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Abstract. We establish Poisson and compound Poisson approximations for stabilizing statistics of β-mixing

point processes and give explicit rates of convergence. Our findings are based on a general estimate of the
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concrete bounds for compound Poisson process approximation in a Wasserstein distance and (iii) illustrates
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1. Introduction

One of the most active fields in Stochastic Geometry concerns extremes of geometric features that are based
on point processes. To modelize this, let z : (Rd)k → R be a center function and let g : (Rd)k ×N→ {0, 1},
k ≥ 1, be measurable and translation-invariant, where N denotes the set of locally finite couting measures.
Given a point process ξ in Rd, a natural quantity is:

Ξ =
∑
x∈ξk6=

g(x, ξ)δz(x).

The point process Ξ often arises to deal with extremes in Stochastic Geometry. For example, if k = 1,
z(x) = x, g(x, ξ) = 1{d(x, ξ \ {x}) > vn}1{x ∈ Wn}, where d(x, ξ \ {x}) denotes the distance between x
and ξ \ {x} and where Wn = [−n1/d/2, n1/d/2]d is an arbitrary large window, then Ξ counts the points in
Wn for which the distance to the nearest neighbor is larger than some (suitable) threshold vn. To describe
the point process Ξ, many Poisson approximation results have been recently established. For instance, in
[33, 34], Poisson approximations for dependent thinnings of point processes that have a density with respect
to a Poisson process are derived. In [36, 37], the Malliavin calculus on the Poisson space is used to determine
scaling limits for Poisson U -statistics. In [11, 12, 14, 30], the Chen-Stein method is applied to deal with
the order statistics of various quantities for random tessellations. In [13], Poisson approximation for the
volume of k-th nearest neighbor balls is discussed in the Euclidean space and in the hyperbolic space. Rates
of convergence for the Poisson approximations are generally provided, in terms of total variation distance
and Kantorovich-Rubinstein (KR) distance. To the best of our knowledge, thanks to a coupling approach,
the most precise results for statistics of Poisson point processes can be found in [6, 29]. These results are
formulated in the strong KR distance and have been generalized to Poisson hyperplanes in [28] and to Gibbs
processes in [22]. However, Poisson process approximation in the KR distance requires a Palm coupling which
is in general hard to establish. Therefore, in this paper we focus on (compound) Poisson approximation for
the large class of β-mixing processes in a weaker Wasserstein distance.

Poisson approximation in general requires two assumptions: a mixing condition for the point process ξ
and anti-clustering condition arising in g(x, ξ). When the latter is not satisfied, the exceedances (namely
the set of points z(x) such that g(x, ξ) 6= 0) can be realized into clusters. In this case, under suitable
assumptions, the point process Ξ can be approximated by a compound Poisson point process (see [5, 15] for
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examples concerning random tessellations and the k-th nearest neighbor graph). However, to the best of our
knowledge, no rate of convergence is established in the context of Stochastic Geometry.

In this paper, we make explicit the rate of convergence for compound Poisson approximation. As first
results, we establish general upper bounds in terms of total variation distance and Wasserstein distance
(Propositions 2.2 and 2.3). Then we apply the latter to have precise estimates for stabilizing statistics,
first for deriving Poisson approximation (Theorem 3.1) then for deriving compound Poisson approximation
(Theorem 3.2). Our results are based on Palm couplings. We illustrate our main theorems through two
examples. The first one concerns the largest distances to the nearest neighbor when the underlying point
process is the so-called Gauss-Poisson process and extends a result of [11]. The second one is unprecedented
and concerns the smallest angles in a Poisson-Delaunay tessellation. In particular, we make explicit the
so-called extremal index and the cluster size distribution. Except a recent work due to Basrak et al. [5] it
is the first time it is done in the context of Stochastic Geometry.

Our paper is organized as follows. In Section 2, we recall some notions on point processes and give two
technical results. In Section 3, we apply the latter to obtain Poisson and compound Poisson approxima-
tions with explicit rates of convergence when the function g is exponentially stabilizing. Our theorems are
illustrated through the two examples discussed above in Section 4.

2. Preliminaries

In this section, we recall some notions on point processes and establish two technical results which will
be used to derive our main theorems.

2.1. Basic notions on point processes.

2.1.1. Point processes. First, we give some notation. In what follows, we denote by || · || the Euclidean norm
of Rd, d ≥ 1, and by Bd the Borel σ-algebra. For any B ∈ Bd, we denote by |B| the volume of B. We write

N for the space of all σ-finite counting measures on Rd and N̂ for the space of all finite counting measures on

Rd. We equip N and N̂ with the corresponding σ-algebras that are induced by the mappings ω 7→ ω(B) for

all B ∈ Bd. The latter are denoted N and N̂ and are the Borel σ-algebras with respect to the Fell topologies

on N and N̂, respectively (see e.g. [35], p. 563).
A point process in Rd is a random variable ξ : Ω → N defined on some probability space (Ω,A,P). The

point process is said simple if ξ({x}) ∈ {0, 1} for any x ∈ Rd. In this case, with a slight abuse of notation,
we identify the point process ξ to its support, which is a random closed subset in Rd.

Now, let π1, π2, . . . be finite measures on Rd. A compound Poisson point process with parameters
π1, π2, . . . is a point process ψ of the form

ψ(B) =
∑
i≥1

iζ(B × {i}), B ∈ Bd,

where ζ is a Poisson point process in Rd×N∗ with intensity measure E[ζ] given by E[ζ(B×{i})] = πi(B) for
B ∈ Bd and i ∈ N. In what follows, we let π := π1 +π2 + . . . and write CP(π1, π2, . . . ) for the distribution of
a compound Poisson process with parameters π1, π2, . . . and Po(π) for the distribution of a Poisson process
with intensity measure π. Intuitively, πi is the intensity measure for clumps of size i. If ψ is stationary, then
there exists γ > 0 (referred to as the intensity of ψ) and a distribution Q (referred to as the cluster size
distribution) on N∗ := {1, 2, . . . } such that πi(B) = γ|B|Q(i) for any i ≥ 1. In this case, ψ can be identified
to its support, which is a random set of points of the form {(xk,mk) : k ≥ 1} ⊂ Rd×N∗, where {xk : k ≥ 1}
is a stationary Poisson point process of intensity γ in Rd and where the mk’s are i.i.d., with distribution Q,
and independent of the xk’s. We have the relation

ζ(B × {i}) =
∑
k≥1

1{xk ∈ B}1{mk = i}.

2.1.2. Beta-mixing and exponential decay of dependence. Let ξ be a point process in Rd. To quantify the
spatial decay of dependence, we introduce the notion of β-mixing coefficient. The latter is defined as follows
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(see [16]): for any A,B ∈ Bd,

βξA,B :=
1

2

∫
µ1∈NA

∫
µ2∈NB

|P ( ξA ∈ dµ1, ξB ∈ dµ2 )− P ( ξA ∈ dµ1 )P ( ξB ∈ dµ2 )| ,

where ξC := ξ∩C denotes the restriction of ξ to C and NC is the induced σ-field of N on C, for any C ∈ Bd.
In what follows, we let diam(A) = sup{||x− y||, x, y ∈ A} and d(A,B) = inf{||x− y||, x ∈ A, y ∈ B} for any
A,B ∈ Bd.

In the sense of [16], we say that the point process ξ has the exponential decay of dependence (EDD)
property if there are constants θ0 ∈ [0,+∞) and θi ∈ (0,+∞), 1 ≤ i ≤ 4, such that for all A,B ∈ Bd with
d(A,B) ≥ θ3 log(diam(A) ∨ diam(B) ∨ θ4),

βξA,B ≤ θ1(diam(A)θ0 ∨ 1)(diam(B)θ0 ∨ 1)e−θ2d(A,B).

Roughly speaking, the EDD property says that the total variation distance between the law of (ξA, ξB) and
the law of the independent union of ξA and ξB decays exponentially fast as the distance between A and B
becomes large.

There is a wide class of point processes that satisfy the EDD property, including Gibbs point processes
with nearly finite range potentials, determinantal point processes with fast decay kernels (in the sense of [16,
Lemma 3.2]), r-dependent point processes and Boolean models (see Section 3 in [16]).

2.1.3. Palm processes. We briefly recapture some basic facts from Palm theory that we need to formulate
and prove our results. Let ξ be a point process in Rd. We call ξx a Palm version of ξ at the point x ∈ Rd,
if for any measurable function f : Rd ×N→ R+ := [0,∞),

(2.1) E
[ ∫

Rd
f(x, ξ)ξ(dx)

]
= E

[ ∫
Rd
f(x, ξx)E[ξ](dx)

]
,

where E[ξ] denotes the intensity measure defined by E[ξ](A) = E [ ξ(A) ] for any Borel subset A in Rd.
More generally, we will need to consider the Palm version of ξ with respect to a subprocess. To do it, let

k ∈ N∗ and h : (Rd)k ×N→ {0, 1}, z : (Rd)k → Rd be two measurable functions such that h is translation-
invariant and z is translation-covariant, which means that z(x1 + y, . . . , xk + y) = z(x1, . . . , xk) + y for any
x1, . . . , xk, y ∈ Rd. Let D ⊂ Rd be a compact subset in Rd. Define a subprocess ζ of ξ by

(2.2) ζ :=
∑
x∈ξk6=

h
(
x, ξDz(x)

)
δz(x),

where Dz := D+z, z ∈ Rd. We call ξz,ζ a Palm version of ξ with respect to ζ if, for any measurable function
f : Rd ×N→ R+ := [0,∞),

E
[ ∫

Rd
f(x, ξ)ζ(dx)

]
= E

[ ∫
Rd
f(x, ξx,ζ)E[ζ](dx)

]
.

