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M. Nathanaël Enriquez Professeur (Université Paris-Saclay), Rapporteur
M. Zakhar Kabluchko Professeur (Université de Münster), Rapporteur
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Avant-propos

Le mémoire s’articule autour de quatre chapitres. Les trois premiers regroupent des travaux par
ordre thématique et présentent, chacun, une introduction au domaine en question. Le dernier
porte sur divers travaux.

Le premier chapitre, de loin le plus conséquent, porte sur des problèmes d’extrêmes en
géométrie aléatoire. Les problèmes considérés s’inscrivent dans la continuité de ce que j’ai fait
en thèse. Les modèles étudiés sont essentiellement les mosäıques aléatoires et les résultats sont
principalement des théorèmes limites. Plusieurs d’entre eux concernent des approximations pois-
soniennes. Ces approximations permettent d’étudier les comportements limites des maxima et
minima, et plus généralement des statistiques d’ordre, de diverses caractéristiques géométriques.
D’autres résultats concernent la répartition spatiale d’extrêmes et notamment la taille d’un
cluster typique d’excédents. Je présente également quelques résultats d’extrêmes sur Delaunay
lorsque ce dernier est vu comme un graphe et non plus comme une mosäıque.

Le deuxième chapitre porte sur deux problèmes d’analyse topologique des données. Le premier
concerne un théorème central limite fonctionnel et fournit des tests permettant de discriminer
les processus ponctuels. Le second est un problème d’extrêmes sur les durées de vie de cycles
persistants. Bien que je ne sois pas spécialiste d’analyse topologique des données, j’ai voulu y
consacrer un chapitre car j’aimerais développer cette thématique.

Le troisième chapitre porte sur un modèle de croissance: l’IDLA. Ce dernier est construit
récursivement à partir de marches aléatoires. Le protocole permettant de le définir permet
également de construire un arbre aléatoire qui est délicat à étudier. Le résultat principal de
ce chapitre est l’existence d’une forêt aléatoire, basée sur le protocole IDLA, qui a pour but
d’approcher l’arbre. Même si je n’ai fait qu’un seul travail sur l’IDLA, j’y consacre un chapitre
entier car il s’agit d’un axe que je souhaite développer prioritairement. En particulier, à partir
d’octobre 2022, je co-encadrerai la thèse de Keenan Penner (officiellement seulement avec David
Coupier mais, en pratique, également avec Arnaud Rousselle) sur cette thématique.

Le quatrième chapitre porte sur divers travaux, notamment le phénomène de premier chiffre
(en collaboration avec deux collègues de mon laboratoire) et un problème d’extrêmes de marches
aléatoires en environnement aléatoire avec mon ex-doctorant (Ahmad Darwiche) que j’ai co-
encadré avec Dominique Schneider. Je présente également des travaux soumis récemment ou
encore en cours. Le plus significatif, de loin, porte sur un problème d’inférence pour un champ
max-stable dans une fenêtre fixée, en collaboration avec Christian Y. Robert. Le mémoire se
termine par quelques perspectives.

Tout au long du mémoire, j’énonce en général le théorème principal de chaque publication et
donne des esquisses de preuves.
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Foreword

The manuscript is divided into four chapters. The first three one deal with three different topics,
with introductions of the latter. The last one concerns various works.

The first chapter is the most significant and deals with extremes in Stochastic Geometry. The
problems which are considered are in the continuity of my PhD thesis. The main models are the
random tessellations and the results mainly consist of limit theorems. Many of them are Poisson
approximations. These approximations are useful to investigate the asymptotic behaviours of
maxima and minima, and more generally of order statistics, of various geometric characteristics.
Other results concern the spatial repartition of extremes and in particular the size of a typical
cluster of exceedances. I also give results on extremes for Delaunay when the latter is seen as a
graph and not as a tessellation.

The second chapter deals with two problems in Topological Data Analysis. The first one
concerns a functional central limit theorem and provides tests to discriminate point processes.
The second one deals with extremes of lifetimes for persistent cycles. Although I am not a
specialist of Topological Data Analysis, I have written an entire chapter on this topic because it
is one of the domains that I would like to deal with in depth.

The third chapter concerns a random growth model: the IDLA. The latter is constructed
recursively from simple random walks. The protocol defining this model can also define a random
tree whose the study is delicate. The novelty of this chapter is the construction of a random
forest which is based on the IDLA protocol and which should approximate the random tree.
Although I have written only one paper on this topic, I devote an entire chapter because it is
one of the topics that I would like to investigate firstly. In particular, with David Coupier and
Arnaud Rousselle, I will supervise the PhD thesis of Keenan Penner from October 2022.

The fourth chapter concerns various works, including the first digit phenomenon (in collabo-
ration with two colleagues of my laboratory) and extremes of random walks in random scenery
with an ex-PhD student (Ahmad Darwiche) that I supervised with Dominique Schneider. I also
present some recent works and works in progress. The most significant one, in collaboration with
Christian Y. Robert, deals with inference for a max-stable random field in a fixed window. The
manuscript ends with several perspectives.

In general, throughout the manuscript, I state the main theorem of each publication with
sketch of proof.
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Chapter 1

Extremes in Stochastic Geometry

Sommaire
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Random tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Concepts of Extreme Value Theory . . . . . . . . . . . . . . . . . . . . 17
1.1.3 Main problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Poisson approximation for the point process of exceedances . . . . 21
1.2.1 Voronoi and Delaunay tessellations . . . . . . . . . . . . . . . . . . . . 21
1.2.2 STIT and Poisson line tessellations . . . . . . . . . . . . . . . . . . . . 24
1.2.3 Large k-th nearest neighbor balls . . . . . . . . . . . . . . . . . . . . . 26

1.3 Extremal index for random tessellations . . . . . . . . . . . . . . . 27
1.3.1 A new characterization of the extremal index . . . . . . . . . . . . . . 27
1.3.2 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Extremes on the Delaunay graph . . . . . . . . . . . . . . . . . . . . 31
1.4.1 The maximal degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.2 The stretch factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.1 Introduction

1.1.1 Random tessellations
Random tessellations are one of the most classical objects in Stochastic Geometry. By a (convex)
tessellation of the Euclidean space Rd, d ≥ 1, endowed with the Euclidean norm | · |, we mean
a locally finite collection {Ci}i≥1 of polytopes (referred to as cells) such that Ci and Cj have
disjoint interiors for any i 6= j and

⋃
i≥1 Ci = Rd. We endow the family of (convex) tessellations

of Rd with the σ-field generated by sets of the form

{T = {Ci}i≥1 : (∪i≥1∂Ci) ∩K 6= ∅} ,

where K is a compact set of Rd. A random tessellation is a random variable with values in the
set of (convex) tessellations of Rd.
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CHAPTER 1. EXTREMES IN STOCHASTIC GEOMETRY

x

CX(x)

Mosaique de Poisson-Voronoi

x

x′

z(C)

Mosaique de Poisson-Delaunay

(a) (b)

Figure 1.1: (a) Voronoi tessellation. (b) The same one (green) and its dual: the Delaunay
tessellation (purple).

Examples of random tessellations

The most famous tessellations are the Voronoi, the Delaunay, the hyperplane and the STIT
tessellations. We present below each of them.

Voronoi tessellation Given a point process Φ such that the convex hull conv(Φ) of Φ is Rd

a.s., the Voronoi tessellation based on Φ is defined as the collection {CΦ(x) : x ∈ Φ}, where

CΦ(x) = {y ∈ Rd, |y − x| ≤ |y − x′|, x′ ∈ Φ},

is called the Voronoi cell with nucleus x. When Φ is a Poisson point process, the family {CΦ(x) :
x ∈ Φ} is called the Poisson-Voronoi tessellation; see Figure 1.1, (a) for a realization in 2D
(observed in a window). The latter is stationary and isotropic if Φ is stationary.

Delaunay tessellation Let Φ be a point process in general position (i.e. such that there is
no d+ 2 points of Φ contained in a sphere and no d+ 1 points on the same hyperplane) a.s. and
such that conv(Φ) = Rd a.s.. The Delaunay graph based on Φ is the unique triangulation with
vertices in Φ such that the circumball of each simplex contains no point of Φ in its interior. The
Delaunay tessellation is then defined as the family of these simplices. A Delaunay tessellation
corresponds to the dual graph of Voronoi tessellation in the following way: there exists an edge
between two points x1, x2 ∈ Φ in the Delaunay graph if and only if they are Voronoi neighbors,
i.e. CΦ(x1)∩CΦ(x2) 6= ∅. When Φ is a Poisson point process, the random tessellation is referred
to as the Poisson-Delaunay tessellation; see Figure 1.1, (b) for a realization in 2D (observed in
a window). The latter is stationary and isotropic when Φ is stationary.

Hyperplane tessellation Given a point process Φ in Rd which a.s. does not contain the
origin, we denote by Hx, x ∈ Φ, the hyperplane which is orthogonal to x and which contains x,
i.e.

Hx = {y ∈ Rd : 〈y − x, x〉 = 0}.

14
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The Hyperplane tessellation based on Φ consists of the set of closures of connected components
of Rd \ ∪x∈ΦHx. When Φ is a Poisson point process whose the intensity measure has a density
w.r.t. the Lebesgue measure which equals | · |−(d−1), the hyperplane tessellation is stationary
and isotropic; see Figure 1.2, (a) for a realization in 2D (observed in a window). This model is
referred to as the Poisson hyperplane tessellation.

STIT tessellation To introduce the notion of STIT (STable under ITeration) tessellation, we
proceed as follows. We start with the construction of a tessellation process (mt,W , t ≥ 0) in a
window W ⊂ Rd. Let τ0, τ1, τ2, . . . be independent and identically distributed (i.i.d.) random
variables, all exponentially distributed with parameter 1. Let Λ be the measure on the set of
hyperplanes H of R2 , which is invariant under translations and rotations of Rd and let

[B] := {H ∈ H : H ∩B 6= ∅}.

(i) The initial state of the process is m0,W = {C1} := {W}, and the random holding time in
this state is τ0/Λ([W ]), i.e. it is exponentially distributed with parameter Λ([W ]).

(ii) At the end of the holding time, the window W is divided by a random hyperplane H1 with
law (Λ([W ]))−1Λ(· ∩ [W ]). The new state of the STIT process is now {C1, C2}, where
C1 := W ∩ H+

1 and C2 := W ∩ H−1 , and H+
1 and H−1 are the two closed half-planes

generated by H1. The random life times of C1 and C2 are τ1/Λ([C1]) and τ2/Λ([C2]),
respectively.

(iii) Now, inductively, for t > 0, assume that mt,W = {Ci1 , . . . , Cin}. The life times of the cells
are τi1/Λ([Ci1 ]), . . . , τin/Λ([Cin ]), respectively. At the end of the life time of a cell Cij , this
cell is divided by a random hyperplane Hij with the law (Λ([Cij ]))−1Λ(· ∩ [Cij ]), which is
a probability distribution on [Cij ]. Given the state of the tessellation process at the time
of division, this hyperplane is conditionally independent from all the other dividing lines
used so far. The divided cell Cij is deleted from the tessellation and is replaced by the two
“daughter” cells Cij ∩H+

ij
and Cij ∩H−ij . These cells are endowed with new indexes from

N which are not used before in this process.

An essential property of the construction is that the distribution of the tessellation generated
in a window W is spatially consistent in the following sense. If W and W ′ are two convex polygons
with W ⊂W ′ and mt,W , mt,W ′ the respective random tessellations, then mt,W

d= mt,W ′ ∧W are
identically distributed, where

mt,W ′ ∧W := {C ∩W : C ∈ mt,W , C ∩W ◦ 6= ∅}

is the restriction of mt,W ′ to W . This property yields the existence of a stationary random
tessellation mt of R2, referred to as STIT tessellation, such that its restriction mt ∧W to any
window W has the same distribution as the constructed tessellation mt,W . Since the measure
Λ is invariant under rotation, the STIT tessellation mt is isotropic. See Figure 1.2, (b) for a
realization in 2D (observed in a window).

The first three tessellations that we discussed above, when they are based on suitable Poisson
point processes, and the STIT tessellation have in common the fact that they have mixing
properties. As we will see in the next subsections, such properties are important to deal with
extremes.
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(a) (b)

Figure 1.2: (a) Line tessellation. (b) STIT tessellation.

Typical cell

Given a fixed realization of a stationary random tessellation m, we associate with each cell
C ∈ m in a deterministic way a point z(C), which is called the nucleus of the cell, such that
z(C + x) = z(C) + x for all x ∈ Rd. For instance, when m is a Voronoi tessellation based on a
point process Φ (resp. a Delaunay tessellation, or an hyperplane/STIT tessellation), it is usual
to take z(CΦ(x)) = x for any x ∈ Φ (resp. it is usual to associate with each Delaunay cell
the circumcenter of the cell, or to associate with each cell of the hyperplane/STIT tessellation
its incenter). To describe the mean behaviour of a stationary random tessellation, the notions
of intensity and typical cell are introduced as follows. Let B be a Borel subset of Rd such
that λd(B) ∈ (0,∞), where λd is the d-dimensional Lebesgue measure. The intensity γ of the
tessellation is defined as γ = 1

λd(B) · E [#{C ∈ m, z(C) ∈ B}] and we assume that γ ∈ (0,∞).
Since m is stationary, γ is independent of B. The typical cell C is a random polytope whose the
distribution is given by

E[f(C )] = 1
γλd(B) · E

 ∑
C∈m,
z(C)∈B

f(C − z(C))


for all f : Kd → R bounded measurable function on the set of convex bodies Kd, i.e. convex
compact sets with non-empty interior.

