, u′2) 7→ y2 = ru1 + s′u′2 with Jacobian |Dφ2(s′, u′2)| = s′, we obtain

λ4(E1,r,u1:3) ≤
∫ 2r

0

∫
S1

∫
R2
s′1λ2(ru1,ru1+s′u′2,y3)<vρ1R(ru1,ru1+s′u′2,y3)≤rdy3dσ(u′2)ds′. (3.49)

The positive number s′ is integrated on (0, 2r]. Indeed, the inequality R(ru1, ru1 + s′u′2, y3) ≤ r implies that
s′ = |(ru1 + s′u′2)− ru1| ≤ 2r. Proceeding along the same lines as in the proof of (3.45a), we show that y3 belongs
to the ball B(0, 3r) and a strip of width 4vρ

s′ . Integrating (3.49) with respect to y3, we deduce that

λ4(E1,r,u1:3) ≤ 24
∫ 2r

0

∫
S1
vρrdσ(u′2)ds′ = c · r2vρ.
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Finally, we bound λ6(E0,r,u1:3). Taking the same change of variables as in (3.12), we have

λ6(E0,r,u1:3) ≤
∫

(R2)3
1z(y1:3)∈Cρ1R(y1:3)<r1λ2(y1:3)<vρdy1:3

=
∫
Cρ

∫ r

0

∫
(S1)3

r′3λ2(u′1:3)1r′2λ2(u′1,u′2,u′3)<vρdσ(u′1:3)dr′dz′.

Bounding r′3λ2(u′1, u′2, u′3) by r′vρ and integrating with respect to z′ ∈ Cρ, r′ ∈ [0, r] and u′1:3 ∈ (S1)3, we show
that λ6(E0,r,u1:3) is less than c · λ2(Cρ)r2vρ with λ2(Cρ) ≤ c · log ρ. �

We can now derive a suitable upper bound for G2,k(ρ). Indeed, if k = 0, we deduce from (3.44) and (3.45c) that

G2,0(ρ) ≤ c · log ρ · ρvρ
∫ ∞

0

∫
(S1)3

r5e−
1
2πr

2
λ2(u1:3)1r2λ2(u1:3)<vρdσ(u1:3)dr

≤ c · log ρ · ρv2
ρ

∫ ∞
0

∫
(S1)3

r3e−
1
2πr

2
dσ(u1:3)dr.

First, we notice that the integral of the right-hand side is bounded. Besides, (3.42) shows that G2,0(ρ) is less than
c · log ρ · ρ−1/5. In the same spirit, when k = 1, we obtain that G2,1(ρ) ≤ c · ρ−1/5 according to (3.44) and (3.45b).
Hence

G2,0(ρ) = O
(

log ρ · ρ−1/5
)

and G2,1(ρ) = O
(
ρ−1/5

)
. (3.50)

Finally, if k = 2, we deduce from (3.44) and (3.45a) that

G2,2(ρ) ≤ c · ρvρ
∫ ∞

0

∫
(S1)3

r3e−
1
2πr

2
λ2(u1:3)|u1 − u2|−1

1r2λ2(u1:3)<vρ1u1 6=u2dσ(u1:3)dr.

Let φ3 be the change of variables

φ3 :[0, 2π)3 −→ (S1)3

θ1:3 7−→ u1:3 with u1 = u(−θ1 + θ3), u2 = u(θ1 + θ3) and u3 = u(θ2 + θ3),

where u(θ) = (cos θ, sin θ). For all θ1:3 ∈ (0, 2π)× [0, 2π)2, let us denote by A(θ1:3) = λ2(u1:3) with u1:3 = φ3(θ1:3).
Since |u1 − u2| = 2| sin θ1|, we have

G2,2(ρ) ≤ c · ρvρ
∫ ∞

0

∫
(0,π/2)×[0,2π)2

r3e−
1
2πr

2
A(θ1:3)| sin θ1|−1

1r2A(θ1:3)<vρdθ1:3dr.

