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Abstract

Likelihood inference for max-stable random fields is in general impossible because their finite-dimen-

sional probability density functions are unknown or cannot be computed efficiently. The weighted

composite likelihood approach that utilizes lower dimensional marginal likelihoods (typically pairs or

triples of sites that are not too distant) is rather favored. In this paper, we consider the family of spatial

max-stable Brown-Resnick random fields associated with isotropic fractional Brownian fields. We assume

that the sites are given by only one realization of a homogeneous Poisson point process restricted to

C = (−1/2, 1/2]2 and that the random field is observed at these sites. As the intensity increases, we

study the asymptotic properties of the composite likelihood estimators of the scale and Hurst parameters

of the fractional Brownian fields using different weighting strategies: we exclude either pairs that are

not edges of the Delaunay triangulation or triples that are not vertices of triangles.
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1 Introduction

Gaussian random fields are widely used to model spatial data because their finite-dimensional distributions

are only characterized by the mean and covariance functions. In general it is assumed that these functions
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belong to some parametric models which leads to a parametric estimation problem. When extreme value

phenomena are of interest and meaningful spatial patterns can be discerned, max-stable random field models

are preferred to describe such phenomena. However, likelihood inference is challenging for such models

because their corresponding finite-dimensional probability density functions are unknown or cannot be

computed efficiently. In this paper we study composite likelihood estimators in a fixed-domain asymptotic

framework for a widely used class of stationary max-stable random fields: the Brown-Resnick random fields.

As a preliminary, we provide brief reviews of work on maximum likelihood estimators and on composite

likelihood estimators for Gaussian random fields under fixed-domain asymptotics and present max-stable

random fields with their canonical random tessellations.

1.1 Maximum likelihood estimators for Gaussian random fields under fixed-domain

asymptotics

The fixed-domain asymptotic framework is sometimes called infill asymptotics (Stein (1999), Cressie (1993))

and corresponds to the case where more and more data are observed in some fixed bounded sampling domain

(usually a region of Rd, d ∈ N∗). Within this framework, the maximum likelihood estimators (MLE) of

the covariance parameters of Gaussian random fields have been deeply studied in the last three decades.

It is noteworthy that two types of covariance parameters have to be distinguished: microergodic and

non-microergodic parameters. A parameter is said to be microergodic if, for two different values of it, the

two corresponding Gaussian measures are orthogonal (Ibragimov and Rozanov (1978), Stein (1999)). It is

non-microergodic if, even for two different values of it, the two corresponding Gaussian measures are equiv-

alent. Non-microergodic parameters cannot be estimated consistently under fixed-domain asymptotics. No

general results are available for the asymptotic properties of microergodic MLE. Most available results are

specific to particular covariance models.

The initial covariance model that has been studied is the exponential model with its variance and scale

parameters. When d = 1, only a reparameterized quantity obtained from the variance and scale parameters

is microergodic (Ying (1991)). It is shown that the MLE of this microergodic parameter is consistent and

asymptotically normal. When d > 1 and for a separable exponential covariance function, all the covariance

parameters are microergodic, and the asymptotic normality of the MLE is proved in Ying (1993). Other

results are also given in van der Vaart (1996) and in Abt and Welch (1998).

The Matern covariance model (Matern (1960)) is very popular in spatial statistics for its flexibility

with respect to the parameterization of smoothness (in the mean square sense) of the underlying Gaussian

field. This model has three parameters: the variance, the scale and the smoothness parameters. Zhang

(2004) showed that when the smoothness parameter is known and fixed, not all parameters can be estimated
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consistently when d = 1, 2, 3; only the ratio of variance and scale parameters (to the power of the smoothing

parameter) is microergodic. Kaufman and Shaby (2013) proved strong consistency and provided the

asymptotic distributions of the microergodic parameters when estimating jointly the scale and variance

parameters (see also Du et al. (2009) and Wang and Loh (2011) for tapered MLE as well as Loh et

al. (2021) for quadratic variation estimators). For d = 5, Anderes (2010) proved the orthogonality of

two Gaussian measures with different Matern covariance functions. In this case, all the parameters are

microergodic. The case d = 4 is still open.

More recently Bevilacqua et al. (2019) considered the generalized Wendland (GW) covariance model.

They characterized conditions for equivalence of two Gaussian measures and they established strong con-

sistency and asymptotic normality of the MLE for the microergodic parameters associated with the GW

covariance model. Bevilacqua and Faouzi (2019) considered the generalized Cauchy covariance model that

is able to separate the characterizations of the fractal dimension and the long range dependence of the

associated Gaussian random fields. They also characterized conditions for the equivalence of two Gaussian

measures, and established strong consistency and asymptotic normality of the MLE of the microergodic

parameters.

1.2 Maximum composite likelihood estimators for Gaussian random fields under fixed-

domain asymptotics

From a theoretical point of view, the maximum likelihood method is the best approach for estimating the

covariance parameters of a Gaussian random field. Nevertheless, the evaluation of the likelihood function

under the Gaussian assumption requires a computational burden of order O(n3) for n observations (because

of the inversion of the n×n covariance matrix), making this method computationally impractical for large

datasets. The composite likelihood (CL) methods rather use objective functions based on the likelihood

of lower dimensional marginal or conditional events (Varin et al. (2011)). These methods are generally

appealing when dealing with large data sets or when it is difficult to specify the full likelihood, and provide

estimation methods with a good balance between computational complexity and statistical efficiency.

There is not a lot of results under fixed domain asymptotics for maximum CL estimators (MCLE).

However, Bachoc et al. (2019) studied the problem of estimating the covariance parameters of a Gaussian

process (d = 1) with exponential covariance function. They showed that the weighted pairwise maximum

likelihood estimator of the microergodic parameters can be consistent, but also inconsistent, according

to the objective function; e.g. the weighted pairwise conditional maximum likelihood estimator is always

consistent (and also asymptotically Gaussian). Bachoc and Lagnoux (2020) considered a Gaussian process

(d = 1) whose covariance function is parametrized by variance, scale and smoothness parameters. They

focused on CL objective functions based on the conditional log likelihood of the observations given the K
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(resp. L) observations corresponding to the left (resp. right) nearest neighbor observation points. They

examined the case where only the variance parameter is unknown and the case where the variance and the

spatial scale are jointly estimated. In the first case they proved that for small values of the smoothness

parameter, the composite likelihood estimator converges at a sub-optimal rate and they showed that the

asymptotic distribution is not Gaussian. For large values of the smoothness parameter, they proved that

the estimator converges at the optimal rate.

