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Abstract. Let m be a random tessellation in Rd, d ≥ 1, observed in the
window Wρ = ρ1/d[0, 1]d, ρ > 0, and let f be a geometrical characteristic.
We investigate the asymptotic behaviour of the maximum of f(C) over all
cells C ∈ m with nucleus in Wρ as ρ goes to infinity. When the normalized
maximum converges, we show that its asymptotic distribution depends
on the so-called extremal index. Two examples of extremal indices are
provided for Poisson-Voronoi and Poisson-Delaunay tessellations.
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1 Introduction
Random tessellations A tessellation of Rd, d ≥ 1, endowed with its Euclidean
norm | · |, is a countable collection of nonempty compact subsets, called cells,
with disjoint interiors which subdivides the space and such that the number of
cells intersecting any bounded subset of Rd is finite. The set T of tessellations is
endowed with the σ-algebra generated by the sets

{
m ∈ T,

⋃
C∈m ∂C ∩K = ∅

}
where ∂K is the boundary of K for any compact set K in Rd. By a random
tessellation m, we mean a random variable with values in T. It is said to be
stationary if its distribution is invariant under translations of the cells. For a
complete account on random tessellations, we refer to the book [1111].

Given a fixed realization ofm, we associate with each cell C ∈ m a point z(C),
which is called the nucleus of the cell, such that z(C + x) = z(C) + x for all x ∈
Rd. To describe the mean behaviour of the tessellation, the notions of intensity
and typical cell are introduced as follows. Let B ⊂ Rd be a Borel subset.The
intensity γ of the tessellation is defined as γ = 1

λd(B) ·E [ #{C ∈ m, z(C) ∈ B} ],
where λd is the d-dimensional Lebesgue measure. We assume that γ ∈ (0,∞)
and, without loss of generality, we take γ = 1. The typical cell C is a random
polytope whose the distribution is given by

E[f(C)] = 1
λd(B) ·E

 ∑
C∈m,
z(C)∈B

f(C − z(C))

 (1)

for all f : Kd → R bounded measurable function on the set of convex bodies Kd,
i.e. convex compact sets, endowed with the Hausdorff topology.

mailto:nicolas.chenavier@lmpa.univ-littoral.fr


Extremes in stochastic geometry We are interested in the following problem:
only a part of the tessellation is observed in the window Wρ = ρ1/d[0, 1]d. Let
f : Kd → R be a translation invariant measurable function, i.e. f(C+x) = f(C)
for all C ∈ Kd and x ∈ Rd. We denote by Mf,Wρ the maximum of f(C) over all
cells C ∈ m with nucleus z(C) in Wρ, i.e.

Mf,Wρ
= max

C∈m,
z(C)∈Wρ

f(C).

In this paper, we investigate the limit behaviour ofMf,Wρ
when ρ goes to infinity.

To the best of our knowledge, one of the first application of extreme value
theory in stochastic geometry was given by Penrose (see Chapters 6,7 and 8
in Penrose [88]). More recently, Schulte and Thäle [1212] established a theorem to
derive the order statistics of a general functional, fk(x1, ..., xk) of k points of a
homogeneous Poisson point process. Calka and Chenavier [22] went on to provide
a series of results for the extremal properties of cells in the Poisson-Voronoi
tessellation, which were then extended in [33]. Besides, extremes for the inradius
of a Poisson line tessellation are also considered in [44].

A general theorem Before stating our results, we first recall the main theorem in
[33]. To do it, we consider a threshold vρ such that the mean number of exceedance
cells converges to a limit denoted by τ ≥ 0, i.e

ρ ·P (f(C) > vρ) −→
ρ→∞

τ.

Such an assumption is classical in extreme value theory. We also introduce two
conditions on m and f .

The first one deals with R-dependence. To introduce this condition we par-
tition Wρ into a set Vρ of Nρ =

⌊
ρ

log ρ

⌋
sub-cubes of equal size. These sub-cubes

are indexed by the set of i = (i1, . . . , id) ∈
[
1, N1/d

ρ

]d
. With a slight abuse of

notation, we identify a cube with its index. Let us define a distance between
sub-cubes i and j as d(i, j) = max1≤r≤d{|ir−jr|}. Moreover, if A, B are two sets
of sub-cubes, we let d(A,B) = mini∈A,j∈B d(i, j). For each i ∈ Vρ, we denote by

Mf,i = max
C∈m,

z(C)∈i∩Wρ

f(C).