Intuitively, ξx,ζ describes the process ξ given that x is an atom of the subprocess ζ.

2.1.4. Distances of point processes. We introduce below some distances following the same notation as [4].
For any x, y ∈ Rd, let d0(x, y) := ||y − x|| ∧ 1. Let K be the set of all functions k : Rd → R such that

sup
x6=y∈Rd

|k(x)− k(y)|/d0(x, y) ≤ 1,

and define a distance d1 between finite measures µ and χ by

d1(µ, χ) : =


1, µ(Rd) 6= χ(Rd),
0, µ(Rd) = χ(Rd) = 0,

m−1 supk∈K
∣∣∫ k dµ−

∫
k dχ

∣∣ , µ(Rd) = χ(Rd) = m > 0.

If µ =
∑m
i=1 δxi and χ =

∑m
i=1 δyi are finite counting measures on Rd, d1 is alternatively given by

d1(µ, χ) = min
π∈Sm

{
m−1

m∑
i=1

d0

(
xi, yπ(i)

)}
.
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The metric d1 is sometimes called the Kantorovich1,1- or Wasserstein-metric induced by d0 in the literature,
see e.g. [6].

We define the distance d2 between two finite point processes ξ and ν in Rd by

d2(ξ, ν) := sup
f∈F
|E [ f(ξ) ]− E [ f(ν) ]| ,

where F is the class of all 1-Lipschitz functions with respect to d1. By the Kantorovich-Rubinstein duality
(see [38, Theorem 5.10]), we have

(2.3) d2(ξ, ν) = inf
C∈Σ(ξ,ν)

∫
N×N

d1 (µ1, µ2) C(d(µ1, µ2)),

where Σ(ξ, ν) is the set of all probability measures on N × N with marginal distributions P(ξ ∈ ·) and
P(ν ∈ ·).

For finite measures µ, χ on Rd we also write

d̂1(µ, χ) :=

 inf
µ′≤µ:µ′(Rd)=χ(Rd)

d1(µ′, χ), µ(Rd) ≥ χ(Rd),

d̂1(χ, µ), µ(Rd) < χ(Rd).

2.2. Technical results.

2.2.1. A bound for the total variation distance. Let A be a subset in Rd such that Ac is compact and contains
the origin. In what follows, we write Az = A+ z for any z ∈ Rd and assume that the mapping

Rd ×N→ Rd ×N : (z, ω) 7→ (z, ωAz )(2.4)

is product measurable. In our applications, the set A will be the complement of a ball centered at the origin.
If so, [2, page 15] shows that the mapping in (2.4) is product measurable.

Lemma 2.1. Let ξ be a simple point process in Rd, let A,B ⊂ Rd be compact sets and let F : N→ [0,+∞)
be a measurable function. For some compact D ⊂ Rd and a measurable function h : (Rd)k ×N→ {0, 1}, let
ζ be the process given at (2.2). Then we have for any p > 0, q > 0 with 1/p+ 1/q ≤ 1,∣∣∣∣∫

B

E[F (ξz,ζAz )− F (ξAz )]E[ζ](dz)

∣∣∣∣ ≤ 4 (E[ζ(B)p])
1
p

(
E
[

sup
z∈B

F (ξAz )
q

]) 1
q

(βξB+D,B+A)1− 1
p−

1
q .

Given two point processes ξ1, ξ2, denote the total variation distance between ξ1 and ξ2 by

dTV(ξ1, ξ2) = sup
A∈N

|P ( ξ1 ∈ A )− P ( ξ2 ∈ A ) |.

As a direct consequence of the above lemma, we derive an upper bound for the total variation distance
between ξ and its Palm process.

Proposition 2.2. With the same notation as in Lemma 2.1, if ξ and ζ are stationary, then for any p >
0, q > 0 with 1/p+ 1/q ≤ 1,

dTV(ξA, (ξ
o,ζ)A) ≤ 4

(E[ζ(B)p])
1
p

E[ζ](B)
(βξB+D,B+A)1− 1

p−
1
q .

The above inequality generalizes [19, Theorem 1] in the sense that the Palm version of ξ is with respect
to ζ and not with respect to ξ. In particular, if ξ is stationary and D = {o}, we have

(2.5) dTV(ξA, (ξ
o)A) ≤ 4

(E[ξ(B)p])
1
p

E[ξ](B)
(βξB,B+A)1− 1

p−
1
q .

Proof of Lemma 2.1. By definition of ξz,ζ , we have∫
B

E[F (ξz,ζAz )]E[ζ](dz) = E
[∑
z∈ζ

1{z ∈ B}F (ξAz )
]

= E
[ ∑
x∈ξk6=

1{z(x) ∈ B}h(x, ξDz(x)
)F (ξAz(x)

)
]
.
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In the same way, we have∫
B

E[F (ξAz )]E[ζ](dz) = E
[ ∑
x∈ξk6=

1{z(x) ∈ B}h(x, ξDz(x)
)E[F (ξAz(x)

)]
]
.

Now, let ξ̃B+D
d
= ξB+D and ξ̃A+B

d
= ξA+B be independent point processes. We couple (ξB+D, ξB+A) and

(ξ̃B+D, ξ̃B+A) in such a way that

P((ξB+D, ξB+A) 6= (ξ̃B+D, ξ̃B+A)) = dTV((ξB+D, ξB+A), (ξ̃B+D, ξ̃B+A)) =: 2βξB+D,B+A.(2.6)

This is possible due to the coupling lemma [3, p. 254]. Because Az(x) = (A + B) ∩ Az(x) and Dz(x) =
(B +D) ∩Dz(x) provided that z(x) ∈ B, we get∫

B

E[F (ξx,ζAx )− F (ξAx)]E[ζ](dx) = E[H(ξB+D, ξA+B)]− E[H(ξ̃B+D, ξ̃A+B)],

where H(µ, ν) :=
∑

x∈µk6=
1{z(x) ∈ B}h

(
µDz(x)

)
F
(
νAz(x)

)
. The following argument is adopted from [40,

Lemma 1] to our setting. Let δ > 0, γ := 1
1+δ and define

M := max
{
E[H(ξB+D, ξB+A)1+δ],E[H(ξ̃B+D, ξ̃B+A)1+δ]

}
,

E :=
{

(µ, ν) ∈ N2 : H(µ, ν) ≤Mγ(βξB+D,B+A)−γ
}
.

Then we have by the definition of E and (2.6),

(2.7)
∣∣∣E [H(ξB+D, ξB+A)1{(ξB+D, ξB+A) ∈ E} −H(ξ̃B+D, ξ̃B+A)1{(ξ̃B+D, ξ̃B+A) ∈ E}

] ∣∣∣
≤Mγ(βξB+D,B+A)−γ P

(
(ξB+D, ξB+A) 6= (ξ̃B+D, ξ̃B+A)

)
= 2Mγ(βξB+D,B+A)γδ.

Moreover, because 1 < M−γδ(βξB+D,B+A)γδH(ξB+D, ξB+A)δ on the event E, we have

(2.8) E [H(ξB+D, ξB+A)1{(ξB+D, ξB+A) /∈ E} ]

≤M−γδ(βξB+D,B+A)γδ E
[
H(ξB+D, ξB+A)1+δ1{(ξB+D, ξB+A) /∈ E}

]
≤M1−γδ(βξB+D,B+A)γδ,

and analogously,

E
[
H(ξ̃B+D, ξ̃B+A)1{(ξ̃B+D, ξ̃B+A) /∈ E}

]
≤M1−γδ(βξB+D,B+A)γδ,(2.9)

Combining (2.7), (2.8), (2.9) and using the fact that 1− γδ = γ = 1
1+δ , we have

(2.10)
∣∣∣ ∫
B

E[F (ξx,ζAx )− F (ξAx)]E[ζ](dx)
∣∣∣

≤ 4 max{E[H(ξB+D, ξB+A)1+δ],E[H(ξ̃B+D, ξ̃B+A)1+δ]}
1

1+δ (βξB+D,B+A)1− 1
1+δ .

From Hölder’s inequality we find for any p, q ∈ [1,+∞] with 1/p+ 1/q = 1/(1 + δ),

(E[H(ξB+D, ξB+A)1+δ])
1

1+δ ≤
(
E
[
(ζ(B))1+δ

(
sup
x∈B

F (ξAx)
)1+δ

]) 1
1+δ

≤
(
E[ζ(B)p]

) 1
p
(
E
[

sup
x∈B

F (ξAx)q
]) 1

q

.

Since an analogous bound holds for (E|H(ξ̃B+D, ξ̃B+A)|1+δ)
1

1+δ as well, we deduce from (2.10) that∣∣∣ ∫
B

E[F (ξx,ζAx )− F (ξAx)]E[ζ](dx)
∣∣∣ ≤ 4

(
E[ζ(B)p]

) 1
p
(
E
[

sup
x∈B

F (ξAx)q
]) 1

q

(βξB+D,B+A)1− 1
p−

1
q .
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2.2.2. A general upper bound for compound Poisson process approximation. Now, let Ξ be a simple point
process in Rd and let C be a compact subset in Rd. For any i ∈ N, we consider below the subprocess

Ξ(i) :=
∑
z∈Ξ

1{Ξ(Cz) = i}δz.