Thanks to the Slivnyak-Mecke formula (see e.g. Theorem 3.2.5 in [90]), it can be proved that
the typical cell of a Voronoi tessellation, based on a stationary Poisson point process Φ, is equal
in distribution to CΦ∪{0}(0). Explicit representations of the distribution of the typical cell (or of
the interior of the typical cell) for other classical random tessellations have also been established
(see e.g. Theorem 10.4.4 in [90] for the Poisson-Delaunay tessellation, and Theorem 10.4.6 in
[90] for the Poisson hyperplane tessellation).

A lot of works has been done on random tessellations, including ergodic theorems [35], central
limit theorems [52, 91], computations or estimates of laws or tails for various geometric charac-
teristics [17, 84, 101], shape theorems for large cells [21, 57, 58] and models in non-Euclidean
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geometry, see e.g. [19]. For a complete account of random tessellations and their applications,
we refer to the books [79, 90].

1.1.2 Concepts of Extreme Value Theory
Univariate case

Extreme Value Theory (EVT) deals with rare events and has many applications in various
domains such as hydrology, finance and climatology. EVT was first introduced in a univariate
setting.

Given a stationary sequence of real random variables (Xi), the main question is to investigate
the limit behaviour of the maximum Mn = maxi≤nXi. When n goes to infinity, the random
variable Mn converges in probability to a constant x∗ ∈ R∪{+∞}. One way to be more precise
is to find a threshold un, of the form un = un(t) = ant + bn, where an > 0, bn ∈ R and where
t ∈ R is a parameter, in such a way that P (Mn ≤ un(t)) converges to a non-degenerate limit,
i.e. such that

a−1
n (Mn − bn) D−→

n→∞
Y, (1.1.1)

where Y is a random variable whose the distribution function is not degenerate. When the
sequence (Xi) is i.i.d. and when Equation (1.1.1) holds, the random variable Y necessarily
belongs to the class of extreme value distributions. This class consists of three types of laws,
namely Fréchet, Gumbel and Weibull (see e.g. Theorem 1.1.3 in [37]).

Extremes under the D(un) and D′(un) conditions It is straightforward that if (Xi) is a
sequence of i.i.d. (real) random variables then the following property holds: for any sequence of
real numbers (un), and for τ > 0,

nP (X1 > un) −→
n→∞

τ =⇒ P (Mn ≤ un) −→
n→∞

e−τ . (1.1.2)

The above property has been extended for sequences of dependent random variables satisfying
two conditions due to Leabdetter [71]. We recall them since we will use conditions of this type
many times in our manuscript.

Definition 1.1.1. Let (Xi) be a stationary sequence of real random variables and let (un) be a
deterministic sequence of real numbers. Let Fi1,...,in(u) = P (Xi1 ≤ u, . . . ,Xin ≤ u). We say that
(Xn)n≥1 satisfies the D(un) condition if, for any n, ` and for any intergers i1, . . . , ip, j1, . . . , jp
such that 1 ≤ i1 < i2 < · · · < ip < j1 < · · · < jp′ ≤ n with j1 − ip ≥ `, we have∣∣∣Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,j′p

(un)
∣∣∣ ≤ αn,`,

where αn,`n → 0 as n→∞ for some sequence (`n)n≥1 with `n = o(n).

Roughly, the D(un) condition is a condition ensures a mixing-type behaviour for the tails
of the joint distributions of a stationary sequence of random variables. In particular, sequences
satisfying a strong mixing property also satisfy the D(un) condition. The second condition of
Leadbetter is stated below.

Definition 1.1.2. In conjunction to the D(un) condition, we say that the sequence (Xi) satisfies
the D′(un) condition if

lim sup
n→∞

n

bn/kc∑
j=2

P (X1 > un, Xj > un) −→ 0, with k →∞.
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The above condition is of local type. It ensures that, with high probability, it is not possible to
have a pair of exceedances, i.e. a pair of random variables exceeding the threshold un, in the same
neighborhood. Under the D(un) and D′(un) conditions, the random variable Mn = maxi≤nXi

has the same behaviour as if the random variables Xi are i.i.d.. In particular, Equation (1.1.1)
holds, and the limit law of the normalized maximum (provided that the limit exists) belongs to
the class of extreme value distributions.

Assume from now on that, for any τ > 0, there exists a threshold un = u
(τ)
n such that

nP (X1 > un) −→
n→∞

τ.

One of the classical objects in EVT is the so-called point process of exceedances, defined as

Φn = {i/n : Xi > un, i ≤ n}.

Under the assumptions that the D(un) and D′(un) conditions hold for any un = u
(τ)
n , the

point process Φn converges to a homogeneous Poisson process Φ in [0, 1] of intensity τ . As a
consequence, asymptotic results on the order statistics, i.e. on the random variables M (r)

n , r ≥ 1,
where M (r)

n denotes the r-th largest value of the Xi’s, can be derived. Indeed, since M (r)
n ≤ un

if and only if #Φn ≤ r − 1 and since Φn
D−→

n→∞
Φ,

P
(
M (r)
n ≤ un

)
−→
n→∞

r−1∑
k=0

e−τ · τ
k

k! .

Poisson approximation with rate of convergence Under stronger assumptions than the
D(un) and D′(un) conditions, rates of convergence for the Poisson approximation of the number
of exceedances can be provided. A general result, due to Arratia et al [2] and based on the
Chen-Stein method, gives explicit rates. We recall their result since we will use many times in
our works.

For an arbitrary index set I, and for i ∈ I, let Xi be a Bernoulli random variable with
pi = P (Xi = 1) = 1− P (Xi = 0). For each i, j ∈ I, we write pij = E [XiXj ]. Further, we let

X :=
∑
i∈I

Xi and λ := E [X] =
∑
i∈I

pi, and assume that 0 < λ <∞.

For each i ∈ I, fix a “neighborhood” Bi ⊂ I with i ∈ Bi, and define

b1 :=
∑
i∈I

∑
j∈Bi

pipj , b2 :=
∑
i∈I

∑
i 6=j∈Bi

pij , b3 :=
∑
i∈I

E

∣∣∣∣∣∣E
Xi − pi

∣∣∣∣∣∣
∑

j∈I\Bi

Xj

∣∣∣∣∣∣
 . (1.1.3)

Roughly, b1 measures the neighborhood size, b2 measures the expected number of neighbors
of a given occurrence and b3 measures the dependence between an event and the number of
occurrences outside its neighborhood. We are now prepared to state the main result of Arratia
et al. (see Theorem 1 of [2]).

Proposition 1.1.3. (Arratia, Goldstein, Gordon) Let Z be a Poisson random variable with
mean λ ∈ (0,∞). With the above notation and the assumptions, we have

dTV (X,Z) ≤ 2
(

(b1 + b2) · 1− e−λ

λ
+ b3 ·min{1, 1.4λ−1/2}

)
,

where dTV (·, ·) denotes the Total Variation distance.
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Clusters of exceedances When the stationary sequence (Xi) only satisfies the D(un) condi-
tion (for any un = u

(τ)
n , τ > 0) but not necessarily the D′(un) condition, clusters of exceedances

can appear. In this case, there exists a number θ ∈ [0, 1] such that, for any τ > 0,

P (Mn ≤ un) −→
n→∞

e−θτ , (1.1.4)

provided that the limit exists. When the latter holds, we say that θ is the extremal index. Such a
quantity can be interpreted as the reciprocal of the mean size of a cluster of exceedances. Under
suitable assumptions, including a slight modification of the D(un) condition, the point process
of exceedances converges to a compound Poisson point process (Theorem 4.2 in [56]) of intensity
θτ and cluster size distribution π = (πk), where for any k ≥ 1,

πk = lim
n→∞

P (#ΦBn = k |#ΦBn > 0) , (1.1.5)

with Bn = {0, . . . , qn}, ΦBn = {i/n : Xi > un, i ∈ Bn}, qn −→
n→∞

∞ and qn = o(n). The
probability πk can be interpreted as the probability that we have k exceedances given that we
observe a block of exceedances. Equation (1.1.5) is called the blocks characterization of the
cluster size distribution. Under additional mild conditions, the extremal index is equal to the
reciprocal of the mean of π. As an example, when the D′(un) condition holds, exceedances are
isolated and clusters are of size 1, i.e. π = δ1 and θ = 1.

Another characterization is proposed in Theorem 4.1 in [88] and is given by

lim
n→∞

P (#ΦBn = k|X0 > un (τ)) := p′k = θ

∞∑
m=k

πm, k ≥ 1. (1.1.6)

In particular, the extremal index is θ = p′1. This second characterization is useful to compute the
values of the extremal index and the cluster size probabilities when the conditional distributions
of the exceedances may be derived from the dynamics of (Xn), e.g. for the regularly varying
multivariate time series [6] or the Markov sequences [83]. Equation (1.1.6) may be called the runs
characterization of the cluster size distribution. This characterization is natural for a random
object as a time series where the direction of time is used to design the dynamics of the series.
Estimators of the extremal index and the cluster size distribution, based on the blocks and runs
characterizations, are extensively investigated, see e.g. [86, 95].

Max-stable random fields

In the previous sub-section, we mentioned the class of extreme value distributions. A distribution
D belonging to this class is max-stable in the sense that, if (Xi) is a sequence of i.i.d. random
variables with distribution D, then there exist two sequences (an) and (bn), with an > 0, such
that for any integer n,

a−1
n (Mn − bn) D= X1,

where Mn = maxi≤nXi. Reciprocally, any max-stable distribution belongs to the class of ex-
treme value distributions.

The notion of max-stable distributions can be extended in a continuous framework in the
following way. A stationary random field η = (η(x))x∈χ in χ ⊂ Rd with non-degenerate marginals
and continuous paths is called max-stable if there exist two sequences of continuous functions
(an(x))x∈χ, (bn(x))x∈χ, with an(x) > 0, such that if (ηi) are i.i.d. copies of η, then(

an(x)−1(Mn(x)− bn(x))
)
x∈χ

D= η.
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In particular, the marginals of a max-stable stationary random field are (univariate) max-stable
distributions. Being interested in the dependence structure, the attention can be reduced to
max-stable random fields with standard unit Fréchet marginals, i.e. satisfying

P (η(x) ≤ z) = exp(−z−1),

for any x ∈ χ and z > 0. The max-stability property has then the simple form

n−1 max
i≤n

ηi
D= η.

A fundamental tool in the study of max-stable process is their spectral representation [36]
due to de Haan: any stochastically continuous max-stable process η (with standard unit Fréchet
marginals) can be written in the form

η(x) = max
i≥1

UiYi(x), x ∈ χ,

where (Ui) is the decreasing enumeration of the points of a Poisson point process on (0,∞) with
intensity u−2du, (Yi) are i.i.d. copies of a non-negative stochastic random field Y on χ such that
E [Y (x)] = 1 for all x ∈ χ, the sequences (Ui) and (Yi) are independent. As a consequence of the
spectral representation, the finite dimensional distributions can be made explicit in the following
way: for any (x1, . . . , xk) ∈ χk, k ≥ 1, and (z1, . . . , zk) ∈ Rk

+,

P (η(x1) ≤ z1, . . . , η(xk) ≤ zk) = exp (−Vx1,...,xk(z1, . . . , zk)) , (1.1.7)

where

Vx1,...,xk(z1, . . . , zk) = E

[
max
i=1,...,k

Y (xi)
zi

]
is the so-called exponent measure.

Various models of max-stable random fields have been introduced such as the Smith process
[94], the stationary Gaussian extremal process originally introduced by Schlather [89] and the
Brown-Resnick process introduced by Kabluchko, Schlather and de Haan [65]. A lot of results
concerning max-stable random fields has been established such as ergodicity and mixing [64, 96],
links with extremes of Gaussian processes [63], computations of conditional laws [42], conditional
simulations [43] and estimates of parameters, see e.g. [41]. For a complete account on Extreme
Value Theory and its applications, we refer to the books [37, 49].

1.1.3 Main problems
We give below a short description of our works on extremes in Stochastic Geometry. Each of
them uses concepts which have been introduced in Sections 1.1.1 and 1.1.2.

In Section 1.2, we consider the following problem. Given a geometric characteristic, such
as the volume or the inradius, and given a stationary random tessellation, we investigate the
order statistics of the geometric characteristic over all cells centered in a window, say Wρ =
ρ1/d[− 1

2 ,
1
2 ]d, as ρ goes to infinity. All the tessellations that we consider, namely Poisson-Voronoi,

Poisson-Delaunay, Poisson line and STIT tessellations, have mixing properties and satisfy in
particular an analog of the D(un) condition. Under an adaptation of the D′(un) condition, we
establish Poisson approximations for the point processes of exceedances. A similar result is also
established in the context of large k-th nearest neighbor balls.
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In Section 1.3, we consider a similar problem but this time without assuming the analog of
the D′(un) condition. In this case, clusters of exceedances can appear. In the context of Poisson-
Voronoi and Poisson-Delaunay tessellations, we provide a new characterization of the extremal
index, namely the reciprocal of the mean size of a cluster of exceedances, and show that the
point process of exceedances converges to a compound Poisson point process. We illustrate our
results through various numerical examples.

In Section 1.4, we consider two problems of extremes for a Poisson-Delaunay graph. The first
one deals with the maximum of the degrees over all nodes in the window Wρ = ρ1/d[− 1

2 ,
1
2 ]d as

ρ goes to infinity. Given two fixed nodes in the graph, the second one concerns the length of the
shortest path in the graph between these two nodes.

1.2 Poisson approximation for the point process of ex-
ceedances

1.2.1 Voronoi and Delaunay tessellations
We present below the papers [20, 23]. The latter were written during our PhD thesis. Let us
consider the following quantities:

• m: stationary random tessellation in Rd, where each cell C of m is associated with a point
z(C) of Rd, referred to as the nucleus of the cell (see Section 1.1.1);

• g : Kd → R: geometric characteristic (for instance the volume, the diameter), which is a
translation invariant function defined on the set Kd of convex bodies of Rd (convex compact
sets with non-empty interior);

• Wρ = ρ1/dW : window with volume ρ, where W is a convex body with unit volume.