When {C ∈ m, z(C) ∈ i ∩Wρ} is empty, we take Mf,i = −∞. We are now
prepared to introduce our first condition which is referred as the finite range
condition (FRC):

Condition (FRC): there exists an integer R and an event Aρ with P (Aρ) −→
ρ→∞

1 such that, conditional on Aρ, the σ-algebras σ{Mf,i, i ∈ A} and σ{Mf,i, i ∈ B}
are independent when d(A,B) > R.



Our second condition deals with a local property of m and f and is referred
as the local correlation condition (LCC).

Condition (LCC): with the same notation as before, we have

Nρ E

 ∑
(C1,C2) 6=∈m2,

z(C1),z(C2)∈Wlog ρ

1f(C1)>vρ,f(C2)>vρ

 −→ρ→∞ 0,

where (C1, C2) 6= ∈ m2 means that (C1, C2) is a pair of distinct cells of m.
This (local) condition means that, with high probability, two neighboring

cells (in the sense that their nuclei belong to Wlog ρ which is small compared to
Wρ) are not simultaneously exceedances. Under these assumptions, we have the
following result (Theorem 1 in [33]):

Theorem 1. Let m be a stationary random tessellation of intensity 1 such that
Conditions (FRC) and (LCC) hold. Then

P(Mf,Wρ ≤ vρ) −→
ρ→∞

e−τ .

Theorem 11 can be extended in various directions: order statistics with a
rate of convergence, random tessellations satisfying some β-mixing property and
marked point processes. Numerous examples of this theorem can be derived such
as the minimum of the Voronoi flowers, the maximum and minimum of areas
of a planar Poisson-Delaunay tessellation and the maximum of inradius of a
Gauss-Poisson Voronoi tessellation (see Sections 3, 4 and 5 in [33]).

The main difficulty is to apply Theorem 11 and to check Condition (LCC)
since it requires delicate geometric estimates. Our main question is: does Theo-
rem 11 remains true when this condition does not hold?

Extremal index and new results When Condition (LCC) does not hold, the
exceedance locations can be divided into clusters. More precisely, we show that
the behaviour of Mf,Wρ can be deduced up to a constant according to the
following new result:

Proposition 2. Let m be a stationary random tessellation of intensity 1 such
that Condition (FRC) holds. Let us assume that for all τ ≥ 0, there exists
a deterministic function vρ(τ) depending on ρ such that ρ · P(f(C) > vρ(τ))
converges to τ as ρ goes to infinity. Then there exist constants θ, θ′, 0 ≤ θ ≤
θ′ ≤ 1 such that, for all τ ≥ 0,

lim sup
ρ→∞

P(Mf,Wρ
≤ vρ(τ)) = e−θτ and lim inf

ρ→∞
P(Mf,Wρ

≤ vρ(τ)) = e−θ
′τ .

In particular, if P
(
Mf,Wρ

≤ vρ(τ)
)
converges, then θ = θ′ and

P
(
Mf,Wρ ≤ vρ(τ)

)
−→
ρ→∞

e−θτ .



Proposition 22 is similar to a result due to Leadbetter for stationary sequences
of real random variables (see Theorem 2.2 in [66]). Its proof relies notably on the
adaptation to our setting of several arguments included in [66]. According to
Leadbetter, we say that the random tessellation m has extremal index θ if, for
each τ ≥ 0, ρ ·P (f(C) > vρ(τ)) −→

ρ→∞
τ and P

(
Mf,Wρ

≤ vρ(τ)
)
−→
ρ→∞

e−θτ .
For a sequence of real random variables, the extremal index has an interpre-

tation due to Leadbetter [66] as the reciprocal of the mean cluster size. Except
in specific cases, the extremal index cannot be made explicit. A lot of inferences
was considered to estimate this parameter (e.g. [99, 1313]). For a random tessella-
tion, we think that the extremal index has a similar geometric interpretation. In
a future work, we hope to develop a general method to estimate the extremal
index.

The paper is organized as follows. In Section 22, we prove Proposition 22. As
an illustration, we also provide two examples of extremal indices in Section 33.

2 Proof of Proposition 22

We only prove Proposition 22 for the limit superior since the limit inferior can be
dealt with a similar method. To do it, for each τ ≥ 0, we define:

ψ(τ) = lim sup
ρ→∞

P
(
Mf,Wρ

≤ vρ(τ)
)
. (2)

The key idea is to establish a functional equation for ψ. More precisely, for each
k ∈ N+, we will show that:

lim sup
ρ→∞

P
(
Mf,W

ρ/kd
≤ vρ(τ)

)
= ψ(τ/kd), (3)

lim sup
ρ→∞

P
(
Mf,W

ρ/kd
≤ vρ(τ)

)
= ψ1/kd(τ). (4)

The first convergence only depends on the sequence vρ(τ) while the second one
is a consequence of Condition (FRC).