Without loss of generality, we have assumed that θ1 belongs to (0, π/2). Let ε > 3
5 be fixed. The previous inequality

can be written as

G2,2(ρ) ≤ c · ρvρ
∫ ∞

0

∫
(0,ρ−ε[×[0,2π)2

r3e−
1
2πr

2
A(θ1:3)| sin θ1|−1

1r2A(θ1:3)<vρdθ1:3dr

+ c · ρvρ
∫ ∞

0

∫
[ρ−ε,π/2)×[0,2π)2

r3e−
1
2πr

2
A(θ1:3)| sin θ1|−1

1r2A(θ1:3)<vρdθ1:3dr = G
(1)
2,2(ρ) +G

(2)
2,2(ρ), (3.51)

where G(1)
2,2(ρ) and G

(2)
2,2(ρ) denote respectively the first and the second terms of the right-hand side. Let us note

that A(θ1:3)| sin θ1|−1 is bounded since, according to (3.47), we have A(θ1:3) = 1
2 · 2| sin θ1| · δ(u3,L(u1:2)), where

u1:3 = φ3(θ1:3) and δ(u3,L(u1:2)) ≤ 2. Hence, the first integral of the right-hand side of (3.51) is less than

G
(1)
2,2(ρ) ≤ c · ρvρ

∫ ∞
0

∫
(0,ρ−ε)×[0,2π)2

r3e−
1
2πr

2
dθ1:3dr ≤ c · ρ1−εvρ = O(ρ−1/5) (3.52)
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since vρ = c · ρ−3/5 and ε > 3
5 . Moreover, bounding A(θ1:3) by r−2vρ in the second integral of (3.51), we have

G
(2)
2,2(ρ) ≤ c · ρv2

ρ

∫ ∞
0

∫
[ρ−ε,π/2)×[0,2π)2

re−
1
2πr

2
| sin θ1|−1dθ1:3dr ≤ c · log ρ · ρv2

ρ = O
(

log ρ · ρ−1/5
)

(3.53)

since
∫ π/2
ρ−ε

1
| sin θ1|dθ1 is of order log ρ.

From (3.50), (3.51), (3.52) and (3.53), we deduce that G2(ρ) = O
(
log ρ · ρ−1/5). Proposition 6 is now a direct

consequence of (3.43) and Theorem 1. �

Remark 4. 1. To the best of our knowledge, there is no more accurate result on the Taylor expansion of
K1/6(·) which could provide the rate of convergence of P (λ2(C) < v). Actually, the rate of convergence can
be investigated by using the following expression of the density of λ2(C) due to Rathie [31]:

f(x) =
∞∑
k=0

ck,1x
2/3+2k +

∞∑
k=0

ck,2x
1+2k +

∞∑
k=0

ck,3x
4/3+2k

for some constants ck,i, k ≥ 0, 1 ≤ i ≤ 3. It results from a Taylor expansion that P (λ2(C) < v) = c0,1 · v5/3 +
O(v2) for all v ≥ 0. Taking v = vρ as in (3.42), we obtain G1(ρ) = |ρP (λ2(C) < vρ) − t5/3| = O

(
ρ−1/5) so

that ∣∣∣P(α3/5
3 ρ3/5APDT,min(ρ) ≥ t

)
− e−t

5/3
∣∣∣ = O

(
log ρ · ρ−1/5

)
.

2. When d ≥ 3, we can show that the density of λd(C) (see (2.5) in [31])) satisfies f(x) = c · x + o(x). This
implies ρP

(
λd(C) < c · ρ−1/2t

)
−→
ρ→∞

t2. Unfortunately, the same method as in the proof of Proposition 6 is
not enough to show that G2(ρ) converges to 0.

4 Extreme Values of a Poisson-Voronoi tessellation
Let χ be a locally finite subset of Rd. For all x ∈ χ, we denote by Cχ(x) the Voronoi cell of nucleus x defined as

Cχ(x) = {y ∈ Rd : |x− y| ≤ |x′ − y|, x′ ∈ χ}.

For all x ∈ χ, we denote by Nχ(x) the set of neighbors of x and by Nχ(x) its cardinality, i.e.

Nχ(x) = {x′ ∈ χ,Cχ(x′) ∩ Cχ(x) 6= ∅} and Nχ(x) = #Nχ(x).

We also consider the two quantities

D(Cχ(x)) = max
x′∈Nχ(x)

|x− x′|, and F(Cχ(x)) =
⋃

y∈Cχ(x)

B(y, |y − x|)

which are the distance to the farthest neighbor and the so-called Voronoi flower of nucleus x ∈ χ. A Voronoi
tessellation corresponds to the dual graph of Delaunay tessellation in the following way: there exists an edge between
two points x, x′ ∈ χ in the Delaunay graph if and only if they are Voronoi neighbors, i.e. Cχ(x) ∩ Cχ(x′) 6= ∅.