The main question is: what can we say about the maximum of the geometric characteristic g
over all cells with nucleus in Wρ, i.e.

MWρ
= max
C∈m:z(C)∈Wρ

g(C), (1.2.1)

as ρ goes to infinity? Investigating this question is interesting for various reasons. First, the
study of extremes could describe the regularity of the tessellation (e.g. presence of elongated
cells). For instance, in the finite element method, the quality of the approximation depends
on some consistency measurements over the partition. Another potential application field is
statistics of point processes. The key idea would be to identify a point process from the extremes
of a tessellation induced by the point process.

Extremes for characteristic radii

The pioneering work on extremes of random tessellations is [20]. In this paper, limit theorems
on extremes for characteristic radii of a Poisson-Voronoi tessellation are given, namely (Theorem
1 in [20]):

• the maximum/minimum of inradii over all cells with nucleus in Wρ;

• the maximum/minimum of circumradii over all cells with nucleus in Wρ.
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The inradius (resp. circumradius) of a Voronoi cell is defined as the radius of the largest ball
included in the cell (resp. the smallest ball containing the cell) and centered at the nucleus of
the cell. Theorem 1 in [20] is classical in the sense that the limit distributions are Fréchet or
Weibull. As an application, the result on the maximum of circumradii gives an upper-bound for
the Hausdorff distance between the convex body W and its so-called Poisson-Voronoi approxi-
mation. More precisely, given a Poisson point process η of intensity γ in Rd, the Poisson-Voronoi
approximation is defined as

Vη(W ) =
⋃

x∈η∩W
Cη(x).

Then, under suitable assumptions on W , Theorem 1 in [20] (Equation (2c)) implies, with prob-
ability tending to 1 as γ goes to infinity,

dH(W,Vη(W )) ≤
(
c1γ
−1 log

(
c2γ(log γ)d−1))1/d ,

where c1, c2 are two constants which can be made explicit. Since then, the above result has been
improved by Lachièze-Rey and Vega [67]. Furthermore, the paper [20] deals with the shape of
the cell minimizing the circumradius. It is proved that, with high probability, such a cell is a
simplex. The proofs of Theorem 1 in [20] use geometric interpretations. For the circumscribed
radii, we write the distributions as covering probabilities of spheres and apply results of [18, 60].
The inscribed radii can be interpreted as interpoint distances. A study of the extremes of these
distances was already done in several works, see e.g. [54].

A general result under a finite range condition

The paper [23] provides a more general method to investigate extremes of random tessellations.
Some assumptions are required. First, similarly to (1.1.2), we assume that for any τ > 0 there
exists a family of thresholds vρ = vρ(τ) such that

ρ P (g(C) > vρ) −→
ρ→∞

τ. (1.2.2)

Secondly, we assume a finite range condition (the latter is restrictive compared to the D(un)
condition), referred to as condition (FRC). The latter states that, conditional on a suitable event
which occurs with high probability, the values of the function g in regions of the window which
are distant enough are independent (see p2919 in [23] for a precise statement). Condition (FRC)
is satisfied when m is a Poisson-Voronoi or a Poisson-Delaunay tessellation. Thirdly, in order to
avoid clusters of exceedances, and similarly to the D′(un) condition, we assume that the following
local correlation condition, referred to as condition (LCC), holds:

NρE

 ∑
(C1,C2)6=∈m2

1z(C1),z(C2)∈Cρ1g(C1)>vρ,g(C2)>vρ

 −→
ρ→∞

0, (1.2.3)

where Cρ =
(
ρ
Nρ

)1/d
[0, 1]d is a cube with volume ρ/Nρ, with Nρ −→

ρ→∞
∞ and Nρ = o(ρ), and

where (C1, C2) 6= ∈ m2 means that (C1, C2) is a pair of distinct cells of m. Equation (1.2.3) means
that, with high probability, it is not possible to have a pair of exceedances in a small region of
the window (in the sense that it is a cube with volume ρ/Nρ, which is negligeable compared to
the volume of Wρ).
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Similarly to Section 1.1.2, we define the so-called (normalized) point process of exceedances
as

ΦWρ = ρ−1/d{z(C) ∈Wρ : C ∈ m and g(C) > vρ}.

The latter is a point process in the window W1 = W whose points consist of the nuclei of cells
with geometric characteristic exceeding vρ. The main result of [23] is a Poisson approximation
of the point process of exceedances and can be stated as follows:

Theorem 1.2.1. Let m be a stationary tessellation in Rd. Let τ > 0 and vρ = vρ(τ) be such
that (1.2.2) holds. Under the (FRC) and (LCC) conditions, we have

ΦWρ

D−→
n→∞

Φ,

where Φ is a homogeneous Poisson point process of intensity τ in W .

As a consequence of the above result, the asymptotic behaviour of the order statistics can be
derived. Indeed, if we denote by M

(r)
Wρ

the r-th largest values of g over all cells with nucleus in
Wρ (assuming that the g(C)’s are a.s. all different), r ≥ 1, Theorem 1.2.1 implies

P
(
M

(r)
Wρ
≤ vρ

)
= P

(
#ΦWρ

≤ r − 1
)
−→
ρ→∞

r−1∑
k=0

e−τ · τ
k

k! . (1.2.4)

In particular, P
(
MWρ

≤ vρ
)
−→
ρ→∞

e−τ . In fact, Theorem 2 in [23] is slightly more precise than
Theorem 1.2.1 in the sense that it does not only provide a spatial repartition of the exceedances
but also the joint distribution of the order statistics. Moreover, a rate of convergence for (1.2.4)
can be provided (Theorem 1 in [23]).

Numerous applications of Theorem 1.2.1 are given in [23] such as the limit behaviours of:

• the minimum of circumradii of a Poisson-Delaunay tessellation in any dimension and the
maximum and minimum of the areas in the planar case;

• the minimum of distances to the farthest neighboring nucleus and the minimum of the
volume of flowers for a Poisson-Voronoi tessellation;

• the maximum of inradii for a Voronoi tessellation induced by a Gauss-Poisson process.

The main difficulty to deal with these examples is to check the (LCC) condition since it requires
delicate geometric estimates.

Although the (FRC) and (LCC) conditions are related to the D(un) and D′(un) conditions,
the approach of the classical EVT cannot be applied to get Theorem 1.2.1. We describe below
the main ideas to prove our theorem. For the sake of simplicity, we assume from now on that
Wρ = ρ1/dW with W = [− 1

2 ,
1
2 ]d, and we only sketch the proof of the fact that #ΦWρ

converges
to a Poisson random variable with parameter τ . We subdivide the window Wρ into a set V of
sub-squares of equal size, such that N1/d

ρ is an integer and Nρ −→
ρ→∞

∞. These sub-cubes are

indexed by the set of i = (i1, . . . , id) ∈
[
1, N1/d

ρ

]d
and have the same volume as Cρ, i.e. ρ/Nρ.

With a slight abuse of notation, we identify a cube with its index. For each i ∈ V , we denote by

Mi = max
C∈m:z(C)∈Wρ

g(C)
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and, when {C ∈ m, z(C) ∈ i ∩Wρ} is empty, we take Mi = −∞. Then we begin by observing
that

#ΦWρ
=
∑
C∈m

1z(C)∈Wρ
1g(C)>vρ '

∑
i∈V

1Mi>vρ ,

where the approximation ' comes from the (LCC) condition. Indeed, thanks to this condition,
we know that for each sub-cube i, and with high probability, it is not possible to have a pair of
exceedances in i; thus the number of exceedances is close to the number of sub-cubes in which
there are at least one exceedance. Now, notice that the number of exceeding sub-cubes, i.e.∑

i∈V 1Mi>vρ , is a sum of non-independent Bernoulli random variables, but which tend to be
independent thanks to the (FRC) condition. Using this, and again the (LCC) condition, we have∑

i∈V

1Mi>vρ ' Po(τρ),

where τρ is the expectation of the number of exceeding sub-cubes. This last approximation is a
consequence of Proposition 1.1.3 by taking Xi = 1Mi>vρ (the terms b1, b2 are easily controlled
thanks to (1.2.2) and the (LCC) condition, and the term b3 equals 0 thanks to the (FRC)
condition; the neighborhood Bi appearing in Equation (1.1.3) is defined as the sub-cube i up to
multiplicative constant). Using again the (LCC) condition, we can easily prove that τρ is close
to τ , which gives

#ΦWρ ' Po(τ).

1.2.2 STIT and Poisson line tessellations
This section deals with extremes for stationary STIT and Poisson line tessellations in R2. We
consider a problem which is similar to the one presented in Section 1.2.1. This time, we only
investigate the case where the geometric characteristic is the inradius, i.e. the radius of the
largest ball included in the cell, since it is one of the rare characteristics for which the distribution
concerning the typical cell C can be made explicit. Indeed, according to Lemma 3 in [77] (resp.
Theorem 10.4.6 in [90]), the random variable R(C) has an exponential distribution with explicit
parameter, where R(C) denotes the inradius of the typical cell of a STIT (resp. Poisson line)
tessellation. The fact that the typical cells have the same inradius in distribution (when the
intensities of the STIT and Poisson line tessellations are equal) is not surprising since their
interiors are the same in distribution. The results which are presented below come from the
papers [28, 32].

Large inradii for STIT tessellations

To present the main result of [32], we first give some notation. Let mt be a stationary STIT
tessellation at time t > 0, with intensity γt = t2

π . For a threshold v ≥ 0, let NWρ(v) be the
number exceedances, i.e.

NWρ
(v) :=

∑
C∈mt:z(C)∈Wρ

1R(C)>v,

where Wρ = t−1√π ρ · [− 1
2 ,

1
2 ]2 and where z(C) denotes the incenter of the cell C. Given τ > 0,

and similarly to (1.2.2), we define a threshold vρ = vρ(τ) in such a way that the mean number
of exceedances is equal to τ , i.e.

E
[
NWρ

(vρ)
]

= γt t
−2 π ρP (R(C) > vρ) = τ.
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Because R(C) has an exponential distribution (with parameter 2t), the threshold can be made
explicit and is equal to

vρ := vρ(τ) = 1
2t (log ρ− log τ).

The main result of [32] is a Poisson approximation of the number of exceedances and can be
stated as follows:

Theorem 1.2.2. Let Po(τ) be a Poisson random variable with parameter τ . Then

NWρ
(vρ)

D−→
n→∞

Po(τ). (1.2.5)

In particular, the above result gives the asymptotic distributions of the largest order statistics.
For instance, if we denote by MWρ

the maximum of inradii, we have P
(
MWρ

≤ vρ
)
−→
ρ→∞

e−τ

and therefore (by taking τ = e−x),

P

(
MWρ

≤ 1
2t log ρ+ 1

2tx
)
−→
ρ→∞

e−e
−x
,

for any x ∈ R. This last property is classical since it shows that the maximum of inradii belongs
to the domain of attraction of a Gumbel distribution. Theorem 1.2.2 can be expressed in terms
of total variation distance and a rate of convergence can be made explicit.

Although Theorem 1.2.1 is a general result, Theorem 1.2.2 is not a consequence of the latter
since the (FRC) condition is not satisfied. However, the methods which are used to prove these
theorems are similar: each one is based on a discretization of the window (see p. 23) and on a
Poisson approximation result due to Arratia et al. (Proposition 1.1.3). The main difficulty to
prove Theorem 1.2.2 is to deal with the term b3 (as defined in (1.1.3)). Indeed, while this term is
equal to 0 when the random tessellation satisfies the (FRC) condition, this property fails in the
case of a STIT tessellation. The reason is that the STIT tessellation only satisfies a β-mixing
[76], which is weaker than a finite range condition.

We describe below the main ideas to deal with b3. First, we construct a family of neighbor-
hoods Bi, appearing in (1.1.3), with a suitable size (not too big if not b2 is too large, and not too
small if not b3 is too large). Then, as a key argument, we use the fact that the STIT tessellation
has a mixing property. However, the general upper bound for the β-mixing coefficient provided
in [76] is not sufficient for our purposes. A more specific treatment of rare events has to be
developed. To do it, we use the concept of encapsulation, which was introduced by Martinez
and Nagel [75]. Given two convex polygons K,K ′ such that 0 ∈ K ′ ⊂ K, it means that there
is a state of the STIT process m = (mt, t > 0) such that all facets of K ′ are separated from
the facets of K by facets of the tessellation before the interior of K ′ is divided by a facet of the
tessellation. Formally, denoting the 0-cell by C0

t , i.e. the cell of mt that contains the origin, we
define the encapsulation time as

S(K,K ′) := inf{t > 0 : K ′ ⊂ C0
t ⊂ K◦},

with the convention inf ∅ = ∞. Roughly, it means that if we control the encapsulation time,
then extreme events appearing in K ′ (approximately the latter is the sub-cube i) tend to be
independent of extreme events appearing outside K (approximately it is the neighborhood Bi);
which implies that b3 is small.
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Smallest and largest inradii for a Poisson line tessellation

In [28], we investigate the smallest and largest order statistics for the inradius in a planar Poisson
line tessellation. In particular, we establish Poisson approximations for the number of cells with
inradii larger than a large threshold (largest order statistics) and for the number of cells with
inradii smaller than a small threshold (smallest order statistics). Here again, we cannot apply
Theorem 1.2.1 because the Poisson line tessellation does not satisfy the (FRC) condition. The
main difficulty is that cells can have a line in common even if they are far from each others.
Besides, it seems that the proof which we used to derive Theorems 1.2.1 and 1.2.2 cannot be
adapted since it requires to deal with the term b3 (see Equation (1.1.3)).