1.3 Fixed-domain asymptotics for non-Gaussian random fields

To the best of our knowledge, there is a few papers that study MLE or MCLE for non-Gaussian random

fields under fixed-domain asymptotics. For example, Li (2013) proposed approximate maximum-likelihood

estimation for diffusion processes (d = 1) and provided closed-form asymptotic expansion for transition

density. But diffusion processes may not be generalized for d ≥ 2.

Other papers rather considered variogram-based or power variation-based estimators. Chan and Wood

(2004) considered a random field of the form g (X), where g : R→R is an unknown smooth function and

X is a real-valued stationary Gaussian field on Rd (d = 1 or 2) whose covariance function obeys a power

law at the origin. The authors addressed the question of the asymptotic properties of variogram-based

estimators when g (X) is observed instead of X under a fixed-domain framework. They established that

the asymptotic distribution theory for nonaffine g is somewhat richer than in the Gaussian case (i.e. when

g is an affine transformation). Although the variogram-based estimators are not MLE or MCLE, this study

shows that their asymptotic properties can differ significantly from the Gaussian random field case. Robert

(2020) considered a particular class of max-stable processes (d = 1), the class of simple Brown-Resnick

max-stable processes whose spectral processes are continuous exponential martingales. He developed the

asymptotic theory for the realized power variations of these max-stable processes, that is, sums of powers of

absolute increments. He considered a fixed-domain asymptotic setting and obtained a biased central limit

theorem whose bias depends on the local times of the differences between the logarithms of the underlying

spectral processes.

1.4 Max-stable random fields

Max-stable random fields appear as the only possible non-degenerate limits for normalized pointwise max-

ima of independent and identically distributed (i.i.d.) random fields with continuous sample paths (see e.g.

de Haan and Ferreira (2006)). The one-dimensional marginal distributions of max-stable fields belong to

the parametric class of Generalized Extreme Value distributions. Since we are interested in the estimation

of parameters characterizing the dependence structure, we restrict our attention to max-stable random
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fields η = (η(x))x∈X on X ⊂Rd with standard unit Fréchet margins, that is, satisfying

P [η(x) ≤ z] = exp
(
−z−1

)
, for all x ∈ X and z > 0.

The max-stability property has then the simple form

n−1
n∨
i=1

ηi
d
= η

where (ηi)1≤i≤n are i.i.d. copies of η,
∨

is the pointwise maximum, and
d
= denotes the equality of finite-

dimensional distributions. Max-stable random fields are characterized by their spectral representation (see

e.g., de Haan (1984), Giné et al. (1990)): any stochastically continuous max-stable process η can be written

as

η(x) =
∨
i≥1

UiYi(x), x ∈ X , (1)

where (Ui)i≥1 is the decreasing enumeration of the points of a Poisson point process on (0,+∞) with

intensity measure u−2du, (Yi)i≥1 are i.i.d. copies of a non-negative stochastic random field Y on X such

that E[Y (x)] = 1 for all x ∈ X , the sequences (Ui)i≥1 and (Yi)i≥1 are independent.

The spectral representation (1) makes it possible to construct a canonical tessellation of X as in Dombry

and Kabluchko (2018). We define the cell associated with each index i ≥ 1 by Ci = {x ∈ X : UiYi(x) =

η(x)}. It is a (possibly empty) random closed subset of X and each point x ∈ X belongs almost surely

(a.s.) to a unique cell (the point process {UiYi(x)}i≥1 is a Poisson point process with intensity u−2du so

that the maximum η(x) is almost surely attained for a unique i). It is noteworthy that the terms cell and

tessellation are meant in a broader sense than in Stochastic Geometry where they originated. Here, a cell

is a general (not necessarily convex or connected) random closed set and a tessellation is a random covering

of X by closed sets with pairwise disjoint interiors.

Likelihood inference is challenging for max-stable random fields because their finite-dimensional prob-

ability density functions are unknown or cannot be computed efficiently. Padoan et al. (2010) proposed to

use a composite-likelihood approach but only discussed asymptotic properties of the estimators when the

data-sites are fixed and when there is a large number of i.i.d. data replications.

1.5 Contributions of the paper

In this paper, we consider the class of spatial max-stable Brown-Resnick random fields (d = 2) associated

with isotropic fractional Brownian random fields as defined in Kabluchko et al. (2009). We assume a

Poisson stochastic spatial sampling scheme and use the Poisson-Delaunay triangulation to select the pairs

and triples of sites with their associated marginal distributions that will be integrated into the CL objective
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functions (we exclude pairs that are not edges of the Delaunay triangulation or triples that are not vertices

of triangles of this triangulation). Note that using the Delaunay triangulation is relatively natural here

since we only use the distributions of pairs and triples. Moreover, the Delaunay triangulation appears to

be the most “regular” triangulation in the sense that it is the one that maximises the minimum of the

angles of the triangles.

We study for the first time the asymptotic properties of the MCLE of the scale and Hurst parameters

of the max-stable Brown-Resnick random fields under fixed domain asymptotics (for only one realization of

a Poisson point process). Pairwise and triplewise CL objective functions (considering all pairs and triples)

have been proposed for inference for max-stable processes, but the properties of the MCLE have only been

studied when the sites are fixed and when there is a large number of independent observations over time

of the max-stable random field (see, e.g., Blanchet and Davison (2011), Davison et al. (2012) or Huser

and Davison (2013)). Note that the tapered CL estimators for max-stable random field excluding pairs

that are at a too large distance apart have also been studied in Sang and Genton (2014) (here again with

independent observations), but this is the first time that a Delaunay triangulation is used to select the

pairs and triples.

To obtain the asymptotic distributions of the MCLEs, we proceed in several steps. First we consider

sums of square increments of an isotropic fractional Brownian field on the edges of the Delaunay triangles

and provide asymptotic results using Malliavin calculus (see Theorem 1). Zhu and Stein (2002) also studied

sums of generalized variations for this random field but assumed data-sites on a regular grid. Second we

consider sums of square increments of the pointwise maximum of two independent isotropic fractional

Brownian fields and show that the asymptotic behaviors of the sums now depend on the local time at the

level 0 of the difference between the two fractional Brownian fields (see Theorem 2). Third we generalize

these results to the max-stable Brown-Resnick random field which is built as the pointwise maximum of

an infinite number of isotropic fractional Brownian fields (see Theorem 3). Using approximations of the

pairwise and triplewise CL objective functions, we derive the asymptotic properties of the MCLEs (see

Theorem 4).

