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Abstract

Let (dn) be a sequence of positive numbers and let (Xn) be a sequence of positive
independent random variables. We provide an upper bound for the deviation between
the distribution of the mantissaes of (Xdn

n ) and the Benford’s law. If dn goes to infinity
at a rate at most polynomial, this deviation converges a.s. to 0 as N goes to infinity.
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1 Introduction
A sequence of positive numbers (xn) is said to satisfy the first digit phenomenon if

lim
N→∞

1
N

N∑
n=1

1F (xn)=k = log10

(
1 + 1

k

)
, k = 1, . . . , 9,

where F (xn) is the first digit of xn, and where 1A denotes the indicator function of any subset
A. Such a phenomenon was observed by Benford and Newcomb on real life numbers [11, 1313]. It
is extensively used in various domains, such as fraud detection [1414], computer design [88] and
image processing [1717]. As an extension of the first digit phenomenon, the notion of Benford
sequence is introduced as follows. Let µ10 be the measure on the interval [1, 10) defined by

µ10([1, a)) = log10 a, (1 ≤ a < 10),

where log10 a denotes the logarithm in base 10 of a. LetM10(x) be the mantissa in base 10
of a positive number x, i.e. M10(x) is the unique number in [1, 10) such that there exists
an integer k satisfying x = M10(x)10k. A set of numbers (xn) is referred to as a Benford
sequence if for any 1 ≤ a < 10, we have

lim
N→∞

1
N

N∑
n=1

1M10(xn)∈[1,a) = µ10([1, a)).

In particular, each Benford sequence satisfies the first digit phenomenon since F (x) = k if and
only ifM10(x) ∈ [k, k + 1), with x > 0, k = 1, . . . , 9. For instance, the sequences (2n), (n!)
and (nn) are Benford. For various examples of sequences of positive numbers whose mantissae
are (or approach to be) distributed with respect to µ10, see e.g. [55, 66]. More recently, several
authors have provided examples of sequences of random variables whose mantissa distribution
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converges to µ10 [33, 1010, 1616] or whose the sequence of mantissae is almost surely distributed
with respect to µ10. For a wide panorama on Benford sequences, see the reference books
[22, 1212].

It is well known that a sequence (xn) of positive numbers is Benford in base 10 if and only
if the sequence of its fractional parts ({log10 xn}) is uniformly distributed in [0, 1). According
to the Weyl’s criterion (see e.g. [99], p7), the sequence (xn) is Benford if and only if, for any
h ∈ Z∗, we have

lim
N→∞

1
N

N∑
n=1

e2iπh log10 xn = 0.

To define a deviation between a sequence and the Benford’s law, the notion of discrepancy is
introduced as follows. Let u = (un) be a sequence of real numbers. The discrepancy modulo
1 of order N of u, associated with the natural density, is defined as

DN (u) = sup
0≤a<b<1

∣∣∣∣∣ 1
N

N∑
n=1

1[a,b) ({un})− (b− a)
∣∣∣∣∣ .

For more details on the discrepancy, see e.g. [99], p100–131. For a sequence x = (xn), if we set
xn = 10un , we write

∼
DN (x) = DN (u). The quantity

∼
DN (x) deals with the deviation between

µ10 and the distribution of the first N terms of (M10(xn)) since {log10 xn} = log10(M10(xn)).
Hence

∼
DN (x) = sup

1≤s<t<10

∣∣∣∣∣ 1
N

N∑
n=1

1[s,t) (M10(xn))− µ10([s, t))
∣∣∣∣∣ .

In particular, x = (xn) is Benford if and only if
∼
DN (x) converges to 0 as N goes to infinity.

Through misuse of language, we also say that
∼
DN (x) is the discrepancy of x = (xn).

In this paper, we consider the following problem. Let (Xn) be a sequence of positive
independent random variables. We say that (Xn) is a.s. Benford if ω − P a.s. the sequence
(Xn(ω)) is Benford. As observed in [77], several deterministic sequences at a power d tend to
be Benford when the power d is large enough. The aim of our paper is to provide general
conditions on the distribution of the random sequence X = (Xn) to ensure that X(d) = (Xdn

n )
is a.s. Benford for any sequence of positive numbers (dn) such that dn converges to infinity
at a rate at most polynomial.