In Theorem 1.1. (ii) in [28], we also establish a Poisson approximation for the largest inradii.
The result is similar to Theorem 1.2.2 but is based on a different method, namely the method
of moments. The computation of the moments of the number of exceedances is highly technical
since we discuss the number of lines which are in common between cells exceeding the threshold.
As opposed to [20, 23, 32], we cannot express our results in terms of total variation distance with
explicit rate of convergence. In Theorem 1.1. (i) in [28], we establish a Poisson approximation
for the smallest order statistics. The main idea is to apply a result due to Schulte and Thäle
on U -statistics (Theorem 1.1 in [92]). In complement, we also show that cells with a small
inradius are triangles with high probability. More precisely, we get the following theorem (with
Wρ = ρ1/d[− 1

2 ,
1
2 ]d):

Theorem 1.2.3. Let r ≥ 1 be fixed. Let CWρ
[r] be the cell, with incenter in Wρ, such that

R(CWρ
[r]) is the r-th smallest inradius for cells with incenters in Wρ. Let n(CWρ

[r]) be its
number of vertices. Then

P

(
r⋂

k=1

{
n
(
CWρ

[k]
)

= 3
})
−→
ρ→∞

1.

1.2.3 Large k-th nearest neighbor balls
In [29], we consider the following problem. Let (S, ρ) be a metric space and let X1, . . . , Xn

be a sequence of i.i.d. random variables with distribution µ. Given (fixed) k ≥ 1, and under
suitable assumptions on the metric ρ, there is a.s. a unique k-th nearest neighbor of Xi among
{X1, . . . , Xn} \ {Xi}, for each i ≤ n, and we denote by Ri,n,k the distance of this point to Xi.
The main topic of [29] is to deal with the largest values of µ(B(Xi, Ri,n,k)) as n goes to infinity,
where B(x, r) denotes the closed ball centered at x with radius r. To do it, we introduce for
fixed t ∈ R, the following threshold:

vn,k := vn,k(t) := t+ logn+ (k − 1) log logn− log(k − 1)!
n

, (1.2.6)

Roughly, vn,k is the order of the maximum of the measures of the balls. In some sense, it is
universal since it does not depend neither on the metric space (S, ρ) nor on the measure µ.
In the same spirit as Sections 1.2.1 and 1.2.2, we investigate the asymptotic behaviour of the
number of exceedances, namely

Nn,k :=
n∑
i=1

1µ(B(Xi,Ri,n,k))>vn,k .

The study of extremes of k-th nearest neighbor balls is classical in stochastic geometry, and
it has various applications, see e.g. [82]. As a first result, we prove that the mean number of
exceedances, i.e. E [Nn,k], converges to e−t as n goes to infinity, with explicit rate of convergence.
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When the metric space (S, ρ) is the Euclidean space Rd endowed with its usual norm, we
can derive a Poisson approximation of Nn,k. More precisely, under suitable assumptions on µ (in
particular, µ has to admit a density w.r.t. the Lebesgue measure in Rd with compact support,
say [0, 1]d), we get the following result:

dTV
(
Nn,k,Po(e−t)

)
= O

(
log logn

logn

)
, (1.2.7)

where dTV denotes the total variation distance.
Equation (1.2.7) is a a generalization of a result due to Györfi el al. (see Theorem 2.2 in [51])

since it holds for any integer k ≥ 1 whereas [51] only deals with the case k = 1. Moreover (1.2.7)
is more precise in the sense that, as opposed to [51], we make explicit the rate of convergence for
the Poisson approximation.

1.3 Extremal index for random tessellations
1.3.1 A new characterization of the extremal index
Similarly to Section 1.2, we consider a stationary random tessellation m in R2, a geometric
characteristic g and a window Wρ = ρ1/d[− 1

2 ,
1
2 ]d. As stated in Theorem 1.2.1, under a finite

range condition (FRC) and a local correlation condition (LCC), the point process of exceedances,
i.e.

ΦWρ
(τ) = ρ−1/d{z(C) ∈Wρ : C ∈ m and g(C) > vρ(τ)},

converges to a homogeneous Poisson point process, where vρ(τ) is a threshold satisfying (1.2.2).
The (LCC) condition ensures that the exceedances are isolated. When the latter does not hold,
clusters of exceedances can appear in the same spirit as they can appear for sequences of real
random variables when the D′(un) is not satisfied (see Section 1.1.2).

A natural question, in the context of random tessellations, is to investigate the mean size
of a typical cluster of exceedances. To this end, we introduce in the same spirit as (1.1.4), the
concept of extremal index as follows. We say that θ is the extremal index if, in conjunction to
(1.2.2), we have

P
(
MWρ ≤ vρ(τ)

)
−→
ρ→∞

e−θτ ,

where MWρ
denotes the maximum of the characteristic g over all cells with nucleus in Wρ (see

Equation (1.2.1)). Here again θ is interpreted as the reciprocal of the mean size of a cluster of
exceedances.

In [33], we provide a new characterization of the extremal index and of the asymptotic
cluster size distribution. This characterization is based on the Palm version of the point process
of exceedances. Roughly, given any Borel subset B ⊂ Wρ, the Palm version Φ0

B of the point
process of exceedances observed in B is defined as the (normalized) set of nuclei of cells exceeding
the threshold vρ(τ) conditional on the fact that the origin is the nucleus of a cell and that this
cell (which, in distribution, is the typical cell) is an exceedance. Then we introduce a distribution
(pk,B(τ)) as follows:

pk,B(τ) := P
(
#Φ0

B(τ) = k
)
, k ≥ 1.

The quantity pk,B(τ) can be interpreted as the probability that there are k exceedances in B
conditional on the fact that the origin is a nucleus and that the cell with nucleus at the origin is an
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exceedance. In the particular case where m is a Voronoi tessellation based on a stationary Poisson
point process η, and thanks to the Mecke-Slivnyak formula, the probability can be expressed as:

pk,B(τ) = P
(

#Φη∪{0}B (τ) = k|g(Cη∪{0}(0)) > vρ(τ)
)
,

where

Φη∪{0}B (τ) = ρ−1/d{x ∈ (η ∪ {0}) ∩B : g(Cη∪{0}(x)) > vρ(τ)}.

The main result of [33] (Theorem 4) claims that the point process of exceedances converges to a
homogeneous compound Poisson point process and can be stated as follows.
Theorem 1.3.1. Let Bρ be a cube with volume (log log ρ)log log ρ. Assume that the following limit
exist:

pk := lim
ρ→∞

pk,Bρ(τ0),

for any k ≥ 1 and for some τ0. Then, under mild additive assumptions (including the existence
of an extremal index θ ∈ (0, 1]), for any τ > 0,

ΦWρ(τ) D−→
n→∞

Φ(τ),

where Φ(τ) is a homogeneous compound Poisson point process in [− 1
2 ,

1
2 ]d of intensity θτ with

cluster size distribution π = (πk), where

θ =
∞∑
k=1

k−1pk and πk = pk
kθ
.

In the same spirit as (1.1.5), we can show that, for any k ≥ 1,

πk = lim
ρ→∞

P
(
#ΦBρ(τ0) = k

∣∣#ΦBρ(τ0) > 0
)
,

where Bρ is as in Theorem 1.3.1. Similarly to Section 1.1.2, the above expression can be seen as
a blocks characterization of the cluster size distribution, whereas the expression πk = pk

kθ can be
seen as a Palm characterization.

Our theorem provides a new expression of the extremal index: this index was previously
interpreted as the reciprocal of the mean of the cluster size distribution π. From now on, it can
be viewed as the mean of the reciprocal of the Palm version of the cluster size.

Theorem 1.3.1 has also a practical interest. Indeed, in general the distribution π and the value
of θ cannot be made explicit. It is necessary to use simulations to compute approximate values of
these quantities. In Section 1.1.2, in the context of sequences of real random variables, we have
seen that estimators of these quantities can be based on the blocks (Equation (1.1.5)) and runs
(Equation (1.1.6)) characterizations. The runs’one cannot be adapted in our context since there
is no natural order in Rd. The blocks method competes with the Palm approach. The idea of the
Palm approach is to consider clusters close to the origin given that the cell whose nucleus is the
origin has an exceedance. Our approach (Palm characterization) provides better approximations
of the extremal index and the cluster size distribution and requires less simulations. Indeed, it is
sufficient to simulate the random tessellation only on blocks that contain at least one exceedance
(the one with nucleus the origin), while with the blocks approach, it is necessary to simulate
a very large number of blocks (including those without any extreme value). More precisely, in
[33], we give numerical illustrations in R2 by simulating tessellations only observed in the square
[−173, 173]2 to approximate θ and p = (pk) thanks to our Palm approach. A blocks approach
would have required to simulate tessellations in the square [−5.18 · 1021, 5.18 · 1021] for the same
accuracy, which is practically impossible.
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1.3.2 Numerical illustrations

In [33], we illustrate Theorem 1.3.1 throughout simulations for three geometric characteristics
for which the value of the extremal index is known or can be conjectured (see [24] for examples
of computations of extremal indices). For sake of simplicity, the simulations are done in the
particular setting d = 2. We provide approximations of p1, . . . , p9 and of the extremal index by
using the fact that θ =

∑∞
k=1 k

−1pk and we compare this approximation to the theoretical value
of θ.

For each geometric characteristic g, we proceed as follows. We take τ = 1 and ρ = exp(100).
In particular, the cube Bρ, as considered in Theorem 1.3.1, is approximatively

Bρ ' [−173, 173]2.

Then, we compute theoretically vρ(1) so that ρ · P (g(C ) > vρ(1)) −→
ρ→∞

1. We simulate 10000
realizations of independent Poisson-Voronoi tessellations given that the typical cell is an ex-
ceedance, i.e. g(Cη∪{0}(0)) > vρ(1). This sample of size 10000 is divided into 100 sub-samples
of size 100. For each 1 ≤ i ≤ 100 and for each 1 ≤ k ≤ 9, we consider the empirical mean
p̂

(i)
k of pk, i.e. the mean number of realizations in which there exist exactly k Voronoi cells with

nucleus in Bρ ' [−173, 173] and such that the geometric characteristic is larger than vρ(1). We
summarize our empirical results by box plots associated with the empirical values (p̂(i)

k )1≤i≤100.
The three examples that we consider are the inradius, the reciprocal of the inradius and the
circumradius for a Poisson-Voronoi tessellation (another numerical example in [33] concerns the
large circumradii of a Poisson-Delaunay triangulation but is not described below).

Inradius Recall that the inradius of a Voronoi cell with nucleus x is defined as the radius of
the largest ball included in the cell and centered at x. It equals the half distance of x to its
nearest neighbor. When we consider the largest values of the inradii, the extremal index is θ = 1
and the cluster size distribution is π = p = δ1 (this can be seen as a consequence of Theorem
1.2.1). The left part of Figure 1.3 is a simulation of a Poisson-Voronoi tessellation given that
the inradius of the typical cell Cη∪{0}(0) is larger than vexp(100)(1) ' 2.82. As observed in this
figure, there is no cell with a large inradius, excepted the typical cell. This confirms that the
cluster of exceedances are of size 1, i.e. p1 = 1 and θ = 1. The right part of Figure 1.3 provides
the box plots of the empirical distributions. In particular, for all simulations, there is always
exactly one cell with a large inradius.

Reciprocal of the inradius A second example deals with the large values of the reciprocal
of the inradii for a Poisson-Voronoi tessellation in R2. Equivalently, this consists of the small
values of the inradii. As observed in [24], the extremal is θ = 2 and the cluster size distribution
is π = p = δ2. This fact can be explained by a trivial heuristic argument: if a cell minimizes the
inradius, one of its neighbors has to do the same (see also the left part of Figure 1.4). Moreover,
we can easily prove that the probability that there is more than one such a cell is negligible. The
left part of Figure 1.4 provides a realization of a Poisson-Voronoi tessellation when the inradius of
the typical cell is lower than vexp(4)(1) ' 0.0381 (we have taken the threshold vexp(4)(1) instead of
vexp(100)(1) for convenience). The right part of Figure 1.4 provides the box plots of the empirical
distributions. In particular, for all simulations, there are always exactly two cells with a small
inradius.
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Figure 1.3: Large inradius for a Poisson-Voronoi tessellation

Figure 1.4: Small inradius for a Poisson-Voronoi tessellation
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Figure 1.5: Large circumradius for a Poisson-Voronoi tessellation

Circumradius Recall that the circumradius of a Voronoi cell with nucleus x is defined as the
radius of the smallest ball containing the cell and centered at x. Using a conjecture on the
tail of the circumradius of the typical cell [17] and our result on the asymptotic behaviour of
the maximum of circumradii (Equation (2.c) in [20]), we conjecture in [33] that the extremal
index is θ = 1/4. On the left part of Figure 1.5, we provide a simulation of the Palm version
of the Poisson-Voronoi tessellation, given that the circumradius of the typical cell is larger than
vexp(100)(1) ' 5.81. The size of a cluster of exceedances is random. On the right part of Figure
1.5, we provide the box plots of the empirical distributions. This time, the empirical distributions
of the cluster size probabilities are not degenerated for k = 3, . . . , 9, and their interquartile ranges
are quite large for k = 3, 4, 5. We also notice that the empirical value of the extremal index is
very concentrated around a value close to 1/4.

1.4 Extremes on the Delaunay graph

1.4.1 The maximal degree
In this section, we present the paper [14]. Let η be a stationary Poisson point process of intensity
1 in Rd and let Wρ = [− 1

2 ,
1
2 ]d. With each node x ∈ η, we associate the degree of x, say dη(x), in

the Delaunay graph induced by η. The main problem is to investigate the asymptotic behaviour
of the maximum of the degrees over all nodes in Wρ, namely

∆Wρ = max
x∈η∩Wρ

dη(x),

as ρ goes to infinity. This question is related to the one considered in the previous sections.
However, the main difference is that the maximum that we deal with concerns discrete random
variables. The results which are obtained are radically different since it is not possible to find a
threshold in such a way that (1.2.2) holds.