The following proposition provides an upper bound between Ξ and a compound Poisson point process.

Proposition 2.3. Let Ξ be a simple finite point process such that E[Ξ(Rd)] < ∞. Let A ⊂ Rd such that
Ac is compact, contains the origin and satisfies the measurability condition (2.4). Let CP(π1, π2, . . . ) be the
distribution of a compound Poisson process with parameters π1, π2, . . . Then

d2(LΞ,CP(π1, π2, . . . )) ≤ eE[Ξ(Rd)]
(∑
i≥1

{
|iπi(Rd)−E[Ξ(i)(Rd)]|+ min{πi(Rd),E[Ξ(i)]/i}d̂1(πi,E[Ξ(i)]/i)

}
+
{∫

Rd

(
sup
y∈Ac

(d0(y, z)) + 2E[Ξ(Acz)]
)
E[Ξ](dz) + 2

∑
i≥1

∫
Rd
dTV((Ξzi)Az ,ΞAz )E[Ξ(i)](dz)

})
.

Proof of Proposition 2.3. Let

iπ′i(dz) := E[Ξ(i)](dz).

and π′ :=
∑
i≥1 π

′
i. We first bound d2(LΞ,CP(π′1, π

′
2, . . . )). To do it, let us consider a coupling (Ξ̃zi, Ξ̃) of

(Ξzi,Ξ) such that P(Ξ̃zi 6= Ξ̃) = dTV(Ξzi,Ξ), where Ξzi is the Palm version of Ξ(i). According to [4, Theorem
4.2], we have

d2(LΞ,CP(π′1, π
′
2, . . . )) ≤ eπ

′(Rd)
{∫

Rd
E[d1((Ξz)Acz ,Ξ

z(Acz)δz)]E[Ξ](dz)

+
∑
i≥1

∫
Rd

(
P(Ξ̃zi(Az) 6= Ξ̃(Rd)) + E[d̂1((Ξ̃zi)Az , Ξ̃)]

)
E[Ξ(i)](dz)

}
.

Here, we use the bound d1((Ξz)Acz ,Ξ
z(Acz)δz) ≤ supy∈Acz d0(z, y) a.s. Moreover,

P(Ξ̃zi(Az) 6= Ξ̃(Rd)) ≤ P(Ξ̃(Acz) > 0) + P(Ξ̃zi(Az) 6= Ξ̃(Az)) ≤ E[Ξ(Acz)] + dTV((Ξzi)Az ,ΞAz ).

The definition of d̂1 gives that d̂1((Ξ̃zi)Az , Ξ̃) ≤ 1{Ξ̃Acz 6= ∅}+ 1{(Ξ̃zi)Az 6= Ξ̃Az}, from which we get that

E
[
d̂1((Ξ̃zi)Az , Ξ̃)

]
≤ P(Ξ̃Acz 6= ∅) + P((Ξ̃zi)Az 6= Ξ̃Az ) ≤ E [ Ξ(Acz) ] + dTV((Ξzi)Az ,ΞAz ).

Therefore,

d2(LΞ,CP(π′1, π
′
2, . . . )) ≤ eπ

′(Rd)
{∫

Rd

(
sup
y∈Acz

d0(z, y) + 2E[Ξ(Acz)]
)
E[Ξ](dz)

+ 2
∑
i≥1

∫
Rd
dTV((Ξzi)Az ,ΞAz )E[Ξ(i)](dz)

}
.

To complete the argument, we use that by [4, Theorem 4.6],

d2(CP(π1, π2, . . . ),CP(π′1, π
′
2, . . . )) ≤ eπ

′(Rd)
∑
i≥1

{
i|πi(Rd)− π′i(Rd)|+ min{πi(Rd), π′i(Rd)}d̂1(πi, π

′
i)
}
.

The assertion now follows if we plug in the concrete forms of the π′is, use the fact that π′(Rd) ≤ E
[

Ξ(Rd)
]

and apply the triangle inequality

d2(LΞ,CP(π′1, π
′
2, . . . )) ≤ d2(LΞ,CP(π1, π2, . . . )) + d2(CP(π1, π2, . . . ),CP(π′1, π

′
2, . . . )).

�
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3. Process approximation for stabilizing statistics

In this section, we derive Poisson and compound Poisson approximations for stabilizing statistics with
explicit rates of convergence. Let ξ be a stationary point process with intensity γ > 0 and qth correlation
function ρq for q ∈ N. Recall that the latter is given by the identity:

E
[∏
i≤q

ξ(Ai)
]

=

∫
A1×···×Aq

ρk(x1, . . . , xq)dx1 . . . dxq

for any pairwise disjoint Borel sets A1, . . . , Aq. For k ∈ N let gn : (Rd)k ×N → {0, 1} and z : (Rd)k → Rd
be measurable functions such that gn is translation-invariant and z is translation-covariant. For a given
compact set W ⊂ Rd, we write Wn := n1/dW and define

(3.1) Ξn[ω] =
∑
x∈ωk6=

1{z(x) ∈Wn}gn(x, ω)δn−1/dz(x), ω ∈ N,

When ω = ξ, we simply write Ξn := Ξn[ξ] and refer to the latter as the point process of exceedances in W .
Due to the stationarity of ξ and translation-invariance of gn, we find that the intensity measure E[Ξn] of Ξn
is given by

E[Ξn](dz) = n
(∫

(Rd)k
1{z(x) ∈W}E[gn(x, ξx)]ρk(x)dx

)
1{z ∈W}dz =: nγn1{z ∈W}dz.

We assume that

γn > 0, n ∈ N.(M)

Second, we require that gn is exponentially stabilizing in the spirit of [6]. To make this precise, we assume
that there is a stabilization radius Rn(z(x), ω) ∈ [r(x),+∞], where r(x) = maxi=1,...,k ||xi − z(x)||; that is

gn(x, ω) = gn(x, ω ∩BRn(z(x),ω)(z(x)))

holds for any ω ∈ N and x = (x1, . . . , xk) ∈ ωk6=, where Br(z) denotes the (closed) ball centered at z with

radius r for any z ∈ Rd and r > 0. The event {Rn(o, ω) ≤ r} is supposed to be measurable with respect to
the σ-field NBr(o). We also assume for any x ∈ Rd that Sn(x, ·) : N→ F , ω 7→ BRn(x,ω)(z(x)) is a stopping

set, i.e. for any compact sets S ⊆ Rd,

{ω ∈ N : Sn(x, ω) ⊆ S} = {ω ∈ N : Sn(x, ω ∩ S) ⊆ S},

where F denotes the set of closed subsets in Rd.

3.1. Poisson approximation. In this section, we impose that the stabilization radius satisfies the following
property: for any sequence (rn) such that rn ≥ (log n)1/2+ε for some ε > 0 and for n large enough,

(S) − lim sup
n→∞

r−1
n log

(∫
(Rd)k

1{z(x) ∈ [0, 1]d}P(Rn(z(x), ξx) > rn)ρk(x)dx
)

=: ces > 0.

Theorem 3.1. Let W be a compact subset in Rd. Let gn : (Rd)k×N→ {0, 1} be measurable and translation-
invariant and let ξ be a stationary point process on Rd that satisfies the EDD property, has intensity γ > 0
and qth correlation function ρq for 1 ≤ q ≤ 2k. We assume that (M) and (S) hold, define Ξn := Ξn[ξ] by
(3.1) and let π be a finite measure on W . Then

d2(LΞn,Po(π)) ≤ d̂1(nγnLebW , π) + enγn|W |
(
c1γn(log n)d +

c2
n

+

k∑
`=1

γk+`

∫
1{z(x) ∈Wn, z(xk−`,y) ∈ Bbn(z(x))}E[gn(x, ξx,y)gn((xk−`,y), ξx,y)] ρk+`(x,y) d(x,y)

)
,

where the integral is over (Rd)k × (Rd)`, xk−` := (x1, . . . , xk−`), LebW denotes the Lebesgue measure on W ,
bn := [θ−1

2 (4 + 2θ0/d) + 4c−1
es ] log n and c1, c2 are positive constants that do not depend on ξ and gn.
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Proof. For sn := 2c−1
es log n, we define g̃n(x, ω) := gn(x, ω)1{Rn(z(x), ω) ≤ sn} as well as the truncated

process

Ξn,tr[ω] :=
∑
x∈ωk6=

1{z(x) ∈Wn}g̃n(x, ω)δn−1/dz(x)

and set Ξn,tr := Ξn,tr[ξ]. By the triangle inequality for the d2 distance, we have

d2(LΞn,Po(π)) ≤ d2(LΞn,LΞn,tr) + d2(LΞn,tr,Po(E[Ξn,tr])) + d2(Po(E[Ξn,tr]),Po(π)).