Proof of (33). Let us assume that vρ(τ) ≥ vρ/kd(τ/kd). Then∣∣∣P(Mf,W
ρ/kd
≤ vρ(τ)

)
−P

(
Mf,W

ρ/kd
≤ vρ/kd(τ/kd)

)∣∣∣
≤ P

 ⋃
C∈m,

z(C)∈W
ρ/kd

{vρ/kd(τ/kd) ≤ f(C) ≤ vρ(τ)}



≤ E

 ∑
C∈m,

z(C)∈W
ρ/kd

1v
ρ/kd

(τ/kd)≤f(C)≤vρ(τ)

 .



This together with the corresponding inequality when vρ(τ) ≤ vρ/kd(τ/kd) shows
that∣∣∣P(Mf,W

ρ/kd
≤ vρ(τ)

)
−P

(
Mf,W

ρ/kd
≤ vρ/kd(τ/kd)

)∣∣∣
≤ ρ

kd
∣∣P (f(C) > vρ/kd(τ/kd)

)
−P (f(C) > vρ(τ))

∣∣
= ρ

kd

∣∣∣∣τ/kdρ/kd
− τ

ρ
+ o

(
1
ρ

)∣∣∣∣ −→ρ→∞ 0
(5)

according to (11) and the fact that P (f(C) > vρ(τ)) converges to τ for each τ ≥ 0.
Moreover, from (22) we have

lim sup
ρ→∞

P
(
Mf,W

ρ/kd
≤ vρ/kd(τ/kd)

)
= ψ(τ/kd).

We obtain (33) from the previous equality and (55). �

Proof of (44). The main idea is to apply the following adaptation of Lemma 4
in [33]:

Lemma 3. Let L ≥ 1 and let B(1), . . . , B(L) be a L-tuple of Borel subsets
included in W . Under the same assumptions as in Proposition 22, we have:

P
(
Mf,Wρ

≤ vρ
)
−

L∏
l=1

P
(
M
f,B(l)

ρ
≤ vρ

)
−→
ρ→∞

0,

where B(l)
ρ = ρ1/dB(l), 1 ≤ l ≤ L.

Partitioning W = [0, 1]d into a set of kd sub-cubes of equal volume 1/kd, say
B(1), . . . , B(kd), and applying Lemma 33, we get

P
(
Mf,Wρ

≤ vρ(τ)
)
−

kd∏
l=1

P
(
M
f,B(l)

ρ
≤ vρ(τ)

)
−→
ρ→∞

0.

Since B(l)
ρ is a cube of volume ρ/kd and since m is stationary, we have

P
(
Mf,Wρ

≤ vρ(τ)
)
−P

(
Mf,W

ρ/kd
≤ vρ(τ)

)kd
−→
ρ→∞

0.

We obtain (44) from the previous convergence and (22). �

Proof of Proposition 22. For each τ ≥ 0 and k ∈ N+, it follows from (33) and
(44) that ψ(τ/kd) = ψ1/kd(τ). Moreover, in the same spirit as in (55), we have

P
(
Mf,W

ρ/kd
≤ vρ(τ)

)
≥ 1− ρ

kd
P (f(C) > vρ(τ)) −→

ρ→∞
1− τ

kd
.



Hence, taking the kth powers and applying Lemma 33, we deduce that

lim inf
ρ→∞

P
(
Mf,Wρ ≤ vρ(τ)

)
= lim inf

ρ→∞
P
(
Mf,W

ρ/kd
≤ vρ(τ)

)kd
≥
(

1− τ

kd

)kd
.

Letting k →∞, we obtain lim infρ→∞P
(
Mf,Wρ

≤ vρ(τ)
)
≥ e−τ . In particular,

this shows that ψ(τ) > 0. Since ψ is also non-increasing and since the only
solution of the functional equation ψ(τ/kd) = ψ1/kd(τ) which is strictly positive
and non-increasing is an exponential function, we have ψ(τ) = e−θτ for some
θ ≥ 0. This concludes the proof of Proposition 22. �

3 Examples

We provide below two examples where the extremal index differs from 1.

The minimum of inradii of a Poisson-Voronoi tessellation Let X be a Poisson
point process in Rd of intensity 1. For all x ∈ X, we denote by CX(x) the Voronoi
cell of nucleus x:

CX(x) = {y ∈ Rd : |x− y| ≤ |x′ − y|, x′ ∈ χ}.