The maximal degree of random combinatorial graphs has been extensively investigated, but
much less has been done when the vertices are given by a point process and the edges are
built according to geometric constraints. One of the first results on the maximal degree in a
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Figure 1.6: Empirical distribution of ∆Wρ
, based on 75000 simulations, of the maximal degree

in a planar Poisson-Delaunay graph observed in the window W106 = 103[0, 1]2.

Poisson-Delaunay graph was due to Bern et al. (see Theorem 7 in [8]) who showed that

E
[
∆Wρ

]
= Θ

(
log ρ

log log ρ

)
(1.4.1)

in any dimension d ≥ 2. More recently, Broutin et al. [16] provided a new bound for ∆Wρ
in the

following sense: when d = 2, with probability tending to 1, the maximal degree ∆Wρ
is less than

(log ρ)2+ξ, for any fixed ξ > 0. The main result of [14] significantly improves these two results
in dimension two and is stated below.

Theorem 1.4.1. There exists a deterministic function ρ 7→ Iρ, ρ > 0, with values in N =
{1, 2, . . .}, such that

(i) P
(
∆Wρ ∈ {Iρ, Iρ + 1}

)
−→
ρ→∞

1;

(ii) Iρ ∼
ρ→∞

1
2 ·

log ρ
log log ρ .

Our result provides the exact order of the maximal degree and claims that, with high proba-
bility, the maximal degree is concentrated on two consecutive values. As observed in Figure 1.6,
the concentration is already visible for ρ = 106.

A similar result has been established in the context of i.i.d. discrete real random variables.
More precisely, Anderson [1] was the first one to prove that the maximum of the first n terms
is concentrated, with high probability as n goes to infinity, on two consecutive integers for a
wide class of discrete random variables. Many results of this type have also been established for
maxima of degrees in the context of random combinatorial graphs. For random geometric graphs,
it seems that only one has been stated in this way (see Theorem 6.6. in [81]). Two difficulties are
added in the context of Poisson-Delaunay graphs. The first one is that the distribution of the
typical degree cannot be made explicit. The second one, which constitutes the main difficulty,
comes from the dependence between the degrees of the nodes and the geometric constraints in
the Poisson-Delaunay graph.

32



CHAPTER 1. EXTREMES IN STOCHASTIC GEOMETRY

Figure 1.7: The shortest path Ss,t(χ) (red) and the upper path Us,t(χ) (blue).

To prove Theorem 1.4.1, we first provide logarithmic estimates of the probability that the
typical degree equals a large value. The latter are very similar to two results in [13] (Theorem
1.1 and Theorem 1.2) in which estimates for the distribution of the typical number of facets
in a Poisson hyperplane tessellation are given. Then to deal with the dependence structure of
the Poisson-Delaunay graph, we introduce a dependency graph in the same spirit as Avram and
Bertsimas [4] did for deriving central limit theorems. The proof strongly uses the fact that the
Delaunay graph in R2 is planar. As an intermediate result to derive Theorem 1.4.1, we prove
that, with high probability, there is no family of five nodes in the Poisson-Delaunay graph which
are close to each other, such that their degrees simultaneously exceed Iρ. Such a result is essential
in our proof and is specific to the two dimensional case. Surprisingly, the proof of Theorem 1.4.1
also shows that we can find arbitrary large windows for which the maximal degree is concentrated
on only one integer with high probability.

An extension of Theorem 1.4.1 can be done in higher dimension (see Theorem 3 in [14]) in
the following sense: with high probability, the maximum of the degrees in Rd is concentrated on
a finite deterministic number (only depending on d) of consecutive values. However, as opposed
to Theorem 1.4.1, we think that this extension is not optimal since we conjecture that it should
also be concentrated only on two consecutive integers.

1.4.2 The stretch factor
In [27], we investigate the length of the smallest between two fixed nodes in a planar Delaunay
graph induced by some set of points χ. By a path P = P (s, t) between two nodes s, t ∈ χ,
we mean a sequence of edges [Z0, Z1], [Z1, Z2], . . . , [Zk−1, Zk] in the Delaunay graph, such that
Z0 = s, Zk = t (see Figure 1.7).

The investigation of paths is related to walking strategies which are commonly used to find the
triangle containing a query point in a planar triangulation [38] or routing in geometric networks
[15]. A classical problem is the study of the stretch factor associated with two nodes s, t. This
quantity is defined as the length of the smallest path, say `(Ss,t(χ)), divided by the Euclidean
distance |s − t|. Many upper bounds were established for the stretch factor in the context of
finite sets χ, see e.g. [40]. The best upper bound established until now for deterministic finite
sets χ is due to Xia [98] who proves that the stretch factor is lower than 1.998. For the lower
bound, Xia and Zhang [99] find a configuration of points χ such that the stretch factor is greater
than 1.593.

In [27], we focus on a probabilistic version of the problem by taking a slight modification of
the underlying point process. More precisely, we fix two points, say s = (0, 0) and t = (1, 0) and
we consider a homogeneous Poisson point process ηn of intensity n in R2. We investigate the
stretch factor between s and t, i.e. the length of the smallest path, when the underlying set of
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nodes is χ = ηn ∪ {s, t}. Our main result consists of bounds, in expectation, of `(Ss,t(χ)) as n
goes to infinity and can be stated as follows.

Theorem 1.4.2. When χ = ηn ∪ {s, t}, with s = (0, 0) and t = (1, 0), we have

1 + 7 · 10−9 ≤ lim
n→∞

E [`(Ss,t(χ)] ≤ 35
3π2 ' 1.182.

The existence of the limit comes from subadditivity arguments. Our bounds are from optimal
since simulations suggest that limn→∞ E [`(Ss,t(χ)] ' 1.04. However, our result provides the first
(and seemingly the only one) non-trivial lower bound, i.e. strictly larger than 1, for the stretch
factor when the intensity of the underlying Poisson point process goes to infinity. In parallel to
our work, Hirsch et al. (Theorem 26 in [55]) also prove that the stretch factor is non-trivial, for
a larger class of random graphs, but their technique cannot provide an explicit lower bound for
the stretch factor.

The difficulties for obtaining the two bounds in Theorem 1.4.2 are radically different. The
upper bound is easy: it consists in building an auxiliary path and in estimating its length. This
path, referred to as the upper path Us,t(χ), is defined as the sequence of all edges in R×R+ which
belong to Delaunay triangles that intersects [s, t] (see Figure 1.7). Because Us,t(χ) is defined
locally, it is not hard to compute the expectation of its length by applying classical formulas of
Stochastic and Integral Geometry, namely the Mecke-Slivnyak formula (see e.g. Theorem 3.3.5
in [90]) and the Blaschke-Petkantschin type change of variables (see e.g. Theorem 7.3.1 in [90]).
The lower bound in Theorem 1.4.2 is much more delicate since it requires to deal with directly
the smallest path. Investigating the latter is difficult because it is not defined locally and long
range dependence properties occur: the length strongly depends on the points s and t. The main
idea to deal with is to discretize the plan into squares, called pixels, with a suitable size. Then,
on each pixel, we consider a so-called horizontal property which roughly claims that, in the pixel,
paths are almost horizontal. We prove that there is a non-negligeable proportion of pixels which
intersect the smallest path and which do not have such a property. Then, on these pixels, we
provide a lower bound for the smallest path. However, the main difficulty is that the properties
of pixels intersecting the smallest path are not independent, although when the latter are far.
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2.3.2 Extremes for Vietoris-Rips and Čech complexes . . . . . . . . . . . . . 44

2.1 Introduction
2.1.1 Concepts of Topological Data Analysis
Topological Data Analysis (TDA) is a recent field of research which borned with the pioneering
works of Edelsbrunner et al. [47] and Zomorodian and Carlsson [100] in Persistent Homology. The
simple and effective idea is to leverage invariants from Algebraic Topology to extract insights
from datasets. The latter are often represented as point clouds in Euclidean or more general
metric spaces. TDA has a wide variety of applications such as astronomy, biology, finance and
materials science. We recall below some notions of TDA. The description which we give is mainly
inspired from a survey of Chazal and Michel [22].

Simplicial complexes A classical object in Algebraic Topology is the simplicial complex.
The latter is a generalization of the notion of graph and can be associated with some topological
space. Given a set X = {x0, . . . , xk} of k + 1 points of Rd which are affinely independent, the
k-dimensional simplex σ = [x0, . . . , xk] spanned by X is defined as the convex hull of X. A
geometric simplicial complex K in Rd is a collection of simplices such that
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Figure 2.1: (a) Čech complex; (b) Vietoris-Rips complexes.

(i) any face of a simplex of K is a simplex of K;

(ii) the intersection of any two simplices of K is either empty or a common face of both.

Given a set V , an abstract simplicial complex with vertex set V is a set K of finite subsets of
V such that the elements of V belongs to K and for any σ ∈ K any subset of σ belongs to K.
The elements of K are called the faces or the simplices of K. The dimension of an (abstract)
simplex is defined as its cardinality minus 1 and the dimension of K is the largest dimension
of its simplices. In particular, a simplicial complex of dimension 1 is a graph. Any geometric
simplicial complex is an abstract simplicial complex. The reciprocal is in some sense true since
an abstract simplicial complex can be associated with a geometric complex whose combinatorial
description is the same.

Among the most usual (abstract) simplicial complexes are the Vietoris-Rips and the Čech
complexes. To introduce them, we consider a set of points in Rd, say X, and a real number
r ≥ 0.

• The Vietoris-Rips complex Ripsr(X) is the set of simplices [x0, . . . , xk] such that B(xi, r)∩
B(xj , r) 6= ∅ for all 0 ≤ i, j ≤ k.

• The Čech complex Čechr(X) is the set of simplices [x0, . . . , xk] such that
⋂
i≤k B(xi, r) 6= ∅.

In particular, any element in the Čech complex is an element of the Vietoris-Rips complex but
the reciprocal is not true (see Figure 2.1).

An important result of Algebraic Topology is the so-called nerve theorem (see e.g. Theorem
1 in [22]). The latter implies that, in terms of homotopic equivalence, the Čech complex is the
same object as the union of the balls

⋃
x∈X B(x, r). In particular, the topological invariants as

defined below are the same.
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Homology Among the most classical topological invariants are the Betti numbers. Loosely
speaking, they capture the number of k-dimensional holes of the investigated structure. To
define them, we first recall some notion of Homology. Roughly, given a simplicial complex, the
k-dimensional holes, k ≥ 0, are represented by a vector space Hk whose dimension is intuitively
the number of independent k-holes. For example the 0 (resp. 1)-dimensional homology group
H0 (resp. H1) represents the connected components (resp. the loops) of the simplicial complex.

To introduce the homology groups, we proceed as follows. Let K be a simplicial complex and
let {σ1, . . . , σp} be the set of k-simplices in K, where k ≥ 0 is fixed. Define the space of k-chains,
say Ck, as the collection of families of k-simplices. This space can be seen as the set of formal
linear combinations of k-simplices with coefficients in Z/2Z, i.e.

Ck =
{

p∑
i=1

λiσi, λi ∈ Z/2Z
}
.

Endowed with an internal sum and an external product, the set Ck is a Z/2Z-vector space with
dimension p. Now, define an operator ∂k : Ck → Ck−1 as follows. First, for any k-simplex
σ = [x0, . . . , xk], we let

∂k(σ) =
k∑
i=0

[x0, . . . , x̂i, . . . , xk],

where [x0, . . . , x̂i, . . . , xk] = [x0, . . . , xi−1, xi+1, xk] and [x̂0, x1, . . . , xk] = [x1, . . . , xk]. In partic-
ular, the quantity ∂k(σ) is a (k − 1)-chain. By linearity, the function ∂k can be extended as a
linear operator defined on the space Ck and with values in Ck−1. The kernel of the operator
∂k : Ck → Ck−1, say Zk = Ker(∂k), is referred to as the space of k-cycles whereas the image of
the operator ∂k+1 : Ck+1 → Ck, say Bk = Im(∂k+1), is referred to as the space of k-boundaries.
An important property is:

∂k ◦ ∂k+1 = 0.

As a consequence, Bk is included in Zk. Roughly, a k-cycle can be seen a the boundary of
a (k + 1)-dimensional solid whereas a k-boundary can be seen as the boundary of a (k + 1)-
dimensional solid which is a (k + 1)-chain. The k-th homology group of the simplicial complex
K is defined as the quotient space

Hk = Zk
Bk

.

The above set is a Z/2Z-vector space. Its dimension, denoted by

βk = dimHk = dimZk − dimBk,

is called the k-th Betti number. As an example, in Figure 2.1, (a), we have Z1 ' (Z/2Z)3,
B1 ' (Z/2Z)2 and β1 = 1. This last equality has a clear intuition: the Betti number β1 equals
1 because there is only one 1-dimensional hole in the simplicial complex (the one whose the
boundary is given by the edges [x1, x2], [x2, x3] and [x3, x1]). Besides, in Figure 2.1, (b), we have
Z1 ' (Z/2Z)3, B1 ' (Z/2Z)3 and β1 = 0.

Persistent Homology Persistent Homology is a powerful tool for computing topological fea-
tures of a space at different spatial resolutions. In particular, it encodes the evolution of the
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Figure 2.2: Lifetimes for connected components (red) and loops (blue); the figure comes from a
survey of Chazal and Michel [22].

homology groups of the nested complexes across the scales. The main motivation is to detect
the true features of the underlying space and to recognize artifacts of sampling or noise.