Since Ξn,tr(A) ≤ Ξn(A) for all Borel sets A ⊂ Rd, we obtain from (2.3) and assumption (S) that

d2(LΞn,LΞn,tr) ≤ E[d̂1(Ξn,Ξn,tr)]

≤ E[Ξn(Rd)]− E[Ξn,tr(Rd)]

=

∫
(Rd)k

1{z(x) ∈Wn}E[gn(x, ξx)1{Rn(z(x), ξx) > sn}]ρk(x)dx

≤ |Wn|
∫

(Rd)k
1{z(x) ∈ [0, 1]d}P(Rn(z(x), ξx) > sn)ρk(x)dx

≤ α1

n
,

for some α1 > 0, where we have used the concrete form of sn. Moreover,

d2(Po(E[Ξn,tr]),Po(π)) ≤ d2(Po(E[Ξn,tr]),Po(E[Ξn])) + d2(Po(E[Ξn]),Po(π))

≤ E[Ξn(Rd)]− E[Ξn,tr(Rd)] + d̂1(E[Ξn], π)

≤ α1

n
+ d̂1(nγnLebW , π).

In what follows, we provide an upper bound for d2(LΞn,tr,Po(E [ Ξn,tr ])). To do it, we apply Proposition
2.3 with Az := {z}c. This gives

(3.2) d2(LΞn,tr,Po(E [ Ξn,tr ]))

= d2(LΞn,tr,CP(E[Ξn,tr], 0, 0, . . . ))

≤ 2eE[Ξn,tr(Rd)]
(∫

W

E[Ξn,tr({z})]E[Ξn,tr](dz) +

∫
W

dTV((Ξzn,tr){z}c , (Ξn,tr){z}c)E[Ξn,tr](dz)
)
.

Due to the stationarity of ξ and translation-invariance of gn, we have E[Ξn,tr]({z}) = 0 for every z ∈ Rd,
implying that the first integral on the right-hand side vanishes. We let an := n−1/dbn and bound the total
variation distance in the second integral by

dTV((Ξzn,tr){z}c , (Ξn,tr){z}c)

≤ E[Ξn,tr(Ban(z) \ {z})] + E[Ξzn,tr(Ban(z) \ {z})] + dTV((Ξzn,tr)Ban (z)c , (Ξn,tr)Ban (z)c)

= E[Ξn,tr(Ban(z))] + E[Ξz!n,tr(Ban(z))] + dTV((Ξzn,tr)Ban (z)c , (Ξn,tr)Ban (z)c),

where Ξz! := Ξz \ {z}. Here, we have for some constant α2 > 0,

E[Ξn,tr(Ban(z))] ≤ nγn|Ban ∩W | ≤ α2 γn(log n)d.

Moreover,∫
W

E[Ξz!n,tr(Ban(z))]E[Ξn,tr](dz) =

k∑
`=1

E
[ ∑
x∈(Rd)k

∑
y∈(Rd)`

1{z(x) ∈Wn}1{z(xk−`,y) ∈ Bn1/dan(z(x))}

× g̃n(x, ξ)g̃n((xk−`,y), ξ)
]
,
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which gives∫
W

E[Ξz!n,tr(Ban(z))]E[Ξn,tr](dz) =

k∑
`=1

γk+`

∫
(Rd)k×(Rd)`

1{z(x) ∈Wn}1{z(xk−`,y) ∈ Bn1/dan(z(x))}

× E[g̃n(x, ξx,y)g̃n((xk−`,y), ξx,y)] ρk+`(x,y) d(x,y).

For z ∈ W let ξz,Ξn,tr be a Palm version of ξ at z with respect to Ξn,tr. Then we have Ξzn,tr
d
= Ξn,tr[ξ

z,Ξn,tr ].
Since Rn is a stabilization radius for g̃n and since g̃n(z(x), ω) = 0 when Rn(z(x), ω) > sn, we know from
the stopping set property of Sn, applied to S = Bsn(Wn \Bn1/dan(z)), that (Ξzn,tr)Ban (z)c is measurable with

respect to (ξz,Ξn,tr)Bsn (Wn\Bn1/dan
(z)) (and analogously for (Ξn,tr)Ban (z)c), where Bs(A) := A+Bs for some

Borel set A ⊂ Rd and s > 0, with Bs := Bs(o). This allows us to bound the total variation distance in (3.2)
with B−n := Bn1/dw \Bbn , where w := diam(W ), by

dTV((Ξzn,tr)Ban (z)c , (Ξn,tr)Ban (z)c) ≤ dTV((ξz,Ξn,tr)Bsn (Wn\Bn1/dan
(z)), ξBsn (Wn\Bn1/dan

(z)))

≤ dTV((ξz,Ξn,tr)Bsn (z+B−n ), ξBsn (z+B−n ))

= dTV((ξo,Ξn,tr)Bsn (B−n ), ξBsn (B−n )),

where the last equality follows from the stationarity of ξ. Let Dx = Bsn(z(x)) and hn(x, ω) = 1{z(x) ∈
Wn}g̃n(x, ω). Since hn(x, ξ) only depends on ξDx , we have

Ξn,tr =
∑
x∈ξk6=

hn(x, ξDx)δn−1/dz(x).

Then we obtain from Proposition 2.2 with p = 2, q = ∞, B = B1, A := Bsn(B−n ) and from the EDD
property of ξ that

dTV((ξo,Ξn,tr)Bsn (B−n ), ξBsn (B−n ))

≤ 4(E[Ξn,tr(B)2])1/2

E[Ξn,tr(B)]
β(ξBsn+1 , ξBsn+1(B−n ))

1/2

≤ 4(E[Ξn,tr(B)2])1/2

E[Ξn,tr(B)]

(
θ1[(wn1/d + sn + 1)(sn + 1)]θ0e−θ2(bn−2sn−2)

)1/2

.

This gives, for some positive constant α3 and for n large enough,∫
W

dTV((Ξzn,tr)Ban (z)c , (Ξn,tr)Ban (z)c)E[Ξn,tr](dz)

≤ E[Ξn,tr(W )]

E[Ξn,tr(B)]

4eθ2
(
θ1[(wn1/d + sn + 1)(sn + 1)]θ0

)1/2
n2+θ0/d

(E[Ξn,tr(B)2])1/2

≤ α3

n
,

which concludes the proof of Theorem 3.1. �

3.2. Compound Poisson approximation. Next we consider compound Poisson process approximation.
Given a sequence of Borel sets Cn ⊂ Rd with o ∈ Cn, n ∈ N, we consider the processes

Ξ(i)
n :=

∑
z∈Ξn

1{Ξn((Cn)z) = i}δz =
∑
x∈ξk6=

1{z(x) ∈Wn}1{Ξn((Cn)z(x)) = i}gn(x, ξ)δn−1/dz(x), i ≥ 1,

(3.3)

where (Cn)x := x+ Cn. In particular, we have Ξn =
∑
i≥1 Ξ

(i)
n .

We need a slightly stronger stabilization condition than for Poisson approximation and impose that the
stabilization radius satisfies the following property: for any ` = 0, . . . , k and for any sequence (rn) such that
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rn ≥ (log n)1/2+ε for some ε > 0 and for n large enough,

(S*) − lim sup
n→∞

r−1
n log

(∫
(Rd)k+`

1{z(x) ∈Wn}1{z(xk−`,y) ∈Wn ∩ (Cn)z(x)}

× E [ gn(x, ξx,y)gn((xk−`,y), ξx,y)1{Rn(z(x), ξx,y) > rn} ] ρk(x,y)d(x,y)
)

=: ces > 0.

In particular, when ` = 0, the above equation is equivalent to (S). Moreover, we let cn := diam(Cn), n ∈ N,
and assume that

lim sup
n→∞

cn
log n

=: cc ∈ [0,+∞).(C)

Theorem 3.2. Let gn : (Rd)k×N→ {0, 1} be measurable and translation-invariant and let ξ be a stationary
point process on Rd that satisfies the EDD property, has intensity γ > 0 and qth correlation function ρq for
1 ≤ q ≤ 2k. Assume that (M), (C) and (S*) hold and define Ξn := Ξn[ξ] by (3.1). Let CP(π1, π2, . . . ) be
the distribution of a compound Poisson process with parameters π1, π2, . . . Then

d2(LΞn,CP(π1, π2, . . . )) ≤ enγn|W |
(
c1nγ

2
n(log n)d +

c2(log n)d

n

+
∑
i≥1

{
|iπi(Rd)− E[Ξ(i)

n (Rd)]|+ min{πi(Rd),E[Ξ(i)
n (Rd)]/i}d̂1(πi,E[Ξ(i)

n ]/i)
})
,

where c1, c2 are positive constants that do not depend on ξ and g.

Theorem 3.2 is more general than Theorem 3.2 since it can be used to derive Poisson approximations.
However, from a practical point of view, we apply Theorem 3.1 rather than Theorem 3.2 to establish a
Poisson approximation result since the latter requires less restrictive assumptions.

Proof of Theorem 3.2. For i ≥ 1, we define the truncated processes
(3.4)

Ξ
(i)
n,tr :=

∑
x∈ξk6=

1{z(x) ∈Wn}1{Ξn((Cn)z(x)) = i}gn(x, ξ)1{∀w ∈ Ξn ∩ (Cn)z(x) : Rn(w, ξ) ≤ sn}δn−1/dz(x),

and set iπi,tr := E[Ξ
(i)
n,tr], with sn := 2c−1

es log n. We also let Ξn,tr :=
∑
i≥1 Ξ

(i)
n,tr.