The family of stationary Brown-Resnick random fields defined in Kabluchko et al. (2019) is presented

in Section 2. We also provide the asymptotic distributions of pairs and triples as the distances between sites

tend to zero. In Section 3, we introduce the randomized sampling scheme and define the CL estimators of

the scale and Hurst parameters. Our main results are stated in Section 4. The proofs and some intermediate

results are deferred into a Supplementary Material.
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2 The max-stable Brown-Resnick random fields

2.1 Definition of the max-stable Brown-Resnick random fields

This paper concerns the class of max-stable random fields known as Brown-Resnick random fields. This

class of random fields is based on Gaussian random fields with stationary increments and was introduced in

Kabluchko et al. (2009). Recall that a random process (W (x))x∈Rd is said to have stationary increments

if the law of (W (x+ x0)−W (x0))x∈Rd does not depend on the choice of x0 ∈ Rd. A prominent example

is the isotropic fractional Brownian field where W (0) = 0 a.s. and semi-variogram given by γ (x) =

var (W (x)) /2 = σ2 ‖x‖α /2 for some α ∈ (0, 2) and σ2 > 0, where ‖x‖ is the Euclidean norm of x. The

parameter σ is called the scale parameter while α is called the range parameter (H = α/2 is also known

as the Hurst parameter and relates to the Hölder continuity exponent of W ). It is noteworthy that W

is a self-similar random field with linear stationary increments as presented in Definition 3.3.1 of Cohen

and Istas (2013) and it differs from the fractional Brownian sheet which is a self-similar random field with

stationary rectangular increments (see e.g. Section 3.3.2 of the same book). Functional limit theorems

for generalized variations of this fractional Brownian sheet have been studied in Pakkanen and Reveillac

(2016), but these theorems cannot be extended to the isotropic fractional Brownian field whose rectangular

increments are not stationary.

In this paper we consider spatial max-stable random fields (d = 2) and assume that the random field

Y introduced in the spectral representation (1) has the following form

Y (x) = exp (W (x)− γ (x)) , x ∈ R2.

With this choice, η is a stationary random field while W is not stationary but has (linear) stationary

increments (see Kabluchko et al. (2009)).

2.2 Pairwise joint distributions and asymptotic score contributions

Let us consider two sites x1, x2 ∈ R2 and denote by d = ‖x2 − x1‖ the distance between these sites. Let

z1, z2 ∈ R+, a = σdα/2, u = log(z2/z1)/a and v (u) = a/2 + u. It is well known that the joint probability

distribution function of (η (x1) , η (x2)) is given by (see e.g. Huser and Davison (2013))

Fx1,x2 (z1, z2) = P [η (x1) ≤ z1, η (x2) ≤ z2] = exp (−Vx1,x2 (z1, z2)) ,

where

Vx1,x2 (z1, z2) =
1

z1
Φ (v (u)) +

1

z2
Φ (v (−u)) , z1, z2 > 0.

7



Here Φ denotes the cumulative distribution function of the standard Gaussian distribution. The term Vx1,x2

is referred to as the pairwise exponent function. Let us now consider the “normalized” (linear) increments

of the logarithm of the Brown-Resnick random field

U = d−α/2σ−1 log (η (x2) /η (x1)) .

The following proposition provides the conditional and marginal distributions of U and allows us to deduce

that it has asymptotically a standard Gaussian distribution as the distance d tends to 0. Such a result

generalizes Proposition 3 in Robert (2020).

Proposition 1 The conditional distribution of U given η (x1) = η > 0 is characterized by

P [U ≤ u| η (x1) = η] = exp

(
−1

η

[
Vx1,x2(1, eσd

α/2u)− 1
])

Φ (v (u)) , u ∈ R,

and its marginal distribution by

P [U ≤ u] =
Φ (v (u))

Vx1,x2(1, eσd
α/2u)

, u ∈ R.

It follows that

lim
d→0

P [U ≤ u] = Φ (u) , u ∈ R.

The fact that the asymptotic distribution of U (as d tends to 0) is a standard Gaussian distribution is

not a surprise since the probability that x1 and x2 belong to the same cell of the canonical tessellation of

the max-stable random field tends to 1. Indeed, in a common cell, the values of the max-stable random

field are generated by the same isotropic fractional Brownian random field. It is natural to first study

the asymptotic behaviors of the increment sums for an isotropic fractional Brownian random field before

considering a Brown-Resnick random field (see Section 4.2).

The distribution of (η (x1) , η (x2)) is absolutely continuous with respect to the Lebesgue measure on

(R+)2. Its density function satisfies

fx1,x2 (z1, z2) =
∂

∂z1∂z2
Fx1,x2 (z1, z2) , z1, z2 ∈ R+,

and will be used for the contribution of the pair (η (x1) , η (x2)) to the pairwise CL function. For any

α ∈ (0, 2), σ2 > 0 and z1, z2 ∈ R+, this joint density function is a differentiable function with respect to

(α, σ). The following proposition provides the asymptotic contributions of the pair to the pairwise score

functions.

Proposition 2 Let u ∈ R be fixed. Let x1, x2 ∈ R2 and z1, z2 ∈ R+ be such that d−α/2σ−1 log (z2/z1) = u,
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where d = ‖x2 − x1‖ > 0. Then

lim
d→0

∂

∂σ
log fx1,x2 (z1, z2) =

1

σ

(
u2 − 1

)
,

lim
d→0

1

log d

∂

∂α
log fx1,x2 (z1, z2) =

1

2

(
u2 − 1

)
.

The asymptotic score contributions of a pair are therefore proportional to
(
u2 − 1

)
. Further, u will be

replaced by the normalized increment of log (η) which has asymptotically a standard Gaussian distribution

as stated in Proposition 1. This fact ensures that the asymptotic score contributions are asymptotically

unbiased.

2.3 Triplewise joint distributions and asymptotic score contributions

Let us now consider three sites x1, x2, x3 ∈ R2 and denote by d1,2 = ‖x2 − x1‖, d1,3 = ‖x3 − x1‖, d2,3 =

‖x3 − x2‖ the distances between two different sites. Let z1, z2, z3 ∈ R+ and, for i, j = 1, 2, 3 such that

i 6= j, let ai,j = σd
α/2
i,j , ui,j = log(zj/zi)/ai,j and vi,j (u) = ai,j/2 + ui,j . The joint probability distribution

function of (η (x1) , η (x2) , η (x3)) is given by (see e.g. Huser and Davison (2013))

Fx1,x2,x3 (z1, z2, z3) = P [η (x1) ≤ z1, η (x2) ≤ z2, η (x3) ≤ z3] = exp (−Vx1,x2,x3 (z1, z2, z3)) ,

where

Vx1,x2,x3 (z1, z2, z3) =
1

z1
Φ2

((
v1,2 (u1,2)

v1,3 (u1,3)

)
;

(
1 R1

R1 1

))
+

1

z2
Φ2

((
v1,2 (−u1,2)
v2,3 (u2,3)

)
;

(
1 R2

R2 1

))

+
1

z3
Φ2

((
v1,3 (−u1,3)
v2,3 (−u2,3)

)
;

(
1 R3

R3 1

))
(2)

with

R1 =
dα1,2 + dα1,3 − dα2,3

2 (d1,2d1,3)
α/2

, R2 =
dα1,2 + dα2,3 − dα1,3

2 (d1,2d2,3)
α/2

, R3 =
dα1,3 + dα2,3 − dα1,2

2 (d1,3d2,3)
α/2

.