When χ = X is a Poisson point process (of intensity 1), the family mPV T = {CX(x), x ∈ X} is called the Poisson-
Voronoi tessellation. Such a model is extensively used in many domains such as cellular biology [29], astrophysics
[30], telecommunications [4] and ecology [33]. For a complete account, we refer to the books [23, 25, 35] and the
survey [7].
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As in Section 4, the window Wρ = ρ1/d[0, 1]d is partitioned into Nρ =
⌊(

ρ
2 log ρ

)1/d
⌋d

sub-cubes i ∈ Vρ. The

event Aρ is the same as in (3.2) and we can show that it satisfies Condition (FRC) for the Poisson-Voronoi
tessellation with arguments very similar to the proof of Lemma 5. For each cell C = CX(x) ∈ mPV T , we take
z(CX(x)) = x. A consequence of Slivnyak-Mecke theorem (see e.g. Theorem 3.3.5 in [35]) shows that the typical
cell C satisfies the equality in distribution C D= CX∪{0}(0). Besides, the function G2(·) defined in (1.6) has an integral
representation. Indeed, from Slivnyak-Mecke formula, it can be written as

G2(ρ) = ρ

∫
Cρ

P
(
f(CX∪{0,y}(0)) > vρ, f(CX∪{0,y}(y)) > vρ

)
dy. (4.1)

Extremes of characteristic radii of Poisson-Voronoi tessellation are studied in [8]. In this paper, we give the
asymptotic behaviours of two new geometrical characteristics:

Dmin,PV T (ρ) = min
x∈X∩Wρ

D(CX(x)) and Fmin,PV T (ρ) = min
x∈X∩Wρ

λd(F(CX(x))).

Obviously, 2−dκdDd
min,PV T (ρ) ≤ κd minx∈X∩Wρ

R(CX(x))d ≤ Fmin,PV T (ρ). Actually, the following proposition
shows that the two random variables Dd

min,PV T (ρ) and Fmin,PV T (ρ) are of same order when ρ goes to infinity.

Proposition 7. Let mPV T be a Poisson-Voronoi tessellation of intensity γ = 1. For all t ≥ 0, we have∣∣∣P(α1/(d+1)
d,4 ρ1/(d+1)Dd

min,PV T (ρ) ≥ t
)
− e−t

d+1
∣∣∣ = O

(
ρ−1/(d+1)

)
, (4.2a)

∣∣∣P(α1/(d+1)
d,5 ρ1/(d+1)Fmin,PV T (ρ) ≥ t

)
− e−t

d+1
∣∣∣ = O

(
ρ−1/(d+1)

)
, (4.2b)

where αd,4 and αd,5 are defined in (4.7) and (4.17) respectively.

Before proving Proposition 7, we need a practical lemma which is a new version of Lemma 3 in [8] adapted to
our framework.

Lemma 10. Let v ≥ 0, y 6= 0 ∈ Rd and χ ⊂ Rd locally finite such that χ ∪ {0, y} is in general position, i.e. each
subset of size n<d + 1 is affinely independent (see [41]). Let us assume that each Voronoi cell associated with the
set χ ∪ {0, y} is bounded and that

Nχ∪{0,y}(0) ⊂ B(0, v) and Nχ∪{0,y}(y) ⊂ B(y, v). (4.3)

Then

# (χ ∩ (B(0, v) ∪B(y, v))) ≥ d+ 1.

Proof of Lemma 10. Let us define χ0,y as the (finite) subset

χ0,y = χ ∩ (B(0, v) ∪B(y, v)) .