By the triangle inequality for the d2 distance, we have

d2(LΞn,CP(π1, π2, . . . ))

≤ d2(LΞn,LΞn,tr) + d2(LΞn,tr,CP(π1,tr, π2,tr, . . . )) + d2(CP(π1,tr, π2,tr, . . . ),CP(π1, π2, . . . )).

Since Ξn,tr ⊂ Ξn a.s., we find from the definition of the d2 distance that

d2(LΞn,LΞn,tr) ≤ E[Ξn(Rd)]− E[Ξn,tr(Rd)]

=

∫
Rd
1{z(x) ∈Wn}E[gn(x, ξx)1{∃w ∈ Ξn ∩ (Cn)z(x) : Rn(w, ξ) > sn}]ρk(x)dx

≤
k∑
`=0

∫
(Rd)k×(Rd)`

1{z(x) ∈Wn}1{z(xk−`,y) ∈Wn ∩ (Cn)z(x)}

× E[gn(x, ξx,y)gn((xk−`,y), ξx,y)1{Rn(x, ξx,y) > sn}]ρk+`(x,y)d(x,y)

and therefore, from condition (S*), that d2(LΞn,LΞn,tr) ≤ α1

n . Moreover, we find from [4, Theorem 4.6]
that

d2(CP(π1,tr, π2,tr, . . . ),CP(π1, π2, . . . ))

≤ enγn|W |
(∑
i≥1

{
i|πi(Rd)− πi,tr(Rd)|+ min(πi, πi,tr)d̂1(πi, πi,tr)

})
= enγn|W |

∑
i≥1

{
|iπi(Rd)− E[Ξ(i)

n (Rd)]|+ min{πi(Rd),E[Ξ(i)
n (Rd)]/i}d̂1(πi,E[Ξ(i)

n ]/i)
}
.
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In what follows, we provide an upper bound for d2(LΞn,tr,CP(π1,tr, π2,tr, . . . )). To do it, we apply Propo-

sition 2.3 with Az := Ban(z)c, where an := n−1/d[θ−1
2 (4 + 2θ0/d) + 4c−1

es + 2cc] log n. This gives

(3.5) d2(LΞn,tr,CP(π1,tr, π2,tr, . . . )) ≤ enγn|W |
(∫

W

(
an + 2E[Ξn,tr(Ban(z))]

)
E[Ξn,tr](dz)

+ 2
∑
i≥1

∫
W

dTV((Ξzin,tr)Ban (z)c , (Ξn,tr)Ban (z)c)E[Ξ
(i)
n,tr](dz)

)
.

Here, we have∫
W

E[Ξn,tr(Ban(z))]E[Ξn,tr](dz)

=

∫
(Rd)k×(Rd)k

1{z(x) ∈Wn, z(y) ∈ Bn1/dan(z(x)) ∩Wn}E[gn(x, ξx)]E[gn(y, ξy)]ρ(x)ρ(y)d(x,y)

≤ cnγ2
n(log n)d,

for some constant c > 0.

For i ≥ 1 and z ∈W let ξzi be a Palm version of ξ at z with respect to Ξ
(i)
n,tr. Then we have Ξzin,tr

d
= Ξn,tr[ξ

zi].

Proceeding in the same spirit as in the proof of Theorem 3.1, we can prove that with B−n := Bn1/dw \Bbn ,

dTV((Ξzin,tr)Ban (z)c , (Ξn,tr)Ban (z)c) ≤ dTV((ξoi)Bsn+cn (B−n ), ξBsn+cn (B−n )).

Let Dx = Bsn+cn(z(x)) and

h(i)
n (x, ω) = 1{z(x) ∈Wn}1{Ξn(Cz(x)) = i}1{∀w ∈ Ξn ∩ (Cn)z(x) : Rn(w, ξ) ≤ sn}gn(x, ξ).

By the stopping set property of Sn and the fact that Rn is a stabilization radius, the function h
(i)
n (x, ξ) is

measurable with respect to ξDx . Therefore

Ξ
(i)
n,tr =

∑
x∈ξk6=

h(i)
n (x, ξDx)δn−1/dz(x).

Similarly to p. 9, we obtain from the EDD property of ξ that

dTV((ξoi)Bsn+cn (B−n ), ξBsn+cn (B−n ))

≤
4(E[Ξ

(i)
n,tr(B)2])1/2

E[Ξ
(i)
n,tr(B)]

(
θ1[(wn1/d + sn + cn + 1)(sn + cn + 1)]θ0e−θ2(bn−2cn−2sn−2)

)1/2

.

Thanks to Condition (C), this gives∑
i≥1

∫
W

dTV((Ξzin,tr)Ban (z)c , (Ξn,tr)Ban (z)c)E[Ξ
(i)
n,tr](dz)

≤
∑
i≥1

E[Ξ
(i)
n,tr(W )]

E[Ξ
(i)
n,tr(B)]

4eθ2+cn/2
(
θ1[(wn1/d + sn + cn + 1)(sn + cn + 1)]θ0

)1/2
n2+θ0/d

(E[Ξ
(i)
n,tr(B)2])1/2

≤ α2

n

for some positive constant α2 and for n large enough, where we have used that
E[Ξ

(i)
n,tr(W )]

E[Ξ
(i)
n,tr(B)]

= |W |
|B∩W | due to

the stationarity of ξ and translation-invariance of gn. This concludes the proof of Theorem 3.2. �

4. Applications

4.1. Maximum nearest-neighbor distances in the Gauss-Poisson process. In this section, we give
an application of Theorem 3.1 in a situation where the input process ξ is not Poisson. The latter is the Gauss-
Poisson process and is defined as follows (see e.g. [8], Example 5.6). Let Φ be a point process defined in the
following way: Φ has an isotropic distribution and is composed of zero, one or two points with probability
p0 6= 0, p1 6= 0 and p2 = 1 − (p0 + p1). If Φ contains only one point then that point is the origin 0. If Φ is
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composed of two points then these are separated by a unit distance and have midpoint o. Given a stationary
Poisson point process η of intensity 1 in R2, let Φ(x), x ∈ η, be a family of i.i.d. point processes with the
same distribution as Φ. The Gauss-Poisson process is defined as

ξ =
⋃
x∈η

(x+ Φ(x)).

Notice that when p2 = 0, a Gauss-Poisson process is a stationary Poisson point process with intensity p1. The
intensity of ξ is γ = p1 + 2p2. The Gauss-Poisson process was introduced by Newman [25] and investigated
by Milne and Westcott [24]. It has a potential application in statistical mechanics (see [25], p. 350) and
could be used as a model for molecular motion (see [24] p. 169). It is also a Boolean model which satisfies
the EDD property (see [16, Lemma 3.4]). The fact that the Palm distribution of a Gauss-Poisson process is
explicitly available makes it very tractable for the application of Theorem 3.1.

In all this section, we let Wn := [−n1/2/2, n1/2/2]2 and

(4.1) Ξn := Ξn[ξ] =
∑
x∈ξ

1{x ∈Wn}1{ξ(Bvn(x) \ {x}) = 0} δn−1/2x.

Here, the threshold vn is chosen such that vn →∞ as n→∞ and

(4.2) lim
n→∞

E[Ξn(Wn)] = lim
n→∞

nP(ξo!(Bvn) = 0) = τ

for some fixed constant τ > 0.

4.1.1. The threshold vn. We provide below an explicit value of vn. According to (5.53) on p. 175 in [8], we
know that

P(ξo!(Bv) = 0) =
1

p1 + 2p2
e−(p1πv

2+p2(2πv2−a(v))) ×
{
p1 + 2p2, 0 ≤ v < 1

p1, v ≥ 1;

and

a(v) = 2v2 arccos
1

2v
− 1

2

√
4v2 − 1 for v ≥ 1

and equals zero otherwise. Following the same computations as in [11], p. 2949, it can be proved that the
threshold

(4.3) vn =
4p2 +

(
8p2

2 + 8π(p1 + p2)
(

log
(

p1
p1+2p2

)
+ log n− log τ

))1/2

4π(p1 + p2)

satisfies the property

(4.4) E[Ξn(Wn)] = τ +O((log n)−1/2).

4.1.2. Poisson approximation. The following theorem claims that the point process Ξn is asymptotically
Poisson as n goes to infinity.

Theorem 4.1. Let τ > 0 and vn be as in (4.3). Consider the process Ξn defined at (4.1). Then

d2(LΞn,Po(τLeb[0,1]2)) = O((log n)−1/2).

As an application of the above theorem, we deal with the largest distances to the nearest neighbor. To do
it, for any x ∈ Rd, let us denote by nn(x, ξ) := arg miny∈ξ\{x} ||x− y|| the nearest neighbor of x in ξ \ {x}.
Let M

(k)
ξ,n be the k-th largest values of nn(x, ξ) over all x ∈ ξ ∩Wn.

Corollary 4.2. With the same notation as in Theorem 4.1, we have

lim
n→∞

P
(
M

(k)
n,ξ ≤ vn

)
=

k−1∑
i=0

e−ττ i

i!
.