Here Φ2 (•,Σ) denotes the bivariate cumulative distribution function of the centered Gaussian distribution

with covariance matrix Σ. As for the pairs, let us also consider the “normalized” (linear) increments of the

logarithm of the Brown-Resnick random field

U1,2 = d
−α/2
1,2 σ−1 log (η (x2) /η (x1)) , U1,3 = d

−α/2
1,3 σ−1 log (η (x3) /η (x1)) .

The following proposition provides the conditional and marginal distributions of the vector (U1,2, U1,3) and

allows us to deduce that it has asymptotically a bivariate Gaussian distribution as the distances d1,2 and

d1,3 tend to 0 proportionally.

9



Proposition 3 The conditional distribution of (U1,2, U1,3) given η (x1) = η > 0 is characterized by

P [U1,2 ≤ u2, U1,3 ≤ u3|η (x1) = η] = exp

(
−1

η

[
Vx1,x2,x3(1, eσd

α/2
12 u2 , eσd

α/2
13 u3)− 1

])
× Φ2

((
v1,2 (u2)

v1,3 (u3)

)
;

(
1 R1

R1 1

))
, u1, u2 ∈ R,

and its marginal distribution by

P [U1,2 ≤ u2, U1,3 ≤ u3] =

Φ2

((
v1,2 (u2)

v1,3 (u3)

)
;

(
1 R1

R1 1

))
Vx1,x2,x3(1, eσd

α/2
12 u2 , eσd

α/2
13 u3)

, u1, u2 ∈ R.

It follows that, if ‖x2 − x1‖ = δd1,2, ‖x3 − x1‖ = δd1,3, ‖x3 − x2‖ = δd2,3, where di,j, i 6= j, is fixed, then

lim
δ→0

P [U1,2 ≤ u2, U1,3 ≤ u3] = Φ2

((
u2

u3

)
;

(
1 R1

R1 1

))
, u1, u2 ∈ R.

The comment concerning the asymptotic distribution of U also holds for (U1,2, U1,3). The probability

that x1, x2 and x3 belong to the same cell of the canonical tessellation of the max-stable random field tends

to 1 as δ tends to 0. Therefore the vector (U1,2, U1,3) tends to have the same distribution as the vector of

normalized linear increments of an isotropic fractional Brownian random field.

The distribution of (η (x1) , η (x2) , η (x3)) is absolutely continuous with respect to the Lebesgue measure

on (R+)3. Its density function satisfies

fx1,x2,x3 (z1, z2, z3) =
∂

∂z1∂z2∂z3
Fx1,x2,x3 (z1, z2, z3) , z1, z2, z3 ∈ R+,

and will be used for the contribution of the triple (η (x1) , η (x2) , η (x3)) to the triplewise CL function.

For any α ∈ (0, 2), σ2 > 0 and z1, z2, z3 ∈ R+, this joint density function is a differentiable function

with respect to (α, σ). The following proposition provides the asymptotic contributions of the triple

(η (x1) , η (x2) , η (x3)) to the triplewise score functions.

Proposition 4 Let u2, u3 ∈ R be fixed. Let x1, x2, x3 ∈ R2 and z1, z2, z3 ∈ R+ be such that

δ−α/2d
−α/2
1,2 σ−1 log (z2/z1) = u2 and δ−α/2d

−α/2
1,3 σ−1 log (z3/z1) = u3,
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where δd1,2 = ‖x2 − x1‖, δd1,3 = ‖x3 − x1‖, δd2,3 = ‖x3 − x2‖. Then

lim
δ→0

∂

∂σ
log fx1,x2,x3 (z1, z2, z3) =

1

σ

( u2 u3

)( 1 R1

R1 1

)−1(
u2

u3

)
− 2

 ,

lim
δ→0

1

log δ

∂

∂α
log fx1,x2,x3 (z1, z2, z3) =

1

2

( u2 u3

)( 1 R1

R1 1

)−1(
u2

u3

)
− 2

 .

The asymptotic contributions of a triple are therefore proportional to a quadratic function of (u2, u3).

Further, u2 and u3 will be replaced by normalized increments of log (η) over a triangle of the Delaunay

triangulation (see Section 3.1) which have asymptotically a bivariate standard Gaussian distribution with

correlation coefficient R1, as stated in Proposition 3. We can also conclude that the asymptotic score

contributions are asymptotically unbiased.

If we let δ−α/2d
−α/2
1,2 σ−1 log (z1/z2) = ũ1 and δ−α/2d

−α/2
2,3 σ−1 log (z3/z2) = ũ3 with fixed ũ1, ũ3 ∈ R, we

also get

lim
δ→0

∂

∂σ
log fx1,x2,x3 (z1, z2, z3) =

1

σ

( ũ1 ũ3

)( 1 R2

R2 1

)−1(
ũ1

ũ3

)
− 2

 .

In particular, an invariance property with respect to the choice of the order of the points x1, x2 and x3

holds for the triplewise score functions. However, it will be necessary to order these points later.

3 The weighted CL approach

3.1 The randomized sampling scheme

We assume that the data-sites are given by a realization of a homogeneous Poisson point process of intensity

N in R2, denoted by PN , which is independent of the Brown-Resnick random field. Let us denote by

C = (−1/2, 1/2]2 the square where we will consider the sites for the observations of the max-stable random

field.

The Delaunay graph Del(PN ) based on PN is our connection scheme and is defined as the unique

triangulation with vertices in PN such that the circumball of each triangle contains no point of PN in

its interior. With a slight abuse of notation, we identify Del(PN ) to its skeleton. When x1, x2 ∈ PN are

Delaunay neighbors, we write x1 ∼ x2 in Del(PN ).

For a Borel subset B in R2, let EN,B be the set of couples (x1, x2) such that the following conditions
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hold:

x1 ∼ x2 in Del(PN ), x1 ∈ B, and x1 � x2,

where � denotes the lexicographic order. When B = C, we only write EN = EN,C.