Thanks to (4.3), we have Cχ∪{0,y}(0) = Cχ0,y∪{0,y}(0) and Cχ∪{0,y}(y) = Cχ0,y∪{0,y}(y). In particular, this shows
that the cells Cχ0,y∪{0,y}(0) and Cχ0,y∪{0,y}(y) are bounded. Hence 0 and y are in the convex hulls of χ0,y ∪ {y}
and χ0,y ∪ {0} respectively (see Property V2, p. 58 in [25]). This implies {0, y} ⊂ conv(χ0,y). Since χ∪ {0, y} is in
general position, this shows that conv(χ0,y) has a nonempty interior and consequently this proves Lemma 10. �

We can now prove Proposition 7.
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Proof of Proposition 7.
Proof of (4.2a). To find a function vρ = vρ(t) such that G1(ρ) = |ρP (D(C) > vρ)− t| converges to 0, we have

to approximate the tail of the distribution function of D(C). First, we notice that for all v > 0 we have

D (Cχ(x)) < v ⇐⇒ Nχ(x) ⊂ B(0, v), x ∈ χ (4.4)

for any locally finite subset χ of Rd. This fact applied to χ = X ∪ {0} shows that

P (D(C) < v) =
∞∑

k=d+1
P
(
NX∪{0}(0) ⊂ B(0, v), NX∪{0}(0) = k

)
(4.5)

since C = CX∪{0}(0). An integral representation of the right-hand side is given by (see Proposition 1 in [6])

P
(
NX∪{0}(0) ⊂ B(0, v), NX∪{0}(0) = k

)
= 1
k!

∫
B(0,v)k

e−λd(F(C{x1:k}∪{0}(0)))
1Fk(x1:k)dx1:k,

where

Fk =
{

x1:k = (x1, . . . , xk) ∈ (Rd)k, C{x1:k}∪{0}(0) is a convex polytope with k facets
}
.

We recall that {x1:k}∪{0} = {x1, x2, . . . , xk, 0}. Taking the change of variables xi = vx′i, we obtain for all k ≥ d+1

P
(
NX∪{0}(0) ⊂ B(0, v), NX∪{0}(0) = k

)
= vdk · 1

k!

∫
B(0,1)k

e
−vdλd(F(C{x′1:k}∪{0}(0)))

1Fk(x′1:k)dx′1:k. (4.6)

If k = d+ 1, the previous probability is equivalent to αd,4 · vd(d+1) when v goes to 0, where

αd,4 = 1
(d+ 1)!

∫
B(0,1)d+1

1Fd+1(x′1:d+1)dx′1:d+1. (4.7)

If k ≥ d + 2, the right-hand side of (4.6) is less than κkd
k! v

dk thanks to 1Fk ≤ 1 and e−λd(F(C{x′1:k}∪{0}(0))) ≤ 1. It
follows from (4.5) that∣∣∣P (D(C) < v)− αd,4 · vd(d+1)

∣∣∣ ≤ ∞∑
k=d+2

κkd
k! v

dk = O(vd(d+2)). (4.8)

Now, we can choose a suitable function vρ. Indeed, let t ≥ 0 be fixed and let us denote by

vρ = vρ(t) =
(
α−1
d,4ρ

−1
)1/d(d+1)

t1/d. (4.9)

According to (4.8), we have

G1(ρ) = |ρP (D(C) < vρ)− td+1| = O
(
ρ−1/(d+1)

)
. (4.10)

Let us give now an upper bound for the function G2(ρ) defined in (1.6). According to (4.1) and (4.4), we obtain

G2(ρ) = ρ

∫
Cρ

P
(
D(CX∪{0,y}(0)) < vρ, D(CX∪{0,y}(y)) < vρ

)
dy

= ρ

∫
Cρ

P
(
NX∪{0,y}(0) ⊂ B(0, vρ),NX∪{0,y}(y) ⊂ B(y, vρ)

)
dy.

(4.11)
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To guarantee the independence of the events considered in (4.11) for each cells which are distant enough, we write

G2(ρ) = ρ

∫
Cρ∩B(0,2vρ)c

P
(
NX∪{0,y}(0) ⊂ B(0, vρ),NX∪{0,y}(y) ⊂ B(y, vρ)

)
dy

+ ρ

∫
Cρ∩B(0,2vρ)

P
(
NX∪{0,y}(0) ⊂ B(0, vρ),NX∪{0,y}(y) ⊂ B(y, vρ)

)
dy. (4.12)

For the first integral, when y ∈ Cρ ∩ B(0, 2vρ)c, the balls B(0, vρ) and B(y, vρ) are disjoint. Because X is
a Poisson point process and because y 6∈ B(0, 2vρ), the first integrand of (4.12) can be written as the product
P
(
NX∪{0}(0) ⊂ B(0, vρ)

)
× P

(
NX∪{y}(y) ⊂ B(y, vρ)

)
. Hence, according to (4.4) and (4.10) we obtain that

P
(
NX∪{0,y}(0) ⊂ B(0, vρ),NX∪{0,y}(y) ⊂ B(y, vρ)