A similar result, only stated for the maximum, has been established in [11, Proposition 8]. Notice that
Poisson approximation for the point process of exceedances Ξn could be also derived from [11, Theorem 2].
However, Theorem 4.1 is more precise since it provides a rate of convergence.
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Proof of Theorem 4.1. This will be sketched since it is mainly based on the proof of [11, Proposition 8]. We
apply Theorem 3.1 to gn(x, ω) = 1{ω ∩ (Bvn(x) \ {x}) = ∅}, with n ≥ 1. The stabilization radius which we
consider is defined as R(x, ω) := vn. It is straightforward that the conditions (M) and (S) hold. According
to Theorem 3.1, we obtain

(4.5) d2(LΞn,Po(τλ[0,1]2)) ≤ c1
n

+ |nγn − τ |+ enγn
(
c2γn(log n)2 +

c3
n

+ γ

∫
(R2)2

1{x ∈Wn, y ∈ Bbn(x)}P(ξx!,y!(Bvn(x) ∪Bvn(y)) = 0) ρ2(x, y) d(x, y)
)
,

where ξx!,y! := ξx,y \ {x, y} and γn = P
(
ξo!(Bvn) = 0

)
. The integral appearing in the above expression can

be expressed as∫
(R2)2

1{x ∈Wn, y ∈ Bbn(x)}P(ξx!,y!(Bvn(x) ∪Bvn(y)) = 0) ρ2(x, y) d(x, y)

= E

 ∑
(x,y)∈ξ26=

1{x ∈Wn}1{y ∈ Bbn(x)}1{(ξ \ {x, y})(Bvn(x) ∪Bvn(y)) = 0}


= nE

 ∑
y∈ξo!

1{y ∈ Bbn(x)}1{(ξo! \ {y})(Bvn ∪Bvn(y)) = 0}1{||y|| > vn}

 ,
where the last line comes from the fact that ξ is stationary. Now, according to Equation (5.43) in [8], we

know that ξo
d
= ξ ∪ Φo, where ξ and Φo are independent and where Φo is a Palm version of Φ. Since

ξ({o}) = 0 and Φo(Bcvn) = 0 for n large enough, this implies

nE

 ∑
y∈ξo!

1{y ∈ Bbn(x)}1{(ξo! \ {y})(Bvn ∪Bvn(y)) = 0}1{||y|| > vn}


= nE

 ∑
y∈(ξ∪Φo!)

1{y ∈ Bbn(x)}1{((ξ ∪ Φo!) \ {y})(Bvn ∪Bvn(y)) = 0}1{||y|| > vn}


≤ nE

∑
y∈ξ

1{y ∈ Bbn(x)}1{(ξ \ {y})(Bvn ∪Bvn(y)) = 0}1{||y|| > vn}


= n

∫
Bbn

P
(
ξy!(Bvn ∪Bvn(y)) = 0

)
1{||y > vn||}dy

= n

∫
Bbn

P ( (((ξ ∪ Φo) + y) \ {y})(Bvn ∪Bvn(y)) = 0 )1{||y|| > vn}dy,

where the last line comes from the fact that ξy
d
= (ξ ∪Φo) + y. According to Equation (5.9) in [11], we have

on the event {||y|| > vn}

P ( (((ξ ∪ Φo) + y) \ {y})(Bvn ∪Bvn(y)) = 0 ) ≤ cP
(
ξo!(Bvn) = 0

)
n−α = O(n−1−α),

where α = p1
2(p1+p2) . Integrating over Bbn and using Equations (4.4) and (4.5), we deduce that

d2(LΞn,Po(τλ[0,1]2)) = O((log n)−1/2).

This concludes the proof of Theorem 4.1. �

Proof of Corollary 4.2. This is a direct consequence of Theorem 4.1 and of the fact that M
(k)
n,ξ ≤ vn if and

only if Ξn(W1) ≤ k − 1. �
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4.2. Smallest angles in the Poisson-Delaunay tessellation. In this section, we give an application of
Theorem 3.2 in the context of random Delaunay tessellations. Let ω be a σ-finite counting measure in R2 in
general position. The Delaunay tessellation associated with ω is the unique triangulation with vertices in ω
such that the circumdisk of each simplex contains no point of ω in its interior. Delaunay tessellations are a
very popular structure in computational geometry [1] and are extensively used in many areas such as surface
reconstruction, mesh generation, molecular modeling, and medical image segmentation, see e.g. [10, 7] and
[27] for a wide panorama on random tessellations. In what follows, we denote by Del(ω) the set of triangles
in the Delaunay tessellation associated with ω and, for any 3-tuple of points x = (x1, x2, x3) ∈ (R2)3

6= in

general position, we denote by ∆(x) the triangle spanned by x and by z(x) its circumcenter. We also let
αmin(∆(x)) the minimum of angles of ∆(x).

In all this section, the Delaunay tessellation is based on a stationary Poisson point process η (or on a
Palm version of η) of intensity 1 in R2. In particular, η satisfies the EDD property. Now, let τ > 0 be fixed
and Wn = [−n1/d/2, n1/d/2]. We consider the point process

(4.6) Ξn := Ξn[η] =
∑
x∈η36=

1{z(x) ∈Wn}gn(x, η)δn−1/2z(x),

where, for any ω ∈ N in general position and for any x = (x1, x2, x3) ∈ ω3
6=, we write

gn(x, ω) = 1{αmin(∆(x)) < vn}1{∆(x) ∈ Del(ω)}.

The threshold vn appearing in the above expression will be chosen in such a way that E[Ξn] −→
n→∞

τ .

4.2.1. The threshold vn. We give below an explicit value of vn. To do it, we first express E[Ξn] in terms
of typical Delaunay triangle. In what follows, we denote the latter by ∆0. Recall that ∆0 is a random
triangle whose the distribution can be defined as follows (see e.g. Section 10.4 in [35]): for any B ∈ B2 with
|B| ∈ (0,∞), and for any translation invariant function h : K2 → R+, where K2 denotes the set of convex
bodies in R2,

E [h(∆0) ] =
1

2|B|
E

 ∑
x∈η36=

1{z(x) ∈ B}h(∆(x))1{∆(x) ∈ Del(x)}

 .
Since |Wn| = n, we have

E [ Ξn ] = 2nP (αmin(∆0) < vn ) .

According to [23], it is known that αmin(∆0) has a Lebesgue density given by

f(t) =
4

π
sin(t) ((π − 3t) cos(t) + sin(3t))1{0 ≤ t ≤ π

3
}.

This implies P (αmin(∆0) < v ) = 2v2− 1
2v

4+o(v4) and therefore E [ Ξn ] = 4nv2
n−nv4

n+o(nv4
n). In particular,

to ensure that E[Ξn] −→
n→∞

τ , it is sufficient to take

(4.7) vn =
1

2
τ1/2n−1/2.

In particular, with this choice, we have

(4.8) 2nP (αmin(∆0) < vn ) = τ +O(n−1).

4.2.2. Compound Poisson approximation.

Theorem 4.3. Let η be a Poisson point process of intensity 1 in R2. Let τ > 0 be fixed, Ξn as in (4.6)
and vn as in (4.7). Moreover, let CP(π1, π2, . . . ) be the distribution of a compound Poisson process with
parameters π1, π2, . . . , with π1(B) = 1

2τ |B ∩W1|, π2(B) = 1
4τ |B ∩W1| and πi(B) = 0 for any i ≥ 3 and

B ∈ B2. Then,

d2(LΞ,CP(π1, π2, . . . )) = O((log n)2/n) as n→∞.
14



The above theorem can be interpreted as follows. When the size of the window Wn = [−n1/2/2, n1/2/2]2

goes to infinity, the point process of exceedances Ξn converges to a compound Poisson point process ψ.
Using the identification described in Section 2.1.1, the point process ψ can be seen as a family of points
{(xk,mk) : k ≥ 1} ⊂ Rd × N∗, where {xk : k ≥ 1} is a stationary Poisson point process in W1 of intensity
γ = 3τ

4 and where the mk’s are i.i.d., independent of the xk’s., and with distribution Q(1) = 2
3 , Q(2) = 1

3 ,
Q(i) = 0 for any i ≥ 3. In particular,

P

(
min

x∈η36=:z(x)∈Wn

αmin(∆(x)) ≤ vn

)
−→
n→∞

P
(

Φ(R2) = 0
)

= e−
3
4 τ .

In the sense of [15], we obtain that the extremal index for the small angles exists and that it is θ = 3
4 .

Intuitively, it means that the mean size of a typical cluster of exceedances is θ−1 = 4
3 = Q(1) + 2Q(2). To

the best of our knowledge, except a recent work by Basrak et al. [5] on the kth-nearest neighbor graph, it
is the only (non-trivial) example for which the extremal index and the cluster size distribution can be made
explicit in the context of Stochastic Geometry. Notice also that in [15, Section 5], a potential applicability
of the main results of that paper to Poisson-Delaunay tessellations is discussed. However, our method is
more general, since it establishes compound Poisson approximation in the d2 distance with an explicit rate
of convergence.

Proof of Theorem 4.3. We apply Theorem 3.2 to the function gn : (R2)3×N→ {0, 1} defined, for any ω ∈ N
(in general position) and for any x = (x1, x2, x3) ∈ ω3

6=, by

gn(x, ω) = 1{αmin(∆(x)) < vn}1{∆(x) ∈ Del(ω)}.