For a Borel subset B in R2, let DTN,B be the set of triples (x1, x2, x3) satisfying the following properties

∆(x1, x2, x3) ∈ Del(PN ), x1 ∈ B, and x1 � x2 � x3,

where ∆(x1, x2, x3) is the convex hull of (x1, x2, x3). When B = C, we only write DTN = DTN,C.

3.2 The weighted CL objective functions and the CL estimators

The (tapered) pairwise CL objective function is defined as

`2,N (σ, α) =
∑

(x1,x2)∈EN

log fx1,x2 (η (x1) , η (x2)) ,

while the (tapered) triplewise CL objective function is defined as

`3,N (σ, α) =
∑

(x1,x2,x3)∈DTN

log fx1,x2,x3 (η (x1) , η (x2) , η (x3)) .

Thereby, in the CL objective functions, we exclude pairs that are not edges of the Delaunay triangulation

or triples that are not vertices of triangles of this triangulation. Restricting the CL objective functions to

the most informative pairs and triples for the estimation of the parameters does not modify the approach

that follows, but allows us to simplify the presentation and the proofs.

From Section 4.4 of Dombry et al. (2018), we know that there exist families of positive functions

(lx1,x2)x1,x2∈R2 and (lx1,x2,x3)x1,x2,x3∈R2 with lx1,x2 : R2 → R and lx1,x2,x3 : R3 → R such that the

following Lipschitz conditions hold: for any σ1, σ2 > 0 and α1, α2 ∈ (0, 2)∣∣∣∣log
fx1,x2 (z1, z2; (σ2, α2))

fx1,x2 (z1, z2; (σ1, α1))

∣∣∣∣ ≤ lx1,x2 (z1, z2) (|σ2 − σ1|+ |α2 − α1|)

and ∣∣∣∣log
fx1,x2,x3 (z1, z2, z3; (σ2, α2))

fx1,x2,x3 (z1, z2, z3; (σ1, α1))

∣∣∣∣ ≤ lx1,x2,x3 (z1, z2,z3) (|σ2 − σ1|+ |α2 − α1|) .

Let us denote by (σ0, α0) the true parameters. We assume that σ0 belongs to a compact set Sσ of R+

and that α0 belongs to a compact set Sα of (0, 2). We can now define the MCLEs of σ and α.

When α0 is assumed to be known, the pairwise and triplewise maximum (tapered) CL estimators of

12



σ0, σ̂j,N , are respectively defined as a solution of the maximization problems

max
σ∈Sσ

`j,N (σ, α0) , j = 2, 3.

When σ0 is assumed to be known, the pairwise and triplewise maximum (tapered) CL estimators of α0,

α̂j,N , are respectively defined as a solution of the maximization problems

max
α∈Sα

`j,N (σ0, α) , j = 2, 3.

Note that the solutions of these maximization problems become unique as N →∞. This can be viewed from

the first-order optimality conditions and the asymptotic approximations of the score functions obtained in

Propositions 2 and 4.

4 Main results

Our aim is to characterize the asymptotic distributions of the MCLEs. We provide intermediate results

for different random fields in order to understand how we obtained the different families of asymptotic

distributions of our estimators. We first provide some definitions and notations related to the Poisson-

Delaunay triangulation. Then we consider sums of square increments of an isotropic fractional Brownian

field on the edges of the Delaunay triangles and provide Central Limit Theorems using Malliavin calculus.

We only consider the case α ∈ (0, 1) for which the asymptotic distributions are Gaussian. This is not a

very restrictive constraint since almost all empirical studies that use the spatial Brown-Resnick random

field obtain values for α in this interval (see e.g. Davison et al. (2012), Engelke et al. (2014), Einmahl

et al. (2015) or de Fondeville and Davison (2018)). Third we consider sums of square increments of the

pointwise maximum of two independent isotropic fractional Brownian fields and show that the asymptotic

behaviors of the sums now depend on the local time at the level 0 of the difference between the two

fractional Brownian fields. Fourth we generalize these results to the max-stable Brown-Resnick random field

and, using approximation of the pairwise and triplewise CL objective functions, we derive the asymptotic

properties of the MCLEs.

4.1 Definitions and notations

A classical object in Stochastic Geometry is the typical cell. To define it, let us consider a Delaunay

triangulation Del(P1) based on a homogeneous Poisson point process of intensity 1. With each cell C ∈
Del(P1), we associate the circumcenter z(C) of C. Now, let B be a Borel subset in R2 with area a(B) ∈
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(0,∞). The cell intensity β2 of Del(P1) is defined as the mean number of cells per unit area, i.e.

β2 =
1

a(B)
E [|{C ∈ Del(P1) : z(C) ∈ B}|] .

It is known that β2 = 2, see e.g. Theorem 10.2.9. in Schneider and Weil (2008). Then, we define the typical

cell as a random triangle C with distribution given as follows: for any positive measurable and translation

invariant function g : K2 → R, we have

E [g(C)] =
1

β2a(B)
E

 ∑
C∈Del(P1):z(C)∈B

g(C)

 ,
where K2 denotes the set of convex compact subsets in R2, endowed with the Fell topology (see Section

12.2 in Schneider and Weil (2008) for the definition). The distribution of C has the following integral

representation (see e.g. Theorem 10.4.4. in Schneider and Weil (2008)):

E [g(C)] =
1

6

∫ ∞
0

∫
(S1)3

r3e−πr
2
a(∆(u1, u2, u3))g(∆(ru1, ru2, ru3))σ(du1)σ(du2)σ(du3)dr, (3)

where S1 is the unit sphere of R2 and σ is the spherical Lebesgue measure on S1 with normalization σ
(
S1
)

=

2π. It means that C is equal in distribution to R∆(U1, U2, U3), where R and (U1, U2, U3) are independent

with probability density functions given respectively by 2π2r3e−πr
2

and a(∆(u1, u2, u3))/(12π2).