First, we give some notation. In what follows, the function log denotes the natural
logarithm. For any functions f , g, we write g(x) ∼

x→∞
f(x) if and only if g(x)

f(x) −→x→∞ 1.
Moreover, we write g(x) = O(f(x)) if and only if there exists a positive number M and a
real number x0 such that |g(x)| ≤M |f(x)| for any x ≥ x0.

We are now prepared to state our first theorem, which provides an upper bound for the
discrepancy.
Theorem 1. Let (dn) be a (deterministic) sequence of positive numbers such that dn =
O
(
nθ
)
for some θ ≥ 0. Let X = (Xn) be a sequence of positive independent random variables

satisfying the following two conditions:
(i) there exists α > 0 such that

∑∞
n=1 P (| logXn| > nα) <∞;

(ii) there exists a sequence of nonnegative numbers (rn), with rn = O(n−β) for some β > 0,
and their exist four constants c1, c2, γ, δ > 0, such that for n large enough and for each
h ∈ N∗, we have∣∣∣E [ e2iπh logXn

]∣∣∣ ≤ c1h
−γ + c2h

δrn. (1)
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Then there exist an integrable random variable C0 and a constant c0 such that, for any N ≥ 1,
we have ω − P a.s.

∼
DN (X(d)(ω)) ≤ C0(ω) · (logN)2 ·N−

1
2 + c0

(
1
N

N∑
n=1

(dn)−γ + (logN)
1
δ+1 ·N−

min{β−δθ,1}
δ+1

)
,

where X(d)(ω) = (Xdn
n (ω)).

The above theorem is obvious if the upper bound does not converge to 0. However, if
δθ < β, it provides a non-trivial estimate for the discrepancy when dn goes to infinity at a
rate at most polynomial. As a consequence, we obtain the following result.

Corollary 2. Let (dn) be such that dn = O
(
nθ
)
for some θ > 0 and dn −→

n→∞
∞. Assume

that X = (Xn) satisfies the assumptions (ii) and (iiii) for some α, β, γ, δ > 0, with δθ < β.
Then

∼
DN (Xd(ω)) converges ω−P a.s. to 0, at a rate of convergence provided in Theorem 11.

In particular, the sequence (Xd
n(ω)) is a.s. Benford.

In particular, if X = (Xn) and (dn) satisfy the assumptions of Corollary 22, with the more
restrictive condition dn = O (nσ) for each σ > 0, then the discrepancy of X(d)(ω) can be
bounded as follows:

sup
1≤s<t<10

∣∣∣∣∣ 1
N

N∑
n=1

1[s,t) (M10(Xdn
n (ω)))− µ10([s, t))

∣∣∣∣∣ ≤ C(ω) · 1
N

N∑
n=1

d−γn .

It is rather surprising that X(d)(ω) is a.s. Benford for a sequence d = (dn) which converges
arbitrarily slowly to infinity. On the opposite, it appears that for several classes of (deter-
ministic) sequences (xn), the sequence (xdnn ) is Benford, when (dn) converges to infinity at a
rate at less polynomial (see e.g. Theorem 2 in [1111]). As a second consequence of Theorem 11,
the following corollary deals with the case where the sequence (dn) is constant.

Corollary 3. Let dn = d for each n ≥ 1 and let X = (Xn) be such that the assumptions (ii)
and (iiii) hold for some α, β, γ, δ > 0. Then there exist an integrable random variable C0(ω)
and a constant c0 such that, for any N ≥ 1, we have ω − P a.s.

∼
DN (Xd(ω)) ≤ C0(ω) · (logN)2 ·N−

1
2 + c0

(
d−γ + (logN)

1
δ+1 ·N−

min{β,1}
δ+1

)
,

where Xd(ω) = (Xd
n(ω)).

In particular, as d goes to infinity, the sequence Xd = (Xd
n) tends to be a.s. Benford

in the sense that its discrepancy converges to 0 as d,N → ∞. In a different context, such
a convergence was already observed in Theorem 1 in [77], in which it is stated that two
(deterministic) sequences at a large power tend to be Benford.