Figure 2.2 comes from a survey of Chazal and Michel [22] and illustrates this concept. Let
us describe in few words the mechanism. Part a) depicts a point cloud (a dataset). Roughly, it
seems that there are two loops. To detect them more rigorously, the main idea is to draw balls,
centered at each point of the dataset with the same radius, during a time interval. When the
radius grows, features such as loops, appear and disappear. For instance, Part c) gives a time at
which two loops are alive whereas Part d) gives another one at which one loop is still alive and
the other one is dead. The birth and death times of such features can be represented through
a so-called barcode. For instance, in Part e), the blue bars stand for the lifetimes of the two
loops appearing in the process. Birth and death time can also be represented through another
diagram, called the persistence diagram. Roughly, a feature is represented through a point whose
the x-coordinate is the birth time of the feature and the y-coordinate is its deathtime. Observing
features during a time interval (which is the concept of Persistent Homology), and not at a fixed
time (which only concerns Homology), is important. Indeed, an observation based on a time
interval allows us to detect the features which are the most persistent, i.e. which live for a long
time, and to detect on the opposite the one which are not relevant (for example, the one which
come from some noise in the dataset).

To describe more rigorously the above concept, we introduce the notion of persistent homology
groups as follows. Let K be a simplicial complex and let (Kr)r∈T , T ⊂ R+ be an increasing
sequence of simplicial complexes such that K =

⋃
r∈T Kr. The sequence (Kr)r∈T is referred to

as a filtration of K. For instance, if X is a point cloud in Rd, the sequences (Ripsr(X))r∈T
and (Čechr(X))r∈T are filtrations, which are called the Vietoris-Rips and the Čech filtrations,
respectively. Now, for any r ∈ T , denote by Zk(Kr) (resp. Bk(Kr)) the space of k-cycles (resp.
the space of k-boundaries) of the simplicial Kr. Notice that the sequences Zk(Kr) and Bk(Kr)
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are increasing w.r.t. r. Now, let r ≤ s be fixed. Similarly to the definition of the homology
groups, we define the k-th persistent homology group at times r, s as the quotient space

H
(r,s)
k = Zk(Kr)

Zk(Kr) ∩Bk(Ks)
.

Such a quantity is a Z/2Z-vector space. Its dimension, denoted by β(r,s)
k = dimH

(r,s)
k , is called

the k-th persistent Betti number at times r, s. A (non-null) element of H(r,s)
k is the class of a k-

persistent cycle which is alive at time r and still alive at time s. Thus, the quantity β(r,s)
k counts

the number of independent k-persistent cycles with birth time in [0, r] and death time in (s,∞).
The family of persistent Betti numbers can be used to define rigorously the persistent diagram.
Indeed, it can be shown that there exists a unique set of points PDk = {(b(i)k , d

(i)
k ) : i ≥ 1} ⊂ R2

such that, for any r ≤ s,

#PDk ∩ ([0, r]× (s,∞)) = β
(r,s)
k .

The set PDk is the so-called persistence diagram. As mentioned previously, each element of PDk

can be interpreted as a k-dimensional feature, where the x-coordinate (resp. the y-coordinate)
represents the birth (rep. death) time.

2.1.2 Main problems
We give below a short description of our works in TDA. Each of them uses concepts which have
been introduced in the previous section.

In Section 2.2, we introduce tests for the goodness of fit of point patterns via methods from
TDA. More precisely, the persistent Betti numbers give rise to a bivariate functional summary
statistic for observed point patterns that is asymptotically Gaussian in large observation windows.
We analyze the power of tests derived from this statistic on simulated point patterns. As the main
methodological contribution, we derive sufficient conditions for a functional central limit theorem
on bounded persistent Betti numbers of point processes with exponential decay of correlations.

In Section 2.3, we consider the Čech and the Vietoris-Rips filtrations based on a station-
ary Poisson point process in Rd. We study extreme values for the lifetimes of features dying
in bounded components and with birth (resp. death) time bounded away from the threshold
for continuum percolation and the coexistence region. We describe the scaling of the minimal
lifetimes for general feature dimensions, and of the maximal lifetimes for cavities in the Čech fil-
tration. We establish Poisson approximation for large lifetimes of cavities and for small lifetimes
of loops. We also study the scaling of minimal lifetimes in the Vietoris-Rips setting and point to
a surprising difference to the Čech filtration.

2.2 Testing goodness of fit for point processes via Topo-
logical Data Analysis

2.2.1 Functional central limit theorem for persistent Betti numbers
In [9], we introduce tests for the goodness of fit of point patterns via methods from TDA. Our
main theoretical result is a functional central limit theorem. To state it, we consider a stationary
point process P in R2 and we let Pρ = P ∩Wρ, with Wρ = ρ1/2[− 1

2 ,
1
2 ]2.

As described in Section 2.1.1, when we grow balls centered at each point of Pρ with the same
radius during a time interval, k-features (in the Čech filtration) appear and disappear. Since we
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deal with the planar case, only the cases k = 0 and k = 1 are of interest. Here a 0-feature living
at time r can be identified to a connected component of the open space Or(Pρ) =

⋃
x∈Pρ B(x, r)

and a 1-feature (i.e. a loop) living at time r can be seen as a bounded connected component of
the vacant space Vr(Pρ) = R2 \Or(Pρ). Each 0-feature borns at time 0 and dies when it merges
with another connected component (of the open space), with the convention that the connected
component Ci is killed by the connected component Cj when the leftmost point of Ci is lower
than the one of Cj for the lexicographic order. For k = 1, when the growing radii create a new
loop at a radius r, the quantity r is the birth time of the new loop; the death time of a loop is
the smallest radius r > 0 when it is covered completely by Or(Pρ).

For technical reasons, we only investigate k-features, k ∈ {0, 1}, which are M -bounded (i.e.
with diameters lower than some fixed value M) and with death times lower than some fixed
deterministic radius rf > 0. Then, for any 0 ≤ r ≤ s ≤ rf , we denote by β

(r,s)
k,M (Pρ) the M -

bounded k-th persistent Betti number at times r, s. Similarly to Section 2.1.1, such a quantity
counts the number of k-features which are M -bounded during all their lives and with birth (resp.
death) time in [0, r] (resp. in (s, rf ]). Since all 0-features born at time 0, only death times are
relevant for k = 0. Hence, only the quantity β(s)

0,M (Pρ) = β
(0,s)
0,M (Pρ) is of interest.

Some assumptions on the point process P are required to state a functional central limit
theorem for the persistent Betti numbers. First, we suppose that the factorial moment measures
exist and are absolutely continuous. The p-th factorial moment density ρ(p) is determined via
the following identity:

E

∏
i≤p

#(P ∩Ai)

 =
∫
A1×···×Ap

ρ(p)(x1, . . . , xp)dx1 . . . dxp

for any pairwise disjoint bounded Borel sets A1, . . . , Ap ⊂ R2. We require that P exhibits
exponential decay of correlations. Roughly, this expresses an approximate factorization of the
factorial moment densities (see Definition 3.1 in [9] for a precise statement). We also assume
that a moment condition holds under the reduced Palm version and that the point process is
conditionally m-dependent for some m > 0 and satisfies an absolutely continuity-type condition
(see Section 3 in [9] for more details). Then, under these assumptions, we get the following
functional central limit theorem:
Theorem 2.2.1. The processes{

ρ−1/2
(
β

(s)
0,M (Pρ)− E

[
β

(s)
0,M (Pρ)

])}
s≤rf

and {
ρ−1/2

(
β

(r,s)
1,M (Pρ)− E

[
β

(r,s)
1,M (Pρ)

])}
r≤s≤rf

converge weakly in Skorokhod topology to centered Gaussian processes as ρ goes to infinity.
The expressions for the covariance structures of the limiting Gaussian processes can be made

explicit. The proof of Theorem 2.2.1 is divided into several steps. As a first difficulty, we prove
that the processes are tight. The tightness allows us to reduce our problem to finite dimensional
distributions (see Lemma 3 in [53]) and then, combined with the Cramér-Wold theorem, to
univariate central limit theorems (one for β(·)

0,M (Pρ) and the other one for β(·,·)
1,M (Pρ)). The key

ingredient to prove the latter is a central limit theorem due to B laszczyszyn et al. (Theorem 1.14
in [11]). One of the main difficulties consist in checking the assumptions of this theorem since it
requires delicate estimates of the variances. Our theorem can be applied to various stationary
point processes such as Log-Gaussian Cox processes and Matérn cluster processes.
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Figure 2.3: Samples from the Poisson null model, the Matérn cluster process, the Strauss process
and the Baddeley-Silverman process (from left to right).

2.2.2 Simulation study
In [9], we also construct tests which are based on our functional central limit theorem for dis-
criminating point processes. More precisely, given a stationary point process P, we test if the
latter is Poisson by considering lifetimes of connected components and loops. Under the null
hypothesis, Theorem 2.2.1 ensures that the statistic

TC =
∫ rC

0
PD0(Pρ)([0, d])dd

is asymptotically Gaussian, as ρ goes to infinity. In the above expression, we take rC ≤ rf

and PD0(Pρ) denotes the persistence diagram, i.e. PD0(Pρ)([0, d]) = β
(0)
0 (Pρ) − β(d)

0 (Pρ). Al-
though the proof of Theorem 2.2.1 relies on the M -boundedness, we ignore this constraint in our
simulations. In the same spirit, under the null hypothesis, the statistic

TL =
∫ rL

0
(d− b)PD1(Pρ)(db,dd)

is also asymptotically Gaussian.
In our simulation study, the null model is a stationary Poisson point process of intensity 2

and the window is W100 = [−5, 5]2. As alternatives of the Poisson point process, we consider
the Matérn cluster, the Strauss and the Baddeley-Silverman processes, each time with intensity
2. Figure 2.3 depicts realizations of these point processes. As observed in this figure, the
Matérn cluster process is attractive, whereas the Strauss and the Baddeley-Silverman processes
are more repulsive. Discriminating point process via TDA is natural since the study of lifetimes
of connected components or loops allows us to detect if the point process has clusters or not.

For the alternatives introduced above, Figure 2.4 illustrates the persistence diagram. From
the cluster-based diagrams, it becomes apparent that in comparison to the null model, in the
Matérn cluster process, there is a pronounced peak of deaths at early times, whereas this happens
very rarely in the Strauss process. When analyzing loops, we see that loops with long life times
appear earlier in the null model than in the Matén cluster process. Conversely, while some loops
with substantial life time emerge at later times in the null model, there are very few such cases
in the Strauss model. Due to the complex higher order interaction of the Baddeley-Silverman
process, its behavior is difficult to predict in advance. However, the samples in Figure 2.4
show that its topological characteristics are closer to those of a repulsive than a attractive point
pattern.
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Figure 2.4: Persistence diagrams for cluster-based features with density plots (top) and loop-
based features (bottom) for the Poisson null model, the Matérn cluster process, the Strauss
process and the Baddeley-Silverman process (from left to right).

Poisson Matérn cluster Strauss Baddeley-Silverman
TC 4.8% 55.7% 52.0% 65.6%
TL 4.5% 63.0% 54.5% 84.7%

Table 2.1: Rejection rates for the test statistics TC and TL under the null model and the alter-
natives.

We estimate the means and the variances of TC and TL under the null hypothesis by comput-
ing the number of cluster deaths and accumulated loop life times for 10000 independent draws of
the null model, for some suitable values of rC , rL ≤ rf . Then, to analyze the power of the test,
we draw 1000 realizations from the null model and from the alternatives, respectively. Table 2.1
shows the rejection rates of this test setup. Under the null model, the rejection rates are close to
the nominal 5%-level, thereby illustrating that already for moderately large point patterns the
approximation by the Gaussian limit is accurate. Using the mean and variance from the null
model, we compute the test powers for the alternatives. The statistic TC leads to a test power
of approximately 60% for both alternatives. When considering TL, we obtain a type I error rate
of 4.5%, so that the confidence level is kept. Moreover, the power analysis reveals that in the
present simulation set-up, TL is better in detecting deviations from the null hypothesis than TC .
As a concrete application, we use our tests for a point pattern in the context of neuroscience.

2.3 Extremal lifetimes of persistent cycles
In [30], we investigate extremes in TDA. We first introduce the problem in the context of Boolean
models since it does not require notions of TDA. Then we extend our problem to persistent cycles
in the context of Čech and Vietoris-Rips filtrations.

42



CHAPTER 2. TWO PROBLEMS IN TOPOLOGICAL DATA ANALYSIS

2.3.1 The Boolean model case
Before presenting our main results, we first give some notation. Let η be a stationary Poisson
point process of intensity 1 in Rd. For any r ≥ 0, let Or(η) =

⋃
x∈η B(x, r) be the so-called

Boolean model associated with η and r. By a cavity living at time r, we mean a bounded
connected component of the vacant space Vr(η) = Rd \ Or(η). As the radius grows, cavities
appear and disappear. When the growing radii create a new cavity at a radius r, we say that r
is the birth time of the new cavity. Moreover, the death time of a cavity is the smallest radius
r > 0 when it is covered completely by the Boolean model Or(η). We enumerate the cavities as
(J∗i )i≥1 and associate with each such cavity its lifetime L∗i > 0 and the point Z∗i ∈ Rd, referred
to as the nucleus, as the last point that is covered at the death time (notice that two cavities
living at different times are considered to be the same if their nuclei are equal).

Given a window Wρ = ρ1/d[− 1
2 ,

1
2 ]d, we would like to investigate the maximal lifetimes of

cavities with nucleus in Wρ, i.e. dying in Wρ, as ρ goes to infinity. Such a problem is highly
difficult since long-range interactions coming from percolation effects can occur. Indeed, if two
cavities born at times which are close to the critical radius, it is possible that these cavities are
very big and that their lifetimes depend on each others, even in the case where their nuclei are
far. To avoid such a problem, we deal with a simpler problem by considering not all the cavities
dying in Wρ but only the one which die in Wρ and with birth times outside a critical interval.
More precisely, let rOc (resp. rVc ) be the critical radius for occupied percolation (resp. for vacant
percolation), i.e.

rOc = inf{r ≥ 0 : P (Or(η) percolates ) > 0}

and

rVc = sup{r ≥ 0 : P (Vr(η) percolates ) > 0}.