)
= P (D(C) < vρ)2 ≤ c · ρ−2, (4.13)

where y ∈ Rd\B(0, 2vρ) and where c is a constant which does not depend on y.
For the second integral of (4.12), we apply Lemma 10 to χ = X. This gives

P
(
NX∪{0,y}(0) ⊂ B(0, vρ),NX∪{0,y}(y) ⊂ B(y, vρ)

)
≤ P (#(X ∩ (B(0, vρ) ∪B(y, vρ)) ≥ d+ 1)) , (4.14)

where y ∈ B(0, 2vρ). Since #(X∩B) is Poisson distributed of mean λd(B) for each Borel subset B ⊂ Rd, we obtain
for ρ large enough that

P (#(X ∩ (B(0, vρ) ∪B(y, vρ)) ≥ d+ 1)) =
∞∑

k=d+1

1
k! (λd(B(0, vρ) ∪B(y, vρ)))k e−λd(B(0,vρ)∪B(y,vρ))

≤ c · vd(d+1)
ρ = c′ · ρ−1

according to (4.9) and to the inequalities e−λd(B(0,vρ)∪B(y,vρ)) ≤ 1 and λd(B(0, vρ) ∪ B(y, vρ)) ≤ 2 · κdvdρ , with
y ∈ B(0, 2vρ). This together with (4.12), (4.13) and (4.14) shows that

G2(ρ) ≤ c · ρ−1λd(Cρ ∩ (Rd\B(0, 2vρ))) + c · λd(Cρ ∩B(0, 2vρ)).

Since λd(Cρ ∩ B(0, 2vρ)c) ≤ λd(Cρ) ≤ c · log ρ and λd(Cρ ∩ B(0, 2vρ)) ≤ λd(B(0, 2vρ)) = c · ρ−1/(d+1), we deduce
from the previous inequality that

G2(ρ) ≤ c · log ρ× ρ−1 + c · ρ−1/(d+1) = O
(
ρ−1/(d+1)

)
. (4.15)

We now derive directly (4.2a) from (4.10), (4.15) and Theorem 1.

Proof of (4.2b). This will be sketched since it is analogous to the proof of (4.2a). First, we investigate the tail
of the distribution function of λd(F(C)). In [42], Zuyev shows that, conditional on NX∪{0} = k, the volume of F(C)
is Gamma distributed with parameters (k, 1), i.e.

P (λd(F(C)) < v) =
∞∑

k=d+1

1
(k − 1)!

∫ v

0
xk−1e−xdx · p(k), (4.16)

where p(k) = P
(
NX∪{0}(0) = k

)
. When k = d+ 1, the Taylor expansion e−x = 1 +O(x) shows that the first term

of the series in (4.16) equals αd,5vd+1 +O(vd+2), where

αd,5 = p(d+ 1)
(d+ 1)! . (4.17)
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If k ≥ d+ 2, the term of the series in (4.16) is less than 1
d! · v

d+2 · p(k) thanks to the inequality e−x ≤ 1. According
to (4.16), we get

|P (λd(F(C)) < v)− αd,5 · vd+1| = O(vd+2).

Hence, for all fixed t ≥ 0, taking

vρ = vρ(t) =
(
α−1
d,5ρ

−1
)1/(d+1)

t (4.18)

we obtain

G1(ρ) = |ρP (λd(F(C)) < vρ)− td+1| = O(ρ−1/(d+1)). (4.19)

To get an upper bound for G2(ρ), we note that for each χ ⊂ Rd locally finite and x ∈ χ, we have

κd
2d · (D(Cχ(x)))d ≤ λd (F(Cχ(x))) .

Applying the previous inequality to χ = X ∪ {0, y} and x = 0, y, we deduce from (4.1) that

G2(ρ) = ρ

∫
Cρ

P
(
λd(F(CX∪{0,y}(0))) < vρ, λd(F(CX∪{0,y}(y))) < vρ

)
dy

≤ ρ
∫
Cρ

P
(
D(CX∪{0,y}(0)) < v′ρ, D(CX∪{0,y}(y)) < v′ρ

)
dy

(4.20)

with

v′ρ = v′ρ(t) = 2κ1/d
d · v1/d

ρ = (2d(d+1)κd+1
d α−1

d,5ρ
−1)1/d(d+1)t1/d

according to (4.18). Let us notice that there exists a constant c such that, for any t ≥ 0 and ρ ≥ 0, we have
v′ρ(t) = c · vρ(t), where vρ = vρ(t) is defined in (4.9). Writing the right-hand side of (4.20) in the same spirit as in
(4.11) and proceeding along the same lines as in the proof of (4.2a), we show that G2(ρ) is of order ρ−1/(d+1). This
together with (4.19) shows (4.2b). �

A similar method could be used to re-find the asymptotic behaviour of the minimum of circumradii given in [8].