The assumption (ii) of Theorem 11 is few restrictive. Indeed, thanks to the Markov’s
inequality, such a condition is satisfied when E [Xn ] and E

[
X−1
n

]
are negligible compared

to n−1−εen
α for some α, ε > 0. The assumption (iiii) of Theorem 11 is in a way classical and is

discussed in Remark 11.
Our paper is organized as follows. In Section 22, we prove Theorem 11. This result is

illustrated through several examples of standard distributions in Section 33. These examples
deal with discrete and continuous random variables respectively. In the rest of the paper,
we denote by c a generic constant which is independent of ω, N and (dn), but which may
depend on other quantities.
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2 Proof of Theorem 11
To prove Theorem 11, we apply two well-known inequalities. The first one deals with the
discrepancy and is referred to as the Erdös-Turán inequality (see e.g. [? ]).

Theorem 4. (Erdös-Turán inequality) Let x = (xn) be a sequence of real numbers and let
N ≥ 1. Then, for every integer H ≥ 1, we have

∼
DN (x) ≤ 1

H + 1 +
H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

e2iπh log10 xn

∣∣∣∣∣ .
The second inequality which we apply gives a deviation beween a sum of unit random

complex numbers and the expectation of this sum. Such a result is due to Cohen and Cuny
(Theorem 4.10 in [44]) and is re-written in our context.

Theorem 5. (Cohen & Cuny, 2006) Let (Yn) be a sequence of independent random variables,
with values in R. Assume that there exists η > 0, such that

∑∞
n=1 P (|Yn| > nη) < ∞. Let

(an) be a sequence of complex numbers. Then there exist universal constants ε > 0 and C > 0,
such that

E

 sup
N>K≥1

sup
T≥1

exp

ε · max|t|≤T
∣∣∣∑N

n=K+1 an
(
e2iπtYn − E

[
e2iπtYn

])∣∣∣2
log(1 + T ) log(1 +Nη)

∑N
n=K+1 |an|2


 ≤ C.

In the rest of the paper, with a slight abuse of notation, we omit the dependence in ω,
e.g. we write

∼
DN (X(d)) instead of

∼
DN (X(d)(ω)). We are now prepared to prove our first

theorem.

Proof of Theorem 11. According to the Erdös-Turán inequality, we have for any H ≥ 1,

∼
DN (X(d)) ≤ 1

H + 1 +
H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

e2iπh log10 X
dn
n

∣∣∣∣∣ .
Hence,

∼
DN (X(d)) ≤ 1

H + 1 +
H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

E
[
e2iπh log10 X

dn
n

]∣∣∣∣∣
+

H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

(
e2iπh log10 X

dn
n − E

[
e2iπh log10 X

dn
n

])∣∣∣∣∣ . (2)

First, we provide an upper bound for the term on the bottom. To do it, we take an =
1, Yn = log10X

dn
n and K = 1. Since dn = O(nθ), we obtain for n large enough that

P (|Yn| > nη) ≤ P (| logXn| > nα) with η > α + θ. Hence, according to the assumption (ii),
we have

∑∞
n=1 P (|Yn| > nη) <∞. It follows from Theorem 55 that

E

 sup
N>1

sup
T≥1

max
|t|≤T

∣∣∣∑N
n=2

(
e2iπt log10 X

dn
n − E

[
e2iπt log10 X

dn
n

])∣∣∣2
log(1 + T ) log(1 +Nη)(N − 1)

 ≤ C.
In particular, there exists an integrable random variable c(ω) such that, for any N ≥ 2,
T ≥ 1, |t| ≤ T we have ω − P a.s.∣∣∣∣∣ 1

N

N∑
n=1

(
e2iπt log10 X

dn
n − E

[
e2iπt log10 X

dn
n

])∣∣∣∣∣ ≤ c(ω) ·
√

log(1 + T ) ·

√
log(1 +Nη)

N
.

4



Notice that we have considered a sum over n = 1, . . . , N and not over n = 2, . . . , N in the
above equation because

∣∣∣e2iπt log10 X1 − E
[
e2iπt log10 X1

]∣∣∣ ≤ 2. By taking T = H and t = h,
we obtain for any N ≥ 1, H ≥ 1 that

H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

(
e2iπh log10 X

dn
n − E

[
e2iπh log10 X

dn
n

])∣∣∣∣∣
≤ c(ω)

H∑
h=1

1
h

√
log(1 +H) ·

√
log(1 +Nη)

N

≤ c′(ω) logH
√

log(1 +H) ·

√
log(1 +Nη)

N
.