Condition (C) holds by taking Cn = Blogn. Moreover, Condition (M) is satisfied since

γn = P (αmin(0) < vn )

is positive. To check Condition (S*), we consider the following radius of stabilization:

R(z(x), ω) = R̃(x)1{∆(x) ∈ Del(ω)},

where R̃(x) denotes the circumradius of ∆(x). Let y ∈ (R2)`, with ` = 0, . . . , 3. It follows from the definition
of Del(ηx,y) that

P ( ∆(x) ∈ Del(ηx,y) ) ≤ P ( ∆(x) ∈ Del(ηx) )

= P ( η ∩B(x) = ∅ )

= e−π(R̃(x))2 ,

where B(x) denotes the circumball of ∆(x). Therefore, for any r > 0, we have

P (R(z(x), η) > r ) ≤ e−πR̃(x)21{R̃(x) > r} ≤ e−πr
2

.

In particular, for any sequence (rn), we have∫
(R2)k+`

1{z(x) ∈Wn}1{z(xk−`,y) ∈Wn ∩ (Cn)z(x)}P (Rn(z(x), ξx,y) > rn ) d(x,y) ≤ cn2e−πr
2
n .

When rn ≥ (log n)1/2+ε for some ε > 0, the right-hand side is smaller than e−πrn for n large enough. This
proves that Condition (S*) holds.

Now, applying Theorem 3.2, we get

d2(LΞn,CP(π1, π2, . . . ))

≤ c1
n

+ enγn
(∑
i≥1

{
|iπi(R2)− E[Ξ(i)

n (R2)]|+ min{πi(R2),E[Ξ(i)
n ]/i}d̂1(πi,E[Ξ(i)

n ]/i)
}

+ c2nγ
2
n(log n)2 +

c3(log n)2

n

)
,
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In the above equation, the point process Ξ
(i)
n is defined as

Ξ(i)
n =

∑
x∈η36=

1{z(x) ∈Wn}1{αmin(∆(x)) < vn}1{Ξn(Cx) = i}δn−1/2z(x),

where Cx = Blogn(z(x)). Now, because 2nP (αmin(0) < vn ) −→
n→∞

τ , we have

(4.9) d2(LΞn,CP(π1, π2, . . . ))

≤ c
(∑
i≥1

{
|iπi(R2)− E[Ξ(i)

n (R2)]|+ min{πi(R2),E[Ξ(i)
n (R2)]/i}d̂1(πi,E[Ξ(i)

n ]/i)
}

+
(log n)2

n

)
,

To deal with the terms appearing in the sum, we first give an estimate of E[Ξ
(i)
n (A)] for any Borel subset

A ⊂ R2. According to the multivariate Mecke equation [21, Theorem 4.4], we have

E[Ξ(i)
n (A)] = E

[ ∑
x∈η36=

1{αmin(∆(x)) < vn}1{Ξn(Blogn(z(x))) = i}1{z(x) ∈ (An ∩Wn)}
]

=

∫
(R2)3

P
(
αmin(∆(x)) < vn,Ξn[ηR2\B(x) ∪ {x}](Blogn(z(x)) = i

)
1{z(x) ∈ (An ∩Wn)}dx,

where ηR2\B(x) is a Poisson point process of intensity 1 in R2 \ B(x) and where An = n1/2A. In the above
expression, with a slight abuse of notation, we have written {x} = {x1, x2, x3} for any x = (x1, x2, x3) ∈
(R2)3. The integral can be interpreted in terms of typical Delaunay triangle. Indeed, let R and U =
(U1, U2, U3) be the circumradius and the angles of the vertices of ∆0. Then R and U = (U1, U2, U3) are by
[35, Theorem 10.4.4] independent random variables with distributions

(4.10) P (R ≤ s ) = 2(nπ)2

∫ s

0

r3e−nπr
2

dr

and

(4.11) P ( U ∈ E ) =
1

12π2

∫
S
· · ·
∫
S
|∆(u)|1u∈E σ(du)

for any s ≥ 0 and for any measurable set E ⊂ S3, where S denotes the unit circle and where σ denotes the
uniform distribution on S with normalization σ(S) = 2π. Integrating over z ∈ (An ∩Wn) and using the fact

that ∆0
d
= ∆(RU), we obtain

E[Ξ(i)
n (A)] = 2n|A ∩W1|P

(
αmin(∆(RU)) < vn,Ξn[ηR2\BR ∪ {RU}](Blogn) = i

)
= 2n|A ∩W1|P (αmin(∆0) < vn ) pn(i)

= (τ + εn)|A ∩W1| pn(i),(4.12)

where

(4.13) pn(i) = P
(

Ξn[ηR2\BR ∪ {RU}](Blogn) = i
∣∣αmin(∆(RU)) < vn

)
and where (εn) is some sequence, only depending on n, such that εn −→

n→∞
0. In Equation (4.13), conditional

on R, the Poisson point process ηR2\BR is independent of U. The following proposition gives the order of
pn(i) for each i ≥ 3 as n goes to infinity.

Proposition 4.4. With the above notation,

(1) pn(1) = 1/2 +O((log n)2/n);
(2) pn(2) = 1/2 +O((log n)2/n);
(3)

∑
i≥3 pn(i) = O((log n)2/n).

Theorem 4.3 is a direct consequence of the above proposition, Equations (4.9), (4.12) and of the fact that
πi(R2) = 0 for any i ≥ 3. It remains to prove Proposition 4.4. �
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Proof of Proposition 4.4. Proof of (3). We start with this assertion since it is the simplest case. Roughly,
the latter can be explained by the following heuristic argument. If a Delaunay triangle ∆ = ∆(U1, U2, U3)

has a small angle, say α(
−−−→
U3U1,

−−−→
U3U2), of order vn ∼

n→∞
cn−1/2 then the opposite side, namely [U1, U2], has

a length of order cn−1/2 × n−1/2 = cn−1, which corresponds to the minimal interpoint distance. The other
triangle which shares the same edge has also an angle of order n−1/2; and thus it is possible that clusters are
of size at least 2. Clusters cannot be of size i ≥ 3, since this would imply that there exists another triangle,
whose edges are not [U1, U2], with a small angle. This should imply that there is in the neighborhood another
point which is distant to cn−1 to its nearest neighbor, which is not possible with high probability (see e.g.
[18]). To prove (3), we first notice that∑

i≥3

pn(i) ∼
n→∞

2

τ
nP
(

Ξn[ηR2\BR ∪ {RU}](Blogn) ≥ 3, αmin(∆(RU)) < vn
)

≤ 6

τ
nP
(

Ξn[ηR2\BR ∪ {RU}](Blogn) ≥ 3, α3 < vn
)
,

where α3 = α3(∆(RU)) denotes the measure of the angle between
−−−→
U3U1 and

−−−→
U3U2. To prove that the

above term converges to 0, the main task is to observe the following: if there exist three exceedances, then
necessarily there exists a triangle ∆(x1, x2, x3) with α3 < vn and another one with edges which are different
from [x2, x3]. More precisely, we have

(4.14) nP
(

Ξn[ηR2\BR ∪ {RU}](Blogn) ≥ 3, α3 < vn
)
≤ p(n)

0 + p
(n)
1;1 + p

(n)
1;2 + p

(n)
1;3 + p

(n)
2;1−3 + p

(n)
2;2−3,

where

p
(n)
0 = nP

(
∃(x4, x5, x6) ∈ (ηR2\BR)3 : ∆(x4:6) ∈ Del(ηR2\BR ∪ {RU}),

z(x4, x5, x6) ∈ Blogn, αmin(∆(x4:6)) < vn, α3 < vn

)
,

p
(n)
1;1 = nP

(
∃(x4, x5) ∈ (ηR2\BR)2 : ∆(x4, x5, RU1) ∈ Del(ηR2\BR ∪ {RU}),

z(x4, x5, RU1) ∈ Blogn, αmin(∆(x4, x5, RU1)) < vn, α3 < vn

)
,

p
(n)
1;2 = nP

(
∃(x4, x5) ∈ (ηR2\BR)2 : ∆(x4, x5, RU2) ∈ Del(ηR2\BR ∪ {RU}),

z(x4, x5, RU2) ∈ Blogn, αmin(∆(x4, x5, RU2)) < vn, α3 < vn

)
,

p
(n)
1;3 = nP

(
∃(x4, x5) ∈ (ηR2\BR)2 : ∆(x4, x5, RU3) ∈ Del(ηR2\BR ∪ {RU}),

z(x4, x5, RU3) ∈ Blogn, αmin(∆(x4, x5, RU3)) < vn, α3 < vn

)
,

p
(n)
2;1−3 = nP

(
∃x4 ∈ ηR2\BR : ∆(x4, RU1, RU3) ∈ Del(ηR2\BR ∪ {RU}),

z(x4, RU1, RU3) ∈ Blogn, αmin(∆(x4, RU1, RU3)) < vn, α3 < vn

)
,

p
(n)
2;2−3 = nP

(
∃x4 ∈ ηR2\BR : ∆(x4, RU2, RU3) ∈ Del(ηR2\BR ∪ {RU}),

z(x4, RU2, RU3) ∈ Blogn, αmin(∆(x4, RU2, RU3)) < vn, α3 < vn

)
.

In the above equations and in the following, the terms xi’s are assumed to be different. We only deal with

the term p
(n)
0 since the other one can be dealt with in a similar way and because it is the largest term (due
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to the fact that it concerns triangles with no common point). To do it, we write

p
(n)
0 = nE

[ ∑
(x4,x5,x6)∈(ηR2\BR

)3

1∆(x4,x5,x6)∈Del(ηR2\BR
∪{RU}) 1z(x4,x5,x6)∈Blogn

1αmin(∆(x4,x5,x6))<vn 1α3<vn

]
.