5 The maximum of inradii of a Gauss-Poisson Voronoi tessellation
As an example of non-Poisson point process, a Gauss-Poisson process is analyzed. Introduced by Newman [24] and
investigated by Milne and Westcott, such process has a potential application in statistical mechanics (see [24], p.
350) and could be used as a model for molecular motion (see [21] p. 169). In the sense of [40] p. 161, a stationary
planar Gauss-Poisson process X is a (simple) point process which can be defined as follows. Let Xa be a Poisson
point process of intensity γa in R2. Every point xa ∈ Xa is replaced by a cluster of points Ξ(xa) = xa + Ξ0(xa),
where the sets of points Ξ0(xa) are chosen independently and with identical distribution, i.e.

X =
⋃

xa∈Xa

(xa + Ξ0(xa)). (5.1)

For all xa ∈ Xa, the cluster Ξ0(xa) equals in distribution Ξ0 which is defined in the following way: Ξ0 has an
isotropic distribution and is composed of zero, one or two points with probability p0 6= 1, p1 and p2 = 1− (p0 + p1).
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If Ξ0 contains only one point then that point is the origin 0. If Ξ0 is composed of two points then these are separated
by a unit distance and have midpoint 0. The intensity of X is given by γX = (p1 + 2p2) · γa. In this subsection, we
investigate the maximum of inradii of a Gauss-Poisson Voronoi tessellation mGPV T , i.e.

rmax,GPV T (ρ) = max
x∈X∩Wρ

r(CX(x)) where r(CX(x)) = max{r ≥ 0, B(x, r) ⊂ CX(x)}.

To apply Theorem 1, we subdivide Wρ into Nρ =
⌊(

γa(p1+p2)ρ
2 log ρ

)1/d
⌋d

sub-cubes of equal size. With the same

method as for a Poisson-Voronoi tessellation, we can show that there exists an integer R ≥ 1 and a event Aρ
(in the same spirit as in (3.2)) such that Condition (FRC) holds when the Voronoi tessellation is induced by a
Gauss-Poisson process. The asymptotic distribution of rmax(ρ) is given in the following proposition.

Proposition 8. Let X be a Gauss-Poisson process of intensity 1, i.e. (p1 + 2p2)γa = 1 with p0 6= 1 and p1 6= 0.
For all t ∈ R, we have∣∣∣P (rmax,GPV T (ρ) ≤ vρ(t))− e−e

−t
∣∣∣ = O

(
(log ρ)−1/2

)
,

where vρ(t) is given in (5.5).

Proof of Proposition 8. We notice that for all x ∈ X and v ≥ 0, the inradius r(CX(x)) is greater than v if and
only if #X ∩B(x, 2v) = 1. Consequently

P (r(C) > v) = P
0(#X0 ∩B(0, 2v) = 1),

where C is the typical cell of the Voronoi tessellation induced by X. In the above equality, P0 is the Palm measure
of X in the sense of (3.6) of [35] and X0 is P0 distributed. The planar Gauss-Poisson process is one of the rare
non-Poisson processes for which the right-hand side can be made fully explicit. It is given for each v ≥ 0 by (see p.
161 in [40]):

P
0(#X0 ∩B(0, 2v) = 1) = 1

p1 + 2p2
e−γa(4p1πv

2+p2(8πv2−a(2v))) ·

{
p1 + 2p2 0 ≤ 2v < 1
p1 2v ≥ 1

(5.2)

and

a(2v) = 8v2 arccos 1
4v −

1
2
√

16v2 − 1 for 4v ≥ 1 (5.3)

and equals zero otherwise. The function a(2v) is the area of the intersection of two disks of radius 2v and centers
separated by unit distance. A Taylor expansion of the right-hand side of (5.2) shows that