In a similar way, we can define the notion of typical edge. The edge intensity β1 of Del(P1) is defined

as the mean number of edges per unit area and is equal to β1 = 3 (see e.g. Theorem 10.2.9. in Schneider

and Weil (2008)). The distribution of the length of the typical edge is the same as the distribution of

D = R||U1 − U2||. Its probability density function fD satisfies the following equality

P [D ≤ `] =

∫ `

0
fD(d)dd =

π

3

∫ ∞
0

∫
(S1)2

r3e−πr
2
a(∆(u1, u2, e1))I [r ‖u1 − u2‖ ≤ `]σ(du1)σ(du2)dr, (4)

where e1 = (1, 0) and ` > 0. Following Eq. (3), a typical couple of (distinct) Delaunay edges with a common

vertex can be defined as a 3-tuple of random variables (D1, D2,Θ), where D1, D2 ≥ 0 and Θ ∈ [−π
2 ,

π
2 ),

with distribution given by

P[(D1, D2,Θ) ∈ B] =
1

6

∫ ∞
0

∫
(S1)3

r3e−πr
2
a(∆(u1, u2, u3))

× I[(r||u3 − u2||, r||u2 − u1||, arcsin (cos(ζu1,u2/2))) ∈ B]σ(du1)σ(du2)σ(du3)dr,

where ζu1,u2 is the measure of the angle (u1, u2) and where B is any Borel subset in R2
+ × [−π

2 ,
π
2 ). The

random variables D1, D2 (resp. Θ) can be interpreted as the lengths of the two typical edges (resp.

as the angle between the edges). In particular, the length of a typical edge is equal in distribution to

D = R||U2 − U1|| with distribution given in Eq. (4).
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4.2 Asymptotic distributions of squared increment sums for an isotropic fractional

Brownian field

Let (W (x))x∈R2 be an isotropic fractional Brownian field where W (0) = 0 a.s. and var (W (x)) = σ2 ‖x‖α

for some α ∈ (0, 1) and σ2 > 0. For two sites x1, x2 ∈ R2, let us define the normalized increment between

x1 and x2 as

U (W )
x1,x2 = σ−1d

−α/2
1,2 (W (x2)−W (x1))

with d1,2 = ‖x2 − x1‖.

The (normalized) squared increment sum for the edges of the Delaunay triangulation is given by

V
(W )
2,N =

1√
|EN |

∑
(x1,x2)∈EN

(
(U (W )

x1,x2)2 − 1
)
,

while the (normalized) squared increment sum for the pairs of edges of Delaunay triangles is defined as

V
(W )
3,N =

1√
|DTN |

∑
(x1,x2,x3)∈DTN

( U
(W )
x1,x2 U

(W )
x1,x3

)( 1 Rx1,x2,x3

Rx1,x2,x3 1

)−1(
U

(W )
x1,x2

U
(W )
x1,x3

)
− 2

 ,

where

Rx1,x2,x3 = corr(U (W )
x1,x2 , U

(W )
x1,x3) =

dα1,2 + dα1,3 − dα2,3
2 (d1,2d1,3)

α/2
, (5)

with d1,3 = ‖x3 − x1‖ > 0 and d2,3 = ‖x3 − x2‖ > 0. Let

Ũ (W )
x1,x2,x3 = (1−R2

x1,x2,x3)−1/2
(
U (W )
x1,x2 −Rx1,x2,x3U

(W )
x1,x3

)
and Ũ (W )

x1,x3 = U (W )
x1,x3 .

Note that Ũ
(W )
x1,x2,x3 is a normalized increment based on the three points x1, x2, x3 (see e.g. Chan and Wood

(2002)) and that

corr(Ũ (W )
x1,x2,x3 , Ũ

(W )
x1,x3) = 0.

The sum V
(W )
3,N may be rewritten as

V
(W )
3,N =

1√
|DTN |

∑
(x1,x2,x3)∈DTN

(
[(Ũ (W )

x1,x2,x3)2 − 1] + [(Ũ (W )
x1,x3)2 − 1]

)
.

The following theorem states that the asymptotic distributions of V
(W )
2,N and V

(W )
3,N are Gaussian. Their

asymptotic variances are known, but quite intricate. We provide their integral representations in Section

1 in the Supplementary Material.
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Theorem 1 Let α ∈ (0, 1). Then there exist constants σ2V2 > 0 and σ2V3 > 0 such that, as N →∞,

V
(W )
2,N

D→ N
(
0, σ2V2

)
, V

(W )
3,N

D→ N
(
0, σ2V3

)
.

We note that the rates of convergences of both sums are the same as in Theorem 3.2 of Chan and Wood

(2000) or in Theorem 1 of Zhu and Stein (2002) where statistics based on square increments on regular

grids have been considered.

4.3 Asymptotic distributions of squared increment sums for the (pointwise) maximum

of two independent fractional Brownian fields

Let
(
W (1) (x)

)
x∈R2 and

(
W (2) (x)

)
x∈R2 be two independent isotropic fractional Brownian fields, where

W (1) (0) = W (2) (0) = 0 a.s. and var
(
W (1) (x)

)
= var

(
W (2) (x)

)
= σ2 ‖x‖α for some α ∈ (0, 1) and σ2 > 0.

We denote by W∨ the pointwise maximum of the two isotropic fractional Brownian fields, i.e.

W∨(x) = W (1)(x) ∨W (2)(x), x ∈ R2.

For two distinct sites x1, x2 ∈ R2, let

U (W∨)
x1,x2 = σ−1d

−α/2
1,2 (W∨(x2)−W∨(x1)) .

Then we define

V
(W∨)
2,N =

1√
|EN |

∑
(x1,x2)∈EN

(
(U (W∨)

x1,x2 )2 − 1
)

V
(W∨)
3,N =

1√
|DTN |

∑
(x1,x2,x3)∈DTN

( U
(W∨)
x1,x2 U

(W∨)
x1,x3

)( 1 Rx1,x2,x3

Rx1,x2,x3 1

)−1(
U

(W∨)
x1,x2

U
(W∨)
x1,x3

)
− 2

 ,

where Rx1,x2,x3 is given in Eq. (5) .

The main result of this section concerns the asymptotic behaviors of V
(W∨)
2,N and V

(W∨)
3,N . To state it, let

us denote the difference between both fractional Brownian fields as W (2\1) (x) = W (2) (x) −W (1) (x) for

any x ∈ R2. Similarly to Section 5.1 in Robert (2020), we observe that, for any real measurable function

f : R→ R and for any (x1, x2) ∈ EN ,

f(U (W∨)
x1,x2 ) = f(U (1)

x1,x2)I[W (2\1)(x1) < 0] + f(U (2)
x1,x2)I[W (2\1)(x1) > 0]

+ Ψf

(
U (1)
x1,x2 , U

(2)
x1,x2 ,W

(2\1)(x1)/(σd
α/2
1,2 )

)
, (6)
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where

U (1)
x1,x2 =

1

σd
α/2
1,2

(
W (1)(x2)−W (1)(x1)

)
, U (2)

x1,x2 =
1

σd
α/2
1,2

(
W (2)(x2)−W (2)(x1)

)
and

Ψf (x, y, w) = (f(y + w)− f(x))I [x− y ≤ w ≤ 0] + (f(x− w)− f(y))I [0 ≤ w ≤ x− y] .