(3)

Secondly, we provide an upper bound for the second term in the right-hand side in (22).
To do it, let N0 be such that the inequality (11) holds for each N ≥ N0. Then∣∣∣∣∣ 1

N

N∑
n=1

E
[
e2iπh log10 X

dn
n

]∣∣∣∣∣ ≤ 1
N

N0∑
n=1

∣∣∣E [ e2iπhdn log10 Xn
]∣∣∣+ 1

N

N∑
n=N0+1

∣∣∣E [ e2iπhdn log10 Xn
]∣∣∣ .

Bounding
∣∣∣E [ e2iπhdn log10 Xn

]∣∣∣ by 1 in the first sum and applying the inequality (11) in the
second sum for the right-hand side, we get∣∣∣∣∣ 1

N

N∑
n=1

E
[
e2iπh log10 X

dn
n

]∣∣∣∣∣ ≤ N0
N

+ c1 ·
1
N

N∑
n=1

(
hdn

log(10)

)−γ
+ c2 ·

1
N

N∑
n=1

(
hdn

log(10)

)δ
rn.

Besides,
∑H
h=1

1
h ≤ c logH,

∑H
h=1

1
h1+γ ≤ c and

∑H
h=1

1
h1−δ ≤ cHδ. This implies that

H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

E
[
e2iπh log10 X

dn
n

]∣∣∣∣∣ ≤ c ·
(

logH
N

+ 1
N

N∑
n=1

(dn)−γ + 1
N

N∑
n=1

(dn)δrn ·Hδ

)
.

Since dn = O
(
nθ
)
and rn = O

(
n−β

)
, we have 1

N

∑N
n=1(dn)δrn ≤ c · logN ·N−1 if β− δθ = 1

and 1
N

∑N
n=1(dn)δrn ≤ c · N−min{β−δθ,1} otherwise. This together with (22) and (33) implies

that

∼
DN (X(d)) ≤ 1

H + 1 + c′′(ω) · logH ·
√

log(1 +H) ·

√
log(1 +Nη)

N

+ c ·
(

1
N

N∑
n=1

(dn)−γ + logN ·N−min{β−δθ,1} ·Hδ

)
.

Optimizing the right-hand side over H ≥ 1, we conclude the proof of Theorem 11 by taking

H =
⌊
(logN)−

1
δ+1 ·N

min{β−δθ,1}
δ+1

⌋
+ 1.

�

Remark 1. The assumption given in Equation (11) has been chosen in such a way that it
holds when Xn follows the (discrete) uniform distribution on {1, . . . , n}. Indeed, in this case,
we have∣∣∣E [ e2iπh logXn

]∣∣∣ =
∣∣∣∣∣ 1n

n∑
k=1

e2iπh log k
∣∣∣∣∣ ≤ 1√

n
+ 1
n

∣∣∣∣∣∣
n∑

k=b
√
nc+1

e2iπh log k

∣∣∣∣∣∣ ,
5



According to the Van der Corput’s theorem (see e.g. [99], p17), this shows that

∣∣∣E [ e2iπh logXn
]∣∣∣ ≤ 8√

h
+ 1 + 4

√
h√

n
+ 6
n

+ 3h
n
√
n
.

In particular, this satisfies Equation (11) with γ = 1
2 , δ = 1 and rn = 1√

n
. However, our

assumption (iiii) and our assumption on the independence of the random variables Xn remain
restrictive. We hope, in a future paper, to extent Theorem 11 with more general conditions.

Remark 2. The main tool to derive the rate of the discrepancy is contained in Theorem 55.
Besides, as a consequence of Corollary 33, we deduce that ω − P a.s.

lim
d→∞

lim sup
N→∞

∼
DN (Xd) = 0. (4)

In particular, when d is large, the sequence Xd = (Xd
n) tends to be a Benford sequence.

However, Theorem 55 is not necessary to derive Equation (44) because the latter can be proved
directly by standard arguments. Indeed, it follows from the law of large numbers (for inde-
pendent non-stationary random variables) and the Erdös-Turán inequality that for all fixed
H ≥ 1,

lim sup
N→∞

∼
DN (Xd) ≤ 1

H + 1 +
H∑
h=1

1
h

lim sup
N→∞

1
N

∣∣∣∣∣
N∑
n=1

E
[
e2iπhd log10 Xn

]∣∣∣∣∣ .
Besides, according to (11), we know that

lim
d→∞

lim sup
N→∞

1
N

∣∣∣∣∣
N∑
n=1

E
[
e2iπhd log10 Xn

]∣∣∣∣∣ = 0.