P
0(#X0 ∩B(0, 2v) = 1) = e−(P (v)+R̃(v)), (5.4)

where

P (v) = 4γaπ(p1 + p2)v2 − 4γa · p2 · v − log
(

p1

p1 + p2

)
and R̃(v) = 5γa · p2

48 · 1
v

+ o

(
1
v

)
,

as v goes to infinity. In the previous line, φ(v) = o(ψ(v)) means that φ(v)/ψ(v) −→
v→∞

0.
For all t ∈ R, we define vρ = vρ(t) so that P (vρ) = log ρ+ t, i.e.

vρ = vρ(t) =
2γa · p2 +

(
4γ2
a · p2

2 + 4γaπ(p1 + p2)
(

log
(

p1
p1+2p2

)
+ log ρ+ t

))1/2

4γaπ(p1 + p2) . (5.5)
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Using the fact that ρP0(#X0 ∩B(0, 2vρ) = 1) = e−t−R̃(vρ), we deduce that

G1(ρ) = |ρP0(#X0 ∩B(0, 2v) = 1)− e−t| ≤ e−tR̃(vρ) = O
(

(log ρ)−1/2
)
. (5.6)

To check Condition (LCC), we first provide an integral representation forG2(ρ) with respect to Palm measures.
Then we give some upper bound for the integrand. To do it, we denote by Flf the space of locally finite subsets of
R2. We deduce from Campbell’s theorem (see Theorem 3.3.3. in [35]) that

G2(ρ) = NρE

 ∑
(x,y)6=∈(X∩Cρ)2

1#X∩B(x,2vρ)=11#X∩B(y,2vρ)=1


= Nρ

∫
Cρ

∫
Flf

∑
y∈η∩Cρ

1#(η+x)∩B(x,2vρ)=11#(η+x)∩B(y,2vρ)=1dP
0(η)dx

= c · ρ
∫
Flf

∑
y∈η∩Cρ

1#η∩B(0,2vρ)=11#η∩B(y,2vρ)=1dP
0(η)

since the integrand of the right-hand side of the second line is translation invariant (in distribution) and Nρλ2(Cρ) =
c · ρ. According to Formula (5.3.2) in [40], we have P0 = PX ∗ c0, where PX is the distribution of X and c

0 is the
Palm measure of the cluster distribution Ξ0 that is concentrated on the space Flf,2 of subsets of 0, 1 or 2 points in
R2. Hence

G2(ρ) = c · ρ
∫
Flf

∫
Flf,2

∑
y∈(φ∪ξ)∩Cρ

1#(φ∪ξ)∩(B(0,2vρ)∪B(y,2vρ))=21|y|>2vρdc
0(ξ)dPX(φ).

When |y| > 2vρ, we have y 6∈ ξ for ρ large enough since c0 a.s. ξ is bounded. Moreover, PX a.s. φ∩ ξ ∩ (B(0, 2vρ)∪
B(y, 2vρ)) is empty. Consequently, calculating the integral with respect to c0 and proceeding as previously, we
deduce from Campbell’s theorem and from the relation P

0 = PX ∗ c0 that

G2(ρ) ≤ c · ρ
∫
Flf

∑
y∈φ∩Cρ

1#φ∩(B(0,2vρ)∪B(y,2vρ))=11|y|>2vρdPX(φ)

= c · ρ
∫
Cρ

∫
Flf

∫
Flf,2

1#((ξ∪φ)+y)∩(B(0,2vρ)∪B(y,2vρ))=11|y|>2vρdc
0(ξ)dPX(φ)dy.

Since PX a.s. φ ∩ ξ ∩ (B(0, 2vρ) ∪B(y, 2vρ)) is empty, we deduce after integration over Flf ×Flf,2 with respect to
PX ⊗ c

0 that

G2(ρ) ≤ c · ρ
∫
Cρ

P (X ∩ (B(0, 2vρ) ∪B(y, 2vρ)) = ∅) 1|y|>2vρdy. (5.7)

We provide below a suitable upper bound for the integrand. Let |y| > 2vρ be fixed. First, we note that
X ∩ (B(0, 2vρ) ∪ B(y, 2vρ)) = ∅ if and only if (x + Ξ0(x)) ∩ (B(0, 2vρ) ∪ B(y, 2vρ)) = ∅ for all x ∈ Xa. From
Theorem 3.2.4. of [35], Fubini’s theorem and the fact that Ξ0 is symmetric with respect to the origin, we get