Applying a result of percolation theory due to Duminil-Copin et al. [46], we can prove that, for
any ε > 0, the events

EVρ =
{

sup
r 6∈[rO

C
−ε,rVc +ε]

RVρ (r) ≤ (log ρ)2

}
and

EOρ =
{

sup
r 6∈[rO

C
−ε,rVc +ε]

ROρ (r) ≤ (log ρ)2

}

occur with high probability, where RVρ (r) (resp. ROρ (r)) denotes the maximal diameter of all
bounded connected components in Vr(η) (resp. Or(η)) centered in Wρ. In other words, with
high probability, all the cavities which born outside the critical interval [rOC − ε, rVc + ε] have,
during all their lives, diameters lower than (log ρ)2. Such a property is important since it ensures
that two distant cavities (in the sense that their nuclei are far) have lifetimes which tend to
be independent when we restrict our attention only on cavities which born outside the critical
interval.

Let (Li)i≥1 (resp. (Zi)i≥1) be the lifetimes (resp. nuclei) of all cavities with birth time
outside [rOC −ε, rVc +ε], where ε > 0 is fixed. We introduce concepts of EVT in the same spirit as
Chapter 1. First, given τ > 0, we consider a threshold vρ = vρ(τ) in such a way that the mean
number of exceedances is τ , i.e.

τ = E [#{i ≥ 1 : Zi ∈Wρ and Li > vρ}] .
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Then we consider the normalized point process of exceedances, i.e.

ΦWρ = ρ−1/d {Zi : Li > vρ}Zi∈Wρ
.

The first main result in [30] is stated below.

Theorem 2.3.1. For any τ > 0,

(i) vρ ∼
ρ→∞

(κ−1
d log ρ)1/d,

(ii) ΦWρ

D−→
ρ→∞

Φ,

where κd is the volume of the unit ball and where Φ is a stationary Poisson point process of
intensity τ in [− 1

2 ,
1
2 ]d.

As a consequence of the above theorem we obtain κ1/d
d (log ρ)−1/d maxZi∈Wρ

L1
P−→

ρ→∞
1. Such

a convergence is not classical in EVT since, in general, we give a more precise result on the
maximum, e.g. the limit distribution (see Chapter 1). However, we did not make explicit this
distribution since it requires a more precise estimate for the scaling. To get (i), the main ideas are
the following. For the upper bound, we prove that vρ cannot be too big if not a too big portion
of the window has no point of the Poisson point process. For the lower bound, we construct
a template occuring with non-negligeable probability for which there exists at least one cavity
with a large lifetime. To get (ii), we adapt several arguments of Section 1.2 by showing that,
with high probability, it is not possible to have a pair of exceedances in the same neighborhood.

2.3.2 Extremes for Vietoris-Rips and Čech complexes
As mentioned in Section 2.1.1, the nerve theorem claims that the Boolean model and the Čech
complex are equal in terms of topological invariants. In particular, the study of maximal lifetimes
for cavities in the Boolean model can be seen as a study on extremes of lifetimes for (d − 1)-
features in the context of a Čech complex. As an extension of Section 2.3.1, the paper [30] also
deals with the minimal lifetimes for k-features, 1 ≤ k ≤ d − 1, centered in the window Wρ, in
the Čech and in the Vietoris-Rips filtrations, as ρ goes to infinity. As previously, the point set
on which the simplicial complexes are based is a stationary Poisson point process in Rd. Here
again, to avoid percolation effects, we only consider features outside a critical interval. Similarly
to Theorem 2.3.1, we obtain:

(i) estimates of the threshold chosen in such a way that the mean number of exceedances equals
some τ > 0;

(ii) Poisson approximation for the point process of exceedances.

The case k = 0 is not discussed since a 0-feature can be seen as a connected component. In
particular, the longest lifetime corresponds to the longest edge in the minimum spanning tree
whose asymptotic was established in Penrose [82], and the smallest lifetime corresponds to the
minimum of interpoint distances. An interesting observation is that the orders which we obtain
for the minimal lifetimes in the Čech and in the Vietoris-Rips filtrations are radically different.
Indeed, for Čech, the order is ρ−2 whereas, for Vietoris-Rips, it is ρ−1. This can be explained
by the fact that cycles with 0 lifetime in the Vietoris-Rips filtration (and thus which are not
counted) can have a very small positive lifetime in the Čech-filtration.
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In a previous work, Bobrowski et al. have also investigated extremes of lifetimes but in
the context of multiplicative persistence. More precisely, [12] defines the lifetime of a k-feature
as the ratio between the death time and the birth time, whereas we work with the difference.
The advantage of their paper is that, as opposed to ours, they do not have to consider critical
intervals to avoid percolation effects. However, our results are more precise in the sense that we
establish Poisson approximation with the order of the scaling whereas they provide estimates of
the expectations up to multiplicative constants.
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The Internal Diffusion Limited
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3.1 Introduction
3.1.1 IDLA model and known results
The Internal Diffusion Limited Aggregation (IDLA) is a random growth model first introduced for
chemical applications in 1986 by Meakin and Deutch and then, in a mathematical framework,
by Diaconis and Fulton. In this model, the aggregate is recursively defined by adding to the
aggregate the first site out of the current aggregate visited by a random walk starting from some
source point. The standard IDLA model is constructed in Zd as follows. We start with A0 = ∅.
At step N , a simple symmetric random walk starts from the origin 0 until it exits the current
aggregate AN−1, say at some vertex z, which is added to AN−1 to get AN = AN−1 ∪ {z}. In
this manuscript, the word particle is used to refer to the random walk which is stopped when it
exits the current aggregate AN−1, and settled on the new vertex z.

A first shape theorem was established by Lawler et al. in [69] for the standard IDLA model.
It asserts that the aggregate AN (when it is suitably normalized) converges a.s. to an Euclidean
ball as N goes to infinity, with fluctuations (w.r.t. the limit shape) which are at most linear.

Theorem 3.1.1. (Lawler, Bramson, Griffeath) Let ε > 0 be fixed. Then, a.s., for N = bκdndc
and for n large enough,

B(0, n(1− ε)) ⊂ AN ⊂ B(0, n(1 + ε)).
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In the above theorem, B(0, r) = {x ∈ Zd : |x| < r} denotes the d-dimensional “lattice ball”
of radius r and κd is the volume of the unit ball in Rd. Roughly, the spherical shape of the
aggregate can be explained by the facts that, asymptotically and under suitable scaling, a simple
random walk looks like a Brownian motion and that a Brownian motion is isotropic.

Since then, many papers by Lawler (see e.g. [68]), Asselah and Gaudillière (see e.g. [3]), and
Jerison, Levine and Sheffield (see e.g. [61]) have improved the bounds for fluctuations which are
known to be logarithmic in 2D and sublogarithmic in higher dimensions. Recently, many variants
of this problem have been considered. In particular, IDLA on discrete groups with polynomial
or exponential growth have been studied in [10], with multiple sources in [72], on supercritical
percolation clusters in [93], on cylinder graphs in [73], constructed with drifted random walks in
[74] or with uniform starting points in [7].

One of the important ingredients of the IDLA model is the so-called Abelian property. The
latter states that the distribution of any aggregate based on an IDLA protocol does not depend on
the order in which the particles are sent. As a consequence, one can realize the cluster by sending
many exploration waves. To illustrate this notion, let us consider N random walks starting from
the origin and a real number R > 0. As a first wave, we send the particles associated with
the random walks with the following constraint: if a particle reaches the (exterior) boundary of
B(0, R), i.e.

∂B(0, R) = {x 6∈ B(0, R) : ∃y ∈ B(0, R), |y − x| = 1},

before settling, then we stop it on ∂B(0, R). The settled particles make up a cluster AR(N)
(which is included in B(0, R)). Let ζR be the positions of the stopped (but not settled) particles.
As a second wave, we send particles with respect to the configuration ζR and with initial aggregate
AR(N). Then the Abelian property implies that the random aggregate which is obtained is equal
in distribution to A(N). Such an observation is strongly used to derive shape theorems.

A random infinite tree T∞ can be associated with the sequence of IDLA models (AN ) defined
above in a very natural way. To our knowledge, this object has not been introduced in the
literature. The tree T1 only consists of the root 0. By induction, TN is obtained by adding to
TN−1 the new vertex z such that AN = AN−1 ∪ {z} and the edge used by the N -th particle to
reach z from AN−1 (see Figure 3.1). Hence, we can define a.s. a random graph

T∞ =
⋃
N≥1
↑ TN ,

which actually is a random tree (since each vertex of Z2 may only be added once) rooted at
the origin. The lower bound for the shape theorem specifies that its edge set spans the whole
set Z2. A natural question concerning this tree is the existence of (many) infinite branches
with asymptotic directions. However, such a question is highly difficult since any branch of the
IDLA tree T∞ is not produced by a single particle but by many particles, each of them adding
exactly one edge depending on the shape of the current aggregate. Another difficulty is the radial
character of T∞ (its branches are directed to the origin).

3.1.2 Main problem
In [25], we define three IDLA models in Z2 which are based on particles sent from each site of
an infinite vertical axis. We investigate various properties of these aggregates, such as station-
arity, mixing, stabilization and we establish shape theorems. The protocol defining one of our
aggregates allows us to define a new (directed) random forest which is invariant w.r.t. vertical
translations. The main aim of [25] is to prove the existence of such a forest.
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Figure 3.1: A realization of T1500.

3.2 Aggregates with an infinite number of sources
3.2.1 Construction
We define three aggregates in Z2 based on particles which are sent from each site of the vertical
axis {0} × Z.

The first one is a natural extension of the standard IDLA. To construct it, let n be fixed. We
first introduce a family of finite random aggregates An[M ], M ≥ 0, with sources in the interval
{0} × J−M,MK. When M = 0, the random set An[0] is the standard IDLA cluster with volume
n. Given a realization of An[M − 1], we send n particles from the site (0,M) then n particles
from the site (0,−M). The set An[M ] denotes the aggregate which is produced by these 2n
particles and by the aggregate An[M − 1] w.r.t. the IDLA protocol. As an illustration, Figure
3.2 gives a realization of A90[200] when it is observed in the strip Z20 = {0} × J−20, 20K. By
construction, the sequence of random aggregates (An[M ])M≥0 is increasing. We then define a
first infinite aggregate as An[∞] =

⋃
M≥0An[M ]. The aggregate is based on a specific order: the

particles are first sent from the origin, then from levels ±1, then from levels ±2, and so on.

A second aggregate, say A∗n[∞] =
⋃
M≥0A

∗
n[M ], is constructed in the same spirit as above

but this time the number of particles which are sent from each site of {0}×Z is no longer equal to
n but is a Poisson random variable with parameter n (the Poisson random variables are assumed
to be independent). Here again, the protocol is based on the same order, namely 0, ±1, ±2, . . .

A third aggregate is defined as follows. The number of particles from each site is still Poisson
but this time the order for which they are sent is modified: the particles are not sent w.r.t.
the specific order 0, ±1, ±2 but w.r.t. a family of random clocks. To do it, let (Ni)i∈Z be a
family of independent and identically distributed Poisson point processes (PPP’s) in [0, n], with
intensity 1. Each PPP Ni provides an increasing sequence (τi,j)j≥1 of random clocks. Then, we
attach to the collection {τi,j : i ∈ Z, j ≥ 1} a family of independent and identically distributed
symmetric random walks {Si,j : i ∈ Z, j ≥ 1} which are also independent of the PPP’s. In other
words, at time τi,j , the j-th particle from level i starts and its trajectory, associated with Si,j , is
instantaneously realized and adds a new site to the current aggregate. Hence, for any M , we can
define an aggregate A†n[M ] by sending particles from the source set {0} × J−M,MK according
to the clocks given by the corresponding PPP’s up to time n. This construction ensures that, at
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Figure 3.2: A realization of the aggregate A90[200] ∩ Z20 based on 90 particles per site (0, i),
with |i| ≤ 200, and intersected by the strip Z20.

each time, the next particle (if it exists) is sent from a source chosen uniformly on {0}×J−M,MK.
Similarly to the first two infinite aggregates, we define a third infinite aggregate A†n[∞] as the
increasing union of the A†n[M ]’s.

Motivation The reason for which we consider the three above aggregates is discussed below.
Our main motivation is to construct a random forest in Z2 which is invariant w.r.t. vertical
translations. The protocols defining the aggregates An[∞] and A∗n[∞] can be used to define
random forests. But these forests are not invariant w.r.t. vertical translations since they are
based on the specific order 0, ±1, ±2.

The most natural approach is to use the protocol defining A†n[∞] since, roughly, it consists
in sending a first particle which is chosen uniformly at random, then a second one (also chosen
uniformly at random on the same axis), and so on. More precisely, for each integer M , we can
define a random forest F†n[M ] based on particles that are sent from each site of {0} × J−M,MK
w.r.t. the Poisson clocks, in the same spirit as we did for building the IDLA random tree (see
Section 3.1.1). In particular, the set of vertices of F†n[M ] is A†n[M ]. Then, to define a random
forest with an infinite number of sources, it is natural to take the limit of F†n[M ] overM . However,
the existence of such an infinite random forest is not at all trivial since the sequence (F†n[M ])M≥0
is not consistent. Indeed, it is possible that a vertex in F†n[M ] is reached by a particle P1 starting
from {0} × J−M,MK when we only send particles from this interval, but that the same vertex
is reached by another particle, say P2, when we send particles from {0} × J−M − 1,M + 1K;
the last edge visited by P2 being different from the one visited by P1. Such a configuration can
occur if a particle starting from (0,M + 1) (which works for F†n[M + 1] but not for F†n[M ]) is
sent before particles starting from the interval {0} × J−M,MK. In other words, if it is true that
the sequence of aggregates (A†n[M ])M≥0 (and thus the sets of vertices of the finite forests) is
increasing, it is not true that F†n[M ] is included in F†n[M + 1]. As an illustration, Figure 3.3
depicts a configuration in which two random forests have common vertices with different edges.