In particular, taking f(u) = H2(u) = u2− 1, for all u ∈ R, and Ψ = ΨH2 , the above decomposition implies

that

V
(W∨)
2,N = V

(1)
2,N + V

(2)
2,N + V

(2/1)
2,N , (7)

where

V
(1)
2,N =

1√
|EN |

∑
(x1,x2)∈EN ,W (2\1)(x1)<0

(
(U (1)

x1,x2)2 − 1
)

V
(2)
2,N =

1√
|EN |

∑
(x1,x2)∈EN ,W (2\1)(x1)>0

(
(U (2)

x1,x2)2 − 1
)

V
(2/1)
2,N =

1√
|EN |

∑
(x1,x2)∈EN

Ψ(U (1)
x1,x2 , U

(2)
x1,x2 ,W

(2\1) (x1) /(σd
α/2
1,2 )).

To obtain a similar decomposition for the triples, let us denote, for −1 < R < 1, by Ω the following function

Ω(u1, v1, u2, v2, w1, w2;R) =
1

1−R2
[ΨH2 (u1, v1, w1) + ΨH2 (u2, v2, w2)]

− 2
R

1−R2
ΨI (u1, v1, w1) ΨI (u2, v2, w2)

−2
R

1−R2
[u1ΨI (u2, v2, w2) + u2ΨI (u1, v1, w1)] I[w1< 0]

−2
R

1−R2
[v1ΨI (u2, v2, w2) + v2ΨI (u1, v1, w1)] I[w1> 0]

(8)

with I (u) = u for all u ∈ R. Then we have (see Section 3.3.2 in the Supplementary Material)

V
(W∨)
3,N = V

(1)
3,N + V

(2)
3,N + V

(2/1)
3,N , (9)

where

V
(1)
3,N =

1√
|DTN |

∑
(x1,x2,x3)∈DTN ,
W (2\1)(x1)<0

( U
(1)
x1,x2 U

(1)
x1,x3

)( 1 Rx1,x2,x3

Rx1,x2,x3 1

)−1(
U

(1)
x1,x2

U
(1)
x1,x3

)
− 2



V
(2)
3,N =

1√
|DTN |

∑
(x1,x2,x3)∈DTN ,
W (2\1)(x1)>0

( U
(2)
x1,x2 U

(2)
x1,x3

)( 1 Rx1,x2,x3

Rx1,x2,x3 1

)−1(
U

(2)
x1,x2

U
(2)
x1,x3

)
− 2



V
(2/1)
3,N =

1√
|DTN |

∑
(x1,x2,x3)∈DTN

Ω

(
U (1)
x1,x2 , U

(1)
x1,x3 , U

(2)
x1,x2 , U

(2)
x1,x3 ,

W (2\1)(x1)

σd
α/2
1,2

,
W (2\1)(x1)

σd
α/2
1,3

;Rx1,x2,x3

)
.
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An adaptation of the proof of Theorem 1 shows that, for α ∈ (0, 1), as N →∞,

V
(1)
2,N + V

(2)
2,N

D→ N
(
0, σ2V2

)
(10)

and

V
(1)
3,N + V

(2)
3,N

D→ N
(
0, σ2V3

)
. (11)

To obtain the asymptotic behaviors of V
(W∨)
2,N and V

(W∨)
3,N , the asymptotic behaviors of V

(2/1)
2,N and V

(2/1)
3,N

are investigated. This requires to introduce the notion of local time of W (2\1).

The local time of W (2\1). Let ν(2\1) be the occupation measure of W (2\1) over C defined by

ν(2\1) (A) =

∫
C
I
[
W (2\1) (x) ∈ A

]
dx,

for any Borel measurable set A ⊂ R. Observe that, for any s, t ∈ [0, 1]2,

∆(s, t) := E
[
(W (2\1) (s)−W (2\1) (t))2

]
= 2σ2 ‖s− t‖α .

Because
∫
C(∆(s, t))−1/2ds is finite for all t ∈ C, it follows from Section 22 in Geman and Horowitz (1980)

that the occupation measure ν(2\1) admits a Lebesgue density, referred to as the local time, that we denote

by

LW (2\1) (`) :=
dν(2\1)

d`
(`) .

An immediate consequence of the existence of the local time is the occupation time formula, which states

that ∫
C
g(W (2\1) (x))dx =

∫
R
g (`)LW (2\1) (`) d`

for any Borel function g on R. Adapting the proof of Lemma 1.1 in Jaramillo et al. (2021), we can easily

show that, for any ` ∈ R,

LW (2\1) (`) = lim
ε→0

∫
C

1√
2πε

exp

(
− 1

2ε

(
W (2\1) (x)− `

)2)
dx

or

LW (2\1) (`) =
1

2π
lim
M→∞

∫
−[M,M ]

∫
R
eiξ(W

(2\1)(x)−`)dxdξ, (12)

where the limits hold in L2.

The asymptotic behaviors of V
(W∨)
2,N and V

(W∨)
3,N . Let F2 be the function defined, for any z ∈ R, by

F2(z) =

∫
R2×R+

ΨH2(x, y, z/dα/2)
1

2π
e−(x

2+y2)/2fD (d) dxdydd,
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where fD is the density function of the length of the typical edge defined in Eq. (4). Let us also define

F3(z) =

∫
R4×(R+)3

Ω(x1, y1, x2, y2, z/d
α/2
1 , z/d

α/2
3 ;R(d1, d2, d3))

× ϕ2 (x1, y1;R(d1, d2, d3))ϕ2 (x2, y2;R(d1, d2, d3))

× fD1,D2,D3 (d1, d2, d3) dx1dy1dx2dy2dd1dd2dd3,

where

ϕ2 (x, y;R) =
1

2π

1

(1−R2)
exp

−1

2

(
x y

)( 1 R

R 1

)−1(
x

y

) ,

R(d1, d2, d3) =
dα1 + dα3 − dα2
2 (d1d3)

α/2
,

and where fD1,D2,D3 is the density function of the edge lengths of the typical Delaunay triangle C.

Moreover let

cV2 =

∫
R
F2(z)dz and cV3 =

∫
R
F3(z)dz.

The following proposition provides the asymptotic behaviors of V
(2/1)
2,N and V

(2/1)
3,N .

Proposition 5 Let α ∈ (0, 1). Then, as N →∞,

√
3

3
N−(2−α)/4V

(2/1)
2,N

P→ cV2LW (2\1)(0)
√

2

2
N−(2−α)/4V

(2/1)
3,N

P→ cV3LW (2\1)(0).

Note that the factors
√

3/3 and
√

2/2 come from the facts that |EN |/N
a.s.→ 3 and |DTN |/N

a.s.→ 2 as

N →∞, respectively. As a consequence of the above proposition, we obtain the following result.