P (X ∩ (B(0, 2vρ) ∪B(y, 2vρ)) = ∅) = e
−γa

∫
R2 P((x+Ξ0(x))∩(B(0,2vρ)∪B(y,2vρ))6=∅)dx

= e−γaE[λ2(Ξ0+(B(0,2vρ)∪B(y,2vρ)))].
(5.8)

We give below a suitable lower bound for the term appearing in the exponential. Since |y| > 2vρ, we have

E [λ2(Ξ0 + (B(0, 2vρ) ∪B(y, 2vρ)))|#Ξ0 = 1] = λ2 (B(0, 2vρ) ∪B(y, 2vρ)) ≥
3
2 · 4πv

2
ρ,
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E [λ2(Ξ0 + (B(0, 2vρ) ∪B(y, 2vρ)))|#Ξ0 = 2] ≥ E [λ2(Ξ0 +B(0, 2vρ))] ≥ 8πv2
ρ − a(2vρ),

where a(·) is defined in (5.3). Since Ξ0 is reduced to 0, 1 or 2 points with probability p0, p1 and p2 respectively, we
deduce from (5.8) that

P (X ∩ (B(0, 2vρ) ∪B(y, 2vρ)) = ∅) ≤ e−γa(
3
2p1·4πv2

ρ+p2(8πv2
ρ−a(2vρ)))

= p1 + 2p2

p1
P

0(#B(0, 2vρ) ∩X0 = 1) · e−2γap1πv
2
ρ

(5.10)

for ρ large enough according to (5.2). Integrating over Cρ, we deduce from (5.6), (5.7), (5.10) and from the inequality
λ2(Cρ) ≤ c · log ρ, that

G2(ρ) ≤ c · log ρ · e−2γap1πv
2
ρ = O

(
log ρ · ρ−α

)
, (5.11)

where α = p1
2(p1+p2) . Since p1 6= 0, we have α > 0 so that G2(ρ) converges to 0. Proposition 8 is now a direct

consequence of (5.6), (5.11) and Theorem 1.
�

According to Proposition 8 and (5.5), the order of E [rmax,GPV T (ρ)] is

(4γaπ(p1 + p2))−1/2 · (log ρ)1/2 =
(

p1 + 2p2

4π(p1 + p2)

)1/2
· (log ρ)1/2

since we have assumed that (p1 + 2p2)γa = 1. Let us remark that the larger p2 is, the larger the order is. This can
be explained by the following heuristic fact: the nucleus x ∈ X of the Voronoi cell which maximizes the inradius
belongs to a cluster of size 1, i.e. x ∈ Ξ(xa), where #Ξ(xa) = 1 for some xa ∈ Xa. Hence if p2 is large, the mean
number of clusters of size 1 is small so that the inradii associated with the clusters of size 1 are large.

When p1 = 0, we obtain a degenerate case since rmax,GPV T (ρ) is constant. Indeed, with high probability, the
maximum of inradius is made between two points which belong to the same cluster so that rmax,GPV T (ρ) = 1

2 .
When p0 = p2 = 0 and p1 = 1, the random variable rmax,GPV T (ρ) is the maximum of inradii of a Poisson-Voronoi
tessellation rmax,PV T (ρ). In that case, the order is

vρ = vρ(t) = (4π)−1/2 · (log ρ+ t)1/2
.

The order of rmax,PV T (ρ) has already been investigated in [8]. Nevertheless, Proposition 8 is more precise since it
provides a rate of convergence. Actually, this rate could be improved. Indeed, since p0 = p2 = 0 and p1 = 1 we
have R̃(vρ) = 0 according to (5.2) and (5.4) and consequently we get G1(ρ) = 0 according to the inequality in (5.6).
Moreover, the term α which appears in (5.11) equals 1/2. Hence, according to (5.11), we obtain the more precise
result:

P

(
rmax,PV T (ρ) ≤ (4π)−1/2 · (log ρ+ t)1/2

)
= O

(
log ρ · ρ−1/2

)
.

Finally, let us mention that a Gauss-Poisson process belongs to the class of the so-called Neyman-Scott processes
(see section 5.3 in [40]). We do not investigate general Neyman-Scott processes since we cannot provide a Taylor
expansion of P (r(C) > r) in general.
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