Hence, by taking H →∞, this proves that limd→∞ lim supN→∞
∼
DN (Xd) = 0. However, the

main contribution of our paper is to provide an explicit rate of convergence for the discrepancy
of Xd as d goes to infinity.

3 Examples
In this section, we give several examples of sequences of random variables satisfying the
assumptions (ii) and (iiii) of Theorem 11. Our examples deal with discrete and continuous
random variables respectively.

3.1 Discrete random variables

The following proposition provides sufficient conditions for discrete random variables to en-
sure that the assumption (iiii) of Theorem 11 is satisfied for γ = δ = 1.

Proposition 6. Let (Xn) be a sequence of random variables with finite expectation and such
that Xn ≥ 1 a.s.. Assume that there exists a sequence of modes (mn) such that the sequences
(P (Xn = k))k≤mn and (P (Xn = k))k>mn are non-decreasing and non-increasing respectively.
Moreover, assume that for some β > 0 one of the two following cases is satisfied:

• Case 1: mn · n−β −→
n→∞

∞ and supn≥1mn P (Xn = mn) <∞;

• Case 2: supn≥1mn <∞, P (Xn = mn) = O
(
n−β

)
and E

[
1
Xn

]
= O

(
n−β

)
.
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Then for n large enough and for each h ≥ 1, we have:∣∣∣E [ e2iπh logXn
]∣∣∣ ≤ c1h

−1 + c2hn
−β

where c1, c2 are two constants.

Proof of Proposition 66. First, we provide a generic upper bound for E
[
e2iπh logXn

]
which

is independent of the two above cases. Then we deduce a specific upper bound for this
expectation which depends this time on the case which is considered.

To do it, we write E
[
e2iπh logXn

]
= limN→∞

∑N
k=1 e

2iπh log k P (Xn = k). Let N ≥ 1 be
fixed. It follows from the Abel transformation that

N∑
k=1

e2iπh log k P (Xn = k) = P (Xn = N + 1)
N∑
j=1

e2iπh log j

−
N∑
k=1

k∑
j=1

e2iπh log j(P (Xn = k + 1) − P (Xn = k)).

Since
∣∣∣P (Xn = N + 1)

∑N
j=1 e

2iπh log j
∣∣∣ ≤ N P (Xn = N + 1) converges to 0 as N goes to in-

finity (because E [Xn ] <∞), it is enough prove that∣∣∣∣∣∣
N∑
k=1

k∑
j=1

e2iπh log j(P (Xn = k + 1)− P (Xn = k))

∣∣∣∣∣∣ ≤ c1
h

+ hc2n
−β,

for some constants c1, c2. To do it, we apply the following lemma.

Lemma 7. For each h ≥ 1, k ≥ 1, we have∣∣∣∣∣∣
k∑
j=1

e2iπh log j

∣∣∣∣∣∣ ≤ k

2πh + 1 + πh log k.

Proof of Lemma 77. First, we notice that
k∑
j=1

e2iπh log j = k2iπh+1Rk(f),

where Rk(f) :=
∑k−1
j=0

∫ j+1
k

j
k

f
(
j+1
k

)
dt is the Riemann sum of the function f : t 7→ t2iπh on

[0, 1] with n regular steps of length n−1. Hence∣∣∣∣∣∣
k∑
j=1

e2iπh log j

∣∣∣∣∣∣ ≤ k
∣∣∣∣∫ 1

0
f(t)dt

∣∣∣∣+ k

∣∣∣∣Rk(f)−
∫ 1

0
f(t)dt

∣∣∣∣
≤ k

2πh + k

∣∣∣∣Rk(f)−
∫ 1

0
f(t)dt

∣∣∣∣ ,
where the second inequality comes from the fact that

∫ 1
0 f(t)dt = 1

2iπh+1 . Besides,∣∣∣∣Rk(f)−
∫ 1

0
f(t)dt

∣∣∣∣ =

∣∣∣∣∣∣
k−1∑
j=0

∫ j+1
k

j
k

(
f

(
j + 1
k

)
− f(t)

)
dt

∣∣∣∣∣∣
≤
∣∣∣∣∣
∫ 1

k

0

(
f

(1
k

)
− f(t)

)
dt
∣∣∣∣∣+

k−1∑
j=1

∫ j+1
k

j
k

(
j + 1
k
− t
)
· 2πhk

j
dt,
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where the last line is a consequence of the mean value inequality. Integrating the right-hand
side over t, we get∣∣∣∣Rk(f)−

∫ 1

0
f(t)dt

∣∣∣∣ ≤ 1
k

+ 2πh
k−1∑
j=1

1
2jk ≤

1
k

+ πh · log k
k

.