From the multivariate Mecke equation and (4.10), (4.11), we have

p
(n)
0 = cn

∫
(R2)3

∫
R+

∫
S3
e−|Br∪B(x1,x2,x3)|r3|∆(u)|1{z(x4, x5, x6) ∈ Blogn}

× 1{αmin(∆(x4, x5, x6)) < vn}1{α3 < vn}σ(du)drdx4dx5dx6.

Applying the Blaschke-Petkantschin type of formula [35, Theorem 7.3.1], we get

p
(n)
0 = cn

∫
Blogn

∫
R2

+

∫
S3×S3

e−|Br∪Br′ (z
′)|r3(r′)3|∆(u)||∆(u′)|1α3<vn 1α6<vn σ(du)σ(du′)drdr′dz′,

where u′ = (u4, u5, u6) ∈ S3 and where α6 denotes the value of the angle between
−−→
u′6u
′
4 and

−−→
u′6u
′
5. Assuming

without loss of generality that r ≤ r′ and using the fact that |Br ∪Br′(z′)| ≥ πr2, we have

p
(n)
0 ≤ cn

(∫
S3
|∆(u)|1α3<vn σ(du)

)2 ∫
Blogn

∫
R2

+

e−πr
2

r3(r′)31r′≤r drdr′dz′.

Besides, according to (4.11), we know that∫
S3
|∆(u)|1α3<vn σ(du) = cP (αmin(∆(RU)) < vn ) = cP (αmin(∆0) < vn ) ∼

n→∞
cn−1.

This implies p
(n)
0 = O

(
(log n)2/n

)
. In the same way, we can prove that the other terms appearing in (4.14)

are O (1/n). This concludes the proof of (3).
Proof of (1) and (2). It is sufficient to deal with (1) since

∑∞
i=1 pn(i) = 1. To do it, we first observe that

pn(2) =
E
[
1{Ξn[ηR2\BR ∪ {RU}](Blogn) = 2}1{αmin(∆(RU)) < vn}

]
P (αmin(∆(RU)) < vn )

.

Moreover, the Palm version of Ξn = Ξn[η] satisfies the following equation:

Ξ0
n
d
= Ξn[ηR2\BR ∪ {RU}] ∪ {0}.

This together with (2.1) gives that

pn(2) =
E
[∑

z∈Ξn∩Wn
1{Ξn(z +Blogn) = 2}

]
2nP (αmin(∆(RU)) < vn )

.

Since we will prove below that the numerator converges to some positive constant, it follows from (4.8) that

pn(2) =
1

τ
E

[ ∑
z∈Ξn∩Wn

1{Ξn(z +Blogn) = 2}

]
+O(1/n).

Now we count all points in z ∈ Ξn∩Wn, for which there is another triangle with minimum angle smaller than
vn and with circumcenter in z+Blogn. Using the same arguments as in the proof of (3), we can easily show
that it is unlikely that these two triangles have different minimum edges and, therefore, different centres.
Thus

pn(2) =
1

2τ
E
[ ∑
x∈η36=

∑
x4∈η\{x}

1η∩B(x)=∅ 1η∩B(x1,x2,x4)=∅ 1z(x)∈Wn
1{z(x1, x2, x4) ∈ (z(x) +Blogn) ∩Wn}

× 1α3<vn 1α3=αmin(∆(x)) 1α4<vn 1α4=αmin(∆(x1,x2,x4))

]
+O

(
(log n)2/n

)
,
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Figure 1. Two Delaunay triangles with small angles

where α3 is the value of the angle with apex x3 in the triangle with vertices x1, x2, x3 and α4 is the value
of the angle with apex x4 in the triangle with vertices x1, x2, x4 (see Figure 1). To do it, we apply the
multivariate Mecke equation. This gives

pn(2) =
1

2τ

∫
(R2)4

e−|B(x)∪B(x1,x2,x4)|1{x3, x4 /∈ B(x) ∪B(x1, x2, x4)}1{z(x) ∈Wn}

× 1{α3 < vn}1{α4 < vn}1{α3 = αmin(∆(x))}1{α4 = αmin(∆(x1, x2, x4))}dxdx4 +O((log n)2/n).

In the above equation, the event {z(x1, x2, x4) ∈ (z(x) + Blogn) ∩ Wn} has disappeared because, on the
complement of this event, it is unlikely that η ∩B(x1, x2, x4) = ∅. Now, to deal with the right-hand side, we
apply the transformation defined by the differentiable mapping

T : R2 × R+ × S −→ (R2)2,(4.15)

which is defined by

(z, r0, u) 7−→ (z + r0u, z − r0u) =: (x1, x2).

The function T is bijective up to a set of measure zero. It follows by a standard argument that introduces
local coordinates (see the proof of Theorem 7.3.1 in [35]) that T has Jacobian 4r0. Writing a(z± r0u, x3, x4)
for the area of B(x1, x2, x3) ∪B(x1, x2, x4) with x1 = z + ru and x2 = z − ru, we have

pn(2) =
2

τ

∫
(R2)2

∫ ∞
0

∫
S

∫
Wn

e−a(z±r0u,x3,x4)1{x3, x4 /∈ B(z ± r0u, x3) ∪B(z ± r0u, x4)}1{α3 < vn}

×1{α4 < vn}1{α3 = αmin(∆(z±r0u, x3))}1{α4 = αmin(∆(z±r0u, x4))}r0 dz σ(du) dr0 dx3dx4+O(log n)2/n.

Integrating (z, u) over Wn×S and denoting by e1 = (1, 0) the first vector of the standard basis of R2, we get

pn(2) =
4πn

τ

∫
(R2)2

∫ ∞
0

e−a(±r0e1,x3,x4)1{x3, x4 /∈ B(±r0e1, x3) ∪B(±r0e1, x4)}1{α3 < vn}

× 1{α4 < vn}1{α3 = αmin(∆(±r0e1, x3))}1{α4 = αmin(∆(±r0e1, x4))}r0 dr0 dx3dx4 +O(log n)2/n.
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Note that the conditions x3, x4 /∈ B(±r0e1, x3) ∪ B(±r0e1, x4) is satisfied if and only if x3 ∈ R × R+ and
x4 ∈ R× R− (or vice versa). Therefore

pn(2) =
8πn

τ

∫
(R×R+)×(R×R−)

∫ ∞
0

e−a(±r0e1,x3,x4)1{x3, x4 /∈ B(±r0e1, x3) ∪B(±r0e1, x4)}

× 1{α3 < vn}1{α4 < vn}1{α3 = αmin(∆(±r0e1, x3))}
× 1{α4 = αmin(∆(±r0e1, x4))}r0 dr0 dx3dx4 +O(log n)2/n.

Here we apply twice the Blaschke-Petkantschin formula from Theorem 5 in [26] and obtain

32πn

τ

∫ ∞
2r0√

3

∫ ∞
2r0√

3

∫ ∞
0

1{arcsin(r0/r) ≤ vn}
(

(π − 3 arcsin(r0/r)) +
r sin(3 arcsin(r0/r))√

r2 − r2
0

)
× 1{arcsin(r0/s) ≤ vn}

(
(π − 3 arcsin(r0/s)) +

s sin(3 arcsin(r0/s))√
s2 − r2

0

)
× e−na(r0,r,s)rsr0 dsdrdr0 +O(log n)2/n,

where a(r0, r, s) := |Br(
√
r2 − r2

0e2) ∪ Bs(−
√
s2 − r2

0e2)|, with e2 = (0, 1). Now, consider the change of
variables r = r0

x and s = r0
y . Using the fact that a(r0, xr0, yr0) = r2

0a(1, x, y) and integrating r0 ∈ (0,∞),
we get

32πn

τ

∫ √
3

2

0

∫ √
3

2

0

1{arcsin(x) ≤ vn}
(

(π − 3 arcsin(x)) +
sin(3 arcsin(x))√

1− x2

)
× 1{arcsin(y) ≤ vn}

(
(π − 3 arcsin(y)) +

s sin(3 arcsin(y))√
1− y2

)
1

x3y3a(1, x, y)3
dy dx

+O(log n)2/n.

It is an elementary calculation to derive that

a(1, x, y) =
π − arcsin(x)

x2
+

√
1− x2

x
+
π − arcsin(y)

y2
+

√
1− y2

y
, 0 < x, y ≤

√
3

2
.

Next we substitute x = sinα and y = sinβ and thus arrive at

pn(2) ∼
n→∞

32πn

τ

∫ π
3 ∧vn

0

∫ π
3 ∧vn

0

(
(π − 3α) cos(α) + sin(3α)

)(
(π − 3β) cos(β) + sin(3β)

)
×
(

sin(α) sin(β)

sin(β)2(π − α+ sin(α) cos(α)) + sin(α)2(π − β + sin(β) cos(β))

)3

dβ dα,

and a series expansion of sin and cos shows that pn(2) = 32n
τ

∫ vn
0

∫ vn
0

(
αβ

α2+β2

)3

dβdα + O(log n)2/n. This

gives pn(2) =
2nv2n
τ +O(log n)2/n. This together with (4.7) implies pn(2) = 1

2 +O(log n)2/n. �
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