The family mPV T = {CX(x), x ∈ X} is the so-called Poisson-Voronoi tessella-
tion. Such a model is extensively used in many domains such as astrophysics [1515]
and telecommunications [11], see also the reference books [77, 1111].

In this example, for each cell C = CX(x), x ∈ X, we take z(CX(x)) = x and
f(CX(x)) = r(CX(x)) = max{r ≥ 0 : B(x, r) ⊂ CX(x)} to denote the inradius of
the cell. First we notice that the distribution of r(C)d, with r(C) = r(CX∪{0}(0)),
is exponential with parameter 2dκd, where κd denotes the volume of the unit
ball. Indeed, for any v ≥ 0, we have r(C) ≤ v if and only if X ∩B(0, 2v) 6= ∅. In
particular, for any t ≥ 0, we get

ρ ·P
(
r(C)d ≤ (2dκdρ)−1

t
)
−→
ρ→∞

t.

Moreover, according to the convergence (2b) in [22], we know that

P
(

min
x∈X∩Wρ

r(CX(x))d ≥ (2dκdρ)−1
t

)
−→
ρ→∞

e−
1
2 ·t.

Let us notice that the convergence was established in [22] for a fixed window and
for a Poisson point process such that the intensity goes to infinity. By scaling
property of the Poisson point process, the result of [22] can be re-written as
above for a fixed intensity and for a window Wρ where ρ → ∞. This allows us
to provide a first example of extremal index:

Example 1. The extremal index of the minimum of inradius of a Poisson-
Voronoi tessellation exists and is θ = 1

2 .



It can be also explained by a trivial heuristic argument. Indeed, if a cell
minimizes the inradius, one of its neighbors has to do the same. Hence the mean
cluster size of exceedances is 2 which implies that θ = 1/2.

The maximum of circumradii of a Poisson-Delaunay tessellation Let X be a
Poisson point process in Rd of intensity β−1

d , where

βd =
(d3 + d2)Γ

(
d2

2

)
Γ d
(
d+1

2
)

Γ
(
d2+1

2
)
Γ d
(
d+2

2
)

2d+1π
d−1

2
.

We connect two points x, x′ ∈ X by an edge if and only if CX(x) ∩ CX′(x) 6= ∅.
The set of these edges defines a random tessellation mPDT of Rd into simplices
with intensity 1 (e.g. Theorem 10.2.8 in [1111]) which is the so-called Poisson-
Delaunay tessellation. Such a model is extensively used in medical image seg-
mentation [1414] and is a powerful tool for reconstructing a 3D set from a discrete
point set [1010].

Here we take z(C) and f(C) = R(C) as the circumcenter and the circum-
radius of any cell C ∈ mPDT respectively. A Taylor expansion of P (R(C) > v)
(e.g. Equation (3.14) in [33]), as v goes to infinity, shows that for each t ∈ R

ρ ·P
(
R(C)d ≥ δ−1

d ·
(
log
(
[(d− 1)!]−1ρ log(βdρ)d−1)+ t

))
−→
ρ→∞

e−t,

where δd = βdκd. Moreover, with standard arguments, we easily show that the
maximum of circumradii of Delaunay cells max C∈m,

z(C)∈Wρ

R(C) has the same asymp-

totic behaviour as the maximum of circumradii of the associated Voronoi cells
maxx∈X∩Wρ R(CX(x)). Besides, thanks to (2c) in [22], we know that

P
(

max
x∈X∩Wρ

R(CX(x))d ≤ δ−1
d

(
log
(
αdβdρ log(βdρ)d−1)+ t

))
−→
ρ→∞

e−e
−t
,

where αd := 1
d!

(
π1/2Γ( d2 +1)
Γ( d+1

2 )

)d−1
. It follows that

P

 max
C∈mPDT ,
z(C)∈Wρ

R(C)d ≤ δ−1
d ·

(
log
(
[(d− 1)!]−1ρ log(βdρ)d−1)+ t

) −→
ρ→∞

e−θd·e
−t
,

where

θd = αdβd(d− 1)! =
(d3 + d2)Γ

(
d2

2

)
Γ
(
d+1

2
)

2d+1dΓ
(
d2+1

2
)
Γ
(
d+2

2
) .

This allows us to provide a second example of extremal index:

Example 2. The extremal index of the maximum of circumradius of a Poisson-
Delaunay tessellation exists and θ = θd. In particular, when d = 1, 2, 3, the
extremal indices are θ = 1, θ = 1/2 and θ = 35/128 respectively.
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