This concludes the proof of Lemma 77. �

According to Lemma 77, we have∣∣∣∣∣∣
N∑
k=1

k∑
j=1

e2iπh log j(P (Xn = k + 1)− P (Xn = k))

∣∣∣∣∣∣
≤

N∑
k=1

(
k

2πh + 1 + πh log k
)
|P (Xn = k + 1)− P (Xn = k)| .

Since the sequences (P (Xn = k))k≤mn and (P (Xn = k))k≥mn are non-decreasing and non-
increasing respectively, we get

N∑
k=1

(
k

2πh + 1 + πh log k
)
|P (Xn = k + 1)− P (Xn = k)|

=
mn−1∑
k=1

(
k

2πh + πh log k
)

(P (Xn = k + 1)− P (Xn = k))

+
N∑

k=mn

(
k

2πh + πh log k
)

(P (Xn = k)− P (Xn = k + 1))

+ 2 P (Xn = mn) − P (Xn = N) − P (Xn = 1) .

With standard computations, we get:

mn−1∑
k=1

k (P (Xn = k + 1)− P (Xn = k)) ≤ mn P (Xn = mn) ,

mn−1∑
k=1

log k (P (Xn = k + 1)− P (Xn = k)) ≤ logmn P (Xn = mn) ,

N∑
k=mn

k (P (Xn = k)− P (Xn = k + 1)) ≤ mn P (Xn = mn) + 1,

N∑
k=mn

log k (P (Xn = k)− P (Xn = k + 1)) ≤
N−2∑
k=mn

log
(

1 + 1
k

)
P (Xn = k + 1)

+ logmn P (Xn = mn) .

Using the fact that log
(
1 + 1

k

)
P (Xn = k + 1) ≤ 1

k P (Xn = k) for each k ≥ mn, we deduce
that

N∑
k=1

(
k

2πh + 1 + πh log k
)
|P (Xn = k + 1)− P (Xn = k)| ≤ c1

h
+ πhsn, (6)
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where

c1 = 1
2π

(
2 sup
n≥1

mn P (Xn = mn) + 1
)

and

sn = 2 logmn P (Xn = mn) +
N−1∑
k=mn

1
k

P (Xn = k) + 2 P (Xn = mn) .

The inequality (66) is independent of the two cases considered in the assumptions of Proposi-
tion 66. Now, we deal with the terms c1 and sn by discussing these two cases.

• Case 1: if mn ·n−β −→
n→∞

∞ for some β > 0 and supn≥1mn P (Xn = mn) <∞, we obtain

that c1 <∞. Moreover, sn = O
(
n−β

)
since logmn = O(mn) and

∞∑
k=mn

1
k

P (Xn = k) ≤
∞∑

k=mn

1
k

P (Xn = mn) ∼
n→∞

logmn · P (Xn = mn) .

• Case 2: if supn≥1mn <∞, P (Xn = mn) = O
(
n−β

)
and E

[
1
Xn

]
= O

(
n−β

)
for some

β > 0, we also obtain that c1 <∞ and sn = O
(
n−β

)
.

This concludes the proof of Proposition 66. �

We give below three examples of sequences of random variables X = (Xn) by checking the
assumption (ii) of Theorem 11 and one of the two cases of Proposition 66. According to Theorem
11 and Proposition 66, the discrepancy for each example can be bounded as follows:

∼
DN (X(d)) ≤ C0(ω) · (logN)2 ·N−

1
2 + c0

(
1
N

N∑
n=1

(dn)−1 + (logN)
1
2 ·N−

1
2 ·min{β−θ,1}

)
.

In particular, if (dn) → ∞ with dn = O
(
nθ
)
and θ > β, the sequence X(d) = (Xdn

n ) is a.s.
Benford.

Example 1. Assume that Xn has a geometric distribution with parameter pn = O
(
n−β

)
.