Theorem 2 Let α ∈ (0, 1). Then, as N →∞,

√
3

3
N−(2−α)/4V

(W∨)
2,N

P→ cV2LW (2\1)(0)
√

2

2
N−(2−α)/4V

(W∨)
3,N

P→ cV3LW (2\1)(0).

An important observation is that the rates of convergence of V
(W∨)
2,N and V

(W∨)
3,N differ from those of V

(W )
2,N

and V
(W )
3,N . The sums of square increments in V

(2/1)
2,N and V

(2/1)
3,N are actually the dominant terms. These
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increments depend on both isotropic fractional Brownian fields and they reveal the local time of W (2\1) at

level 0 in the limits. It is also noteworthy that the convergence is now in probability.

4.4 Asymptotic distributions of squared increment sums for the max-stable Brown-

Resnick random field

Let (η (x))x∈R2 be a max-stable Brown-Resnick random field such that η(x) =
∨
i≥1 UiYi(x) for any x ∈ R2,

where (Ui)i≥1 is a decreasing enumeration of the points of a Poisson point process on (0,+∞) with intensity

measure u−2du, and (Yi)i≥1 are i.i.d. copies of

Y (x) = exp (W (x)− γ (x)) , x ∈ R2,

where (W (x))x∈R2 is an isotropic fractional Brownian field satisfying W (0) = 0 a.s. and γ (x) =

var (W (x)) /2 = σ2 ‖x‖α /2 for some α ∈ (0, 1) and σ2 > 0.

Let us define, for k 6= j ≥ 1,

Zk\j (x) = Zk (x)− Zj (x) , x ∈ R2,

where

Zi (x) = logUi + log Yi(x), x ∈ R2.

In the same spirit as Dombry and Kabluchko (2018), we build a random tessellation of C, (Ck,j)k 6=j≥1
where

Ck,j =

x ∈ C :Zk (x)
∧
Zj (x) >

∨
i 6=j,k

Zi (x)

 . (13)

If Ck,j 6= ∅, we define for any Borel subset A of R the occupation measure of Zk\j over Ck,j by

ν(k\j) (A) =

∫
Ck,j

I
[
Zk\j (x)∈ A

]
dx.

The associated local time at level 0 is given by LZk\j (0) := dν(k\j)

d` (0). If Ck,j = ∅, we let LZk\j (0) := 0.

Let U
(η)
x1,x2 be the (normalized) increment of log (η) defined as

U (η)
x1,x2 =

1

σ ‖x2 − x1‖α/2
log

(
η(x2)

η(x1)

)
.
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The square increment sums are given respectively by

V
(η)
2,N =

1√
|EN |

∑
(x1,x2)∈EN

(
(U (η)

x1,x2)2 − 1
)

V
(η)
3,N =

1√
|DTN |

∑
(x1,x2,x3)∈DTN

( U
(η)
x1,x2 U

(η)
x1,x3

)( 1 Rx1,x2,x3

Rx1,x2,x3 1

)−1(
U

(η)
x1,x2

U
(η)
x1,x3

)
− 2

 ,

where Rx1,x2,x3 is given in Eq. (5).

Theorem 3 Let α ∈ (0, 1). Then, as N →∞,

√
3

3
N−(2−α)/4V

(η)
2,N

P→ cV2
∑
j≥1

∑
k>j

LZk\j (0)

√
2

2
N−(2−α)/4V

(η)
3,N

P→ cV3
∑
j≥1

∑
k>j

LZk\j (0) .

The results in Theorem 3 are quite similar with those in Theorem 2. It can be noted that there is an

a.s. finite number of local times LZk\j (0), j ≥ 1 and k > j, which are positive. This is related to the fact

that there is an a.s. finite number of non-empty cells of the canonical tessellation in C.

Using the Slivnyak-Mecke formula (see e.g. Theorem 3.2.5 in Schneider-Weil (2008)) and the same

arguments as in the proof of Proposition 3 in Robert (2020), we can state that

lim
N→∞

Nα/4E

 1

N

∑
(x1,x2)∈EN

(
(U (η)

x1,x2)2 − 1
) = 4σE

[
Dα/2

]
ψ

with

ψ =

∫ ∞
0

uϕ(u)
[
1/2− Φ̄ (u)− uΦ̄ (u) Φ (u) /ϕ(u)

]
du ' −0.094.

As a consequence we deduce that cV2 is negative.

4.5 Asymptotic properties of the MCLEs

We are now able to present the asymptotic properties of σ̂2j,N and α̂j,N for j = 2, 3. Let us recall that the

sums of the contributions of the observations to the composite likelihood are proportional to the square

increment statistics (see Propositions 2 and 4). Moreover the asymptotic behaviors of these statistics are

characterized in Theorem 3.
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Theorem 4 Assume that σ0 belongs to the interior of a compact set of R+, and that α0 belongs to the

interior of a compact set of (0, 1). Then, as N →∞,

√
3

3

√
|EN |N−(2−α0)/4

(
σ̂22,N − σ20

) P→ cV2σ
2
0

∑
j≥1

∑
k>j

LZk\j (0)

√
3

6

√
|EN |N−(2−α0)/4 log(N) (α̂2,N − α0)

P→ −cV2
∑
j≥1

∑
k>j

LZk\j (0)

and
√

2

2

√
|EN |N−(2−α0)/4

(
σ̂23,N − σ20

) P→ cV3σ
2
0

∑
j≥1

∑
k>j

LZk\j (0)

√
2

4

√
|EN |N−(2−α0)/4 log(N) (α̂3,N − α0)

P→ −cV3
∑
j≥1

∑
k>j

LZk\j (0) .

Several important points have to be highlighted. First the MCLEs of σ20 and α0 (when the other param-

eter is known) are consistent in our infill asymptotic setup. They have rates of convergence proportional

to Nα0/4 for σ̂22,N and log (N)Nα0/4 for α̂2,N that differ from the expected rates of convergence N1/2 and

log (N)N1/2 as in Zhu and Stein (2002) for the isotropic fractional Brownian field. Second the type of con-

vergence is in probability. The random variables appearing in the limits in Theorem 4 are proportional to

a sum of local times. However these local times have unknown distributions and they cannot be estimated

from the data since the underlying random fields (Yi)i≥1 and the point process (Ui)i≥1 are not observed.

In particular, if the spatial data are only observed for a single date, the Gaussian approximation for the

MCLEs given in Padoan et al. (2010) (when several independent replications over time of the spatial data

are available) should not be used.

The problem of joint parameter estimation of
(
σ20, α0

)
is left for future work, but it is expected that

the respective rates of convergence will be modified into Nα0/4/ log (N) and Nα0/4 as suggested by Brouste

and Fukasawa (2018) in the case of a fractional Gaussian process (d = 1) observed on a regular grid.
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