Here mn = 1, so that P (Xn = 1) = pn = O
(
n−β

)
. We also obtain the same order for

E
[

1
Xn

]
= − pn

1−pn · log(1 − pn). In particular, the third conditions of Case 2 are satisfied.
Besides, if pnen

α
n−α

′ −→
n→∞

∞ for some α > 0, α′ > 1, the assumption (ii) holds since

∞∑
n=1

P (| logXn| > nα) ≤
∞∑
n=1

1
pnen

α <∞

according to the Markov’s inequality.

Example 2. Let Xn be a random variable with distribution P (Xn = k) = αn
(n+k)1+ε , where

αn is the normalizing constant and ε > 0. In particular, we have

εnε ≤ αn ≤ ε(n+ 1)ε (7)
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since

1∫∞
n x−(1+ε)dx

≤ αn := 1∑∞
k=1(n+ k)−(1+ε) ≤

1∫∞
n+1 x

−(1+ε)dx
.

Here mn = 1 and the third conditions of Case 2 are satisfied. Indeed, the first one is trivial
and for the second one we have P (Xn = 1) = O

(
n−(1+ε)

)
. For the third condition, let β < 1.

According to (77), we have 1
k ·

αn·nβ
(n+k)1+ε ≤ ε

k(k+1)1−β . It follows from the dominated convergence
theorem that

lim
n→∞

nβ · E
[ 1
Xn

]
=
∞∑
k=1

lim
n→∞

1
k
· αn · nβ

(n+ k)1+ε = 0.

This checks the third condition of Case 2 for each β < 1. Besides, the assumption (ii) holds
since for each n ≥ 1 and for each α > 0, we have

P (| logXn| > nα) =
∞∑

k=benα+1c

αn
(n+ k)1+ε ≤

∞∑
k=benα+1c

ε(n+ 1)ε

(n+ k)1+ε ∼n→∞
nε

eεnα
.

Example 3. Assume that Xn has a (discrete) uniform distribution in {an, . . . , bn}, with
an < bn, bn · n−β →∞ for some β > 0, and lim sup an

bn
< 1. Here we take mn = bn. The two

conditions of Case 1 are satisfied. Indeed, the first one holds because bn · n−β → ∞. The
second one comes from the fact that lim sup an

bn
< 1 and mn P (Xn = mn) = bn

bn−an+1 . Besides,
a sufficient and few restrictive assumption on bn to ensure that the assumption (ii) holds is:
bn = O(enα) for some α > 0. Notice that if an

bn
converges to 1, the random variables Xn are

asymptotically deterministic. It is not surprising that the property (bb) cannot hold in this
context since there exist deterministic sequences such that, at any power d, the sequences
are not Benford.

3.2 Continuous random variables

Let X = (Xn) be a sequence of random variables. We first state three properties which imply
the assumption (iiii) of Theorem 11 when they are simultaneously satisfied.

(a) For any n ≥ 1, the density fn of Xn exists and is a piecewise absolutely continuous
function. In what follows, we denote by kn the number of sub-domains of fn and by
In,j := [an,j , bn,j ] the j-th sub-domain, with an,j ≤ bn,j ≤ an,j+1 for each 1 ≤ j ≤
kn − 1. The kn-th interval is of the form In,kn = [an,kn ,+∞). In particular, fn is a.e.
differentiable on

⋃kn
j=1 In,j and fn = 0 on the complement.

(b) lim supN→∞
∑kN
j=1 supx∈IN,j |xfN (x)| <∞.

(c) lim supN→∞
∑kN
j=1

∫
IN,j
|xf ′N (x)|dx <∞.

Under the above assumptions, the following proposition ensures that the assumption (iiii)
of Theorem 11 holds, with γ = 1 and an = 0 for each n ≥ 1.

Proposition 8. If the properties hold (aa), (bb) and (cc) hold simultaneously, then for n large
enough and for each h ∈ N∗, we have

∣∣∣E [ e2iπh logXn
]∣∣∣ ≤ c1h

−1.
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Proof of Proposition 88. It is enough to prove the following inequality:

lim sup
N→∞

sup
h∈N∗

h
∣∣∣E [ e2iπh logXN

]∣∣∣ <∞.
To do it, we assume without loss of generality that kn = 1 for each n, with In,j =: In =
[an, bn]. In particular, the density fn is absolutely continuous on [an, bn] and equals 0 on the
complement. This gives for any N ≥ 1, h ≥ 1

h
∣∣∣E [ e2iπh logXN

]∣∣∣ = h

∣∣∣∣∣
∫ bN

aN

x2iπhfN (x)dx
∣∣∣∣∣

= h

∣∣∣∣∣ 1
2iπh ·

([
x2iπh+1fN (x)

]bN
aN
−
∫ bN

aN

x2iπh+1f ′N (x)dx
)∣∣∣∣∣

≤ 1
2π

(
sup

x∈[aN ,bN ]
|xfN (x)|+

∫ bN

aN

|xf ′N (x)|dx
)
.

In particular, we have lim supN→∞ suph∈N∗ h
∣∣∣E [ e2iπh logXN

]∣∣∣ < ∞ provided that the three
above properties hold. �

Notice that if gn denotes the density of X−1
n , we can easily show that gn satisfies the

above assumptions if and only if the ones are satisfied by the density of Xn. This suggests
that our assumptions are not very restrictive. We give below three examples of distributions
of random variables which satisfy the assumption (ii) of Theorem 11 and the three conditions
(aa), (bb) and (cc) of Proposition 88. According to Theorem 11 and Proposition 88, the discrepancy
for each example can be bounded as follows:

∼
DN (X(d)) ≤ C ′0(ω) · (logN)2 ·N−

1
2 + c′0 ·

1
N

N∑
n=1

(dn)−1.

To obtain the rate of the discrepancy, we have taken δ = 1 and β → ∞. In particular, if
(dn)→∞ with dn = O

(
nθ
)
for some θ > 0, the sequence X(d) = (Xdn

n ) is a.s. Benford.

Example 4. If Xn has an exponential distribution with parameter λn > 0, the properties
(aa), (bb) and (cc) hold simultaneously, with kn = 1. Indeed, the first one is trivially satisfied
and for the second and the third ones, we get:

sup
x∈R+

|xfn(x)| = e−1 and
∫

R+
|xf ′n(x)|dx = 1.

Besides, for each α > 0, we have

P (| logXn| > nα) = e−λne
nα + (1− e−λne−n

α

).

Hence the assumption (ii) is satisfied if there exists α′ such that λnen
α′ −→

n→∞
∞ and λne−n

α′ −→
n→∞

0.
Example 5. Assume that Xn has a standard Fréchet distribution with parameter αn > 0,
i.e. P (Xn ≤ x) = e−x

−αn if x ≥ 0 and P (Xn ≤ x) = 0 otherwise. The property (aa) holds.
Moreover, if infn≥1 αn > 0 and supn≥1 αn < ∞, we can easily prove that the properties (bb)
and (cc) are satisfied. Besides, the assumption (ii) is also satisfied since for each α > 0, we
have

P (| logXn| > nα) ∼
n→∞

e−αn·n
α + e−e

αn·nα
,

where the right-hand side is the term of a convergent series.
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Example 6. If Xn has a (continuous) uniform distribution on [an, bn], with an < bn, the
properties (aa) and (cc) hold. Moreover, the property (bb) is satisfied when lim sup an

bn
< 1.

Besides, a sufficient and few restrictive assumption on an, bn to ensure that the assumption
(ii) holds is: e−nα = O(an) and bn = O(enα) for some α > 0. Unsurprisingly, the assumptions
on bn are very similar to those considered for a (discrete) uniform distribution.

3.3 A numerical illustration

In this section, we give a numerical illustration of a sequence of independent random variables
(Xn) such that (Xd

n) is almost a Benford sequence. For each n, the distribution of Xn

is assumed to be the (continuous) uniform distribution on [1, n]. This sequence satisfies the
assumptions of Theorem 11 (see Example 66). In Table 11, we provide the frequencies of the first
significant digit of Xd

1 , . . . , X
d
N , with N = 1000 and d = 2. It appears that the distribution

of frequencies of (Xd
n) is close to the Benford’s law.

First digit (Xd
n) Benford’s law

1 0.293 0.306
2 0.183 0.184
3 0.130 0.116
4 0.099 0.106
5 0.081 0.082
6 0.065 0.055
7 0.058 0.050
8 0.047 0.053
9 0.043 0.048

Table 1: a simulation of the frequencies of the first significant digits of Xd
1 , . . . , X

d
N , where

Xn has a uniform distribution on [1, n] for each n ≥ 1, with N = 1000 and d = 2 (Scilab c©).
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