Working with the aggregate A†n[∞] directly is delicate since there is no specific order. The
main idea is first to work with An[∞] and A∗n[∞] since they are based on simpler protocols.
Then, as a key ingredient, we use the Abelian property to observe that the aggregates A∗n[∞]
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Figure 3.3: Realizations of the forests F†20[20] and F†20[50], defined on the same time interval
[0, 20], with different sets of sources, and restricted to the strip Z20, are depicted. The associated
aggregates are coupled in the sense that they are based on the same clocks and random walks
with level |i| ≤ 20. In particular, A†20[20] is included in A†20[50]. The edges created in both forests
by the same particles are depicted in green. The red points are vertices of A†20[50]\A†20[20]. The
blue circles represent vertices in A†20[20] (and then also in A†20[50]) which are reached by different
particles in both aggregates and whose corresponding edges may differ in both forests F†20[20]
and F†20[50]. These blue vertices are possible discrepancies between forests F†20[20] and F†20[50].

and A†n[∞] have the same distribution. In particular, all the results which hold for A∗n[∞] also
hold for A†n[∞] and can be used to prove the existence of our random forest.

3.2.2 Main results
As a first result, we prove in [25] that the random aggregates An[∞] and A∗n[∞] (and thus
A†n[∞]) are invariant w.r.t. vertical translations in distribution. Such a result uses the concept
of Choquet capacity (see e.g. p. 21 in [90]) and the Abelian property. A consequence of this fact
is a mass transport principle. The latter states that, for any level i ∈ Z, the expected number of
sites in An[∞] ∩ (Z× {i}) equals the (expected) number of particles emitted from level i, i.e.

E [#An[∞] ∩ (Z× {i})] = n.

A similar result holds for the aggregate A∗n[∞].
As a second important result, we prove that (for fixed n) the sequences (An[M ])M≥0 (resp.

(A∗n[M ])M≥0) satisfies a strong stabilization result. More precisely, given α > 1, we show that
a.s. there exists a random integer M0 = M0(n) ≥ 1 such that, for any M ≥M0, the trajectory of
any particle contributing to An[∞] (resp. A∗n[∞]) and starting from (0, i), with |i| > Mα, does
not visit the horizontal strip ZM . In other words, far particles do not touch central strips. The
main idea to prove such a result is to proceed as follows. First, given a realization of An[Mα],
where we assume that Mα is an integer for the sake of simplicity, we discretize the aggregate
An[Mα] into annuli with suitable size (say, for instance, that the first one is at the top; the
second one is below the first one, and so on). Then we send a particle far from the origin, say
at level Mα + 1. If the particle hits the strip ZM , it necessarily has to intersect all the annuli
from the first one to one of those which intersect the strip. But, because we can bound the size
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of An[Mα] (resp. A∗n[Mα]), we know that a non-negligeable proportion of such annuli are thin.
Moreover, using a crossing’s lemma due to Duminil-Copin et al. [45], we can prove that, with a
non-negligeable probability, it is hard for the particle to cross a thin annulus. We deduce that
it is unlikely that the particle hits a strip ZM which is close to the origin since, if not, it has to
cross many thin annuli, each time with a small probability.

On the reciprocal, we also prove that central particles do not touch far levels. The underlying
stabilization results allow us to prove that the aggregate An[∞] has a mixing property w.r.t.
vertical translations. In other words, for any events A, B, we have

lim
|k|→∞

P (An[∞] ∈ A, An[∞] ∈ τkB) = P (An[∞] ∈ A) P (An[∞] ∈ B) ,

where τk denotes the translation w.r.t. the vector (0, k). The same property holds for the
aggregates A∗n[∞] and A†n[∞]. Furthermore, we can show that, with positive probability, the
horizontal line Z × {0} does not intersect the aggregate A∗n[∞]. Combined with the mixing
property and thus the ergodicity, we deduce that the event {A∗n[∞] ∩ (Z × {i}) = ∅} occurs
infinitely often. In other words, we get the following result.

Theorem 3.2.1. Let n ≥ 1. With probability 1, for any integer M there are (infinitely many)
levels i ≥M and j ≤ −M such that the aggregate A∗n[∞] does not intersect the axes Z×{i} and
Z× {j}.

In particular, a.s. A∗n[∞] (and thus A†n[∞]) has only finite connected components included
in disjoint strips. The above theorem is one of the key ingredients to define our random forest.

Inspired by the method of Asselah and Gaudillière [3], we also establish shape theorems. More
precisely, we prove the following result: there exists A > 0 such that, for any α > 0, a.s. there
exists N ≥ 1 such that for any n ≥ N ,

Rn/2−A log(n) ∩ Znα ⊂ An[∞] ∩ Znα ⊂ Rn/2+A log(n) ∩ Znα ,

where Rr = J−r, rK×Z. Roughly, the above assertion claims that the aggregate An[∞], when it
is restricted to a strip Znα , is close to a rectangle with extremities −n2 and n

2 , up to logarithmic
fluctuations (see Figure 3.2 for an illustration). Similarly, we obtain shape theorems for A∗n[∞]
and A†n[∞].

3.3 Construction of the IDLA forest
Let n,M ≥ 0. The protocol defining the aggregate A†n[M ] allows us to define a random forest,
say F†n[M ], in finite volume. The latter is based on particles which are sent from the interval
{0} × J−M,MK w.r.t. Poisson clocks, with in average n particles from each site of the interval.
To construct a random forest spanning all Z2, which is invariant w.r.t. vertical translations, a
natural approach is to proceed into two steps: first, we take the limit over M (vertical limit) and
then we take the limit over n (horizontal limit). But, as mentioned in Section 3.2, taking the
limit over M is an obstacle since the sequence (A†n[M ])M≥1 is not consistent. Actually, a bad
configuration can occur through a mechanism that we call a chain of changes which we describe
below.

Assume that a particle, referred to as particle 1, starts at time t1 ∈ (0, n) (from a level
M < |i1| ≤M ′) and adds a site z1 to A†t1−[M ′]. The aggregate at time t1 becomes

A†t1 [M ′] = A†t1−[M ′] ∪ {z1}
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while A†t1 [M ] remains unchanged. In the above equation, the set A†t1−[M ′] denotes the (current)
aggregate produced just before sending particle 1. The site z1 is a discrepancy at time t1 between
aggregates A†t1 [M ] and A†t1 [M ′]. If there is no other particles starting from a level |i| ≤M , at time
t ∈ (t1, n) and going through z1 then, at the final time n, the site z1 constitutes a discrepancy
(created by particle 1) between the aggregates A†n[M ] and A†n[M ′]. It also defines a discrepancy
between the forests F†n[M ] and F†n[M ′]. Otherwise, we set

t2 = min
{
t ∈ (t1, n) : a particle, starting from a level |i| ≤M at time t, goes through z1

}
.

The particle starting from time t2 is referred to as particle 2. This particle works for both
aggregates. By definition, it adds the site z1 to A†t2−[M ], so that the aggregate at time t2

becomes A†t2 [M ] = A†t2−[M ] ∪ {z1}. Thus, it continues its trajectory until adding a site z2 (but
only) to A†t2−[M ′] which then becomes A†t2 [M ′] = A†t2−[M ′] ∪ {z2}. At this time:

• the site z1 now belongs to both aggregates but it could be reached via two different edges
respectively in A†t2 [M ] and A†t2 [M ′] so that the forests F†n[M ] and F†n[M ′] may differ at
the edge leading to z1;

• the site z2 is become a discrepancy between both aggregates at time t2. This discrepancy
is generated via a relay between particle 1 and particle 2.

Thus, we iterate this step while the current discrepancy is visited by a new particle starting from
a level |i| ≤ M . After a random number ` of steps (a.s. finite), we finally get the set of possible
discrepancies between the forests F†n[M ] and F†n[M ′], generated by particle 1. This set consists
of edges leading to z1, . . . , z` and the final vertex z` itself. The mechanism producing this set
of discrepancies is called a chain of changes, initiated by particle 1, between the forests F†n[M ]
and F†n[M ′]. Notice that the aggregates A†n[M ] and A†n[M ′] may have other chains of changes
initiated by other particles starting from levels M < |i| ≤M ′.

Roughly speaking, the existence of an infinite chain of changes involving an infinite number
of relaying particles and initiated by a “Big Bang particle”, i.e. a particle coming from a level
arbitrarily far from the origin and born arbitrarily early, could modify infinitely often (in M)
the forests F†n[M ], for M ≥ 0, in the neighborhood of the origin. Proving that such infinite
chain of changes does not exist with probability 1 leads to the next stabilization result and to
the existence of the random forest Fn.

Proposition 3.3.1. Let K ≥ 1. Then, a.s. there exists some (random) integer M0(K) such
that, for any M ′ > M ≥M0(K), we have

F†n[M ] ∩ ZK = F†n[M ′] ∩ ZK .

The above proposition is a consequence of Theorem 3.2.1. It allows us to define a.s. a random
forest F†n, with set of sources {0} × Z, as the increasing union

F†n =
⋃
K≥0
↑ F†n[M0(K)] ∩ ZK .

The set of vertices of F†n is A†n[∞]. It can be easily proved that the sequence of forests (F†n)n≥0
is increasing. Such an observation allows us to define a new random forest F†, referred to as
the directed IDLA forest, as the increasing union of the F†n’s. Thanks to our shape theorems,
the random forest F† spans Z2. Moreover, F† is invariant w.r.t. vertical translations and has a
mixing property. The existence of such a model is the main topic of [25].
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4.1 Extremes of transient random walks in random scener-
ies

In [26], we extend a result due to Franke and Saigo [50] on extremes of random walks in random
sceneries. We briefly recall the framework of [50]. Two quantities are considered:

• A random walk (Sn)n≥0 in Z, with Sn = X1 + · · ·+Xn. The sequence Xk’s are centered,
integer-valued i.i.d. random variables and are in the domain of attraction of a stable law,
i.e. for each x ∈ R,

P
(
n−

1
αSn ≤ x

)
−→
n→∞

Fα(x),

where Fα is the distribution function of a stable law with characteristic function given by

ϕ(θ) = exp(−|θ|α(C1 + iC2sgnθ)), α ∈ (0, 2].
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When α < 1 (resp. α > 1), the random walk (Sn) is transient (resp. recurrent); see [70].

• A random scenery (ξ(s))s∈Z, where the ξ(s)’s are R-valued i.i.d. random variables.

The sequences (Sn)n≥0 and (ξ(s))s∈Z are assumed to be independent and (ξ(Sn))n≥0 is called a
random walk in random scenery. Franke and Saigo derive limit theorems for the maximum of the
first n terms of (ξ(Sn))n≥0 as n goes to infinity. The results they obtain concern the recurrent
and the transient cases. The first case is more delicate than the second one since long range
dependence problems occur. An adaptation of Theorem 1 in [50] shows that, in the transient
case, if un is a threshold chosen in such a way nP (ξ(0) > un) −→

n→∞
τ for some τ > 0, then

P

(
max
k≤n

ξ(Sk) ≤ un
)
−→
n→∞

e−τq, (4.1.1)

where

q = P (∀k ∈ N+, Sk 6= 0) . (4.1.2)

The term q is (strictly) positive because the random walk (Sn)n≥0 is transient. According to
[70], the number q can be expressed as

q = lim
n→∞

Rn
n

a.s.,

where Rn = #{S1, . . . , Sn} is the range of the random walk. In the sense of Equation (1.1.4),
the quantity q is the extremal index and can be interpreted as the reciprocal of the mean size of
a cluster of exceedances.

In [26], we consider the same problem as Franke and Saigo but this time we do not assume that
the ξ(s)’s are i.i.d.. More precisely, we assume that the ξ(s)’s only satisfy a slight modification of
the D(un) and D′(un) conditions (see Definitions 1.1.1 and 1.1.2). The result which is obtained
only deals with the transient case and is similar to (4.1.1). Our proof is mainly based on an
adaptation of [71]. We think that our method combined with Kallenberg’s theorem ensures that
the point process of exceedances converges to a Poisson point process, in the same spirit as
Theorem 3 in [50]. More precisely, if the threshold is of the form un = un(x) = anx + bn, for
some x ∈ R, and if we let τk = inf{m ∈ N+,#{S1, . . . , Sm} ≥ k}, then the point process

Φn =
{(

τk
n
,
ξ(Sτk)− bbqnc

abqnc

)
, k ≥ 1

}
should converge to a Poisson point process with explicit intensity measure.

4.2 First digit phenomenon
4.2.1 Introduction
A sequence of positive numbers (xn) is said to satisfy the first digit phenomenon in base b ≥ 2 if

lim
N→∞

1
N

N∑
n=1

1F (xn)=k = logb
(

1 + 1
k

)
, 1 ≤ k < b,

where F (xn) is the first digit of xn and where logb denotes the logarithm in base b. Such a
phenomenon was observed by Benford and Newcomb on real life numbers, e.g. electricity bills,
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street addresses, stock prices and lengths of rivers. It is extensively used in various domains,
such as fraud detection, computer design and image processing. As an extension of the first digit
phenomenon, the notion of Benford sequence is introduced as follows. Let µb be the measure on
the interval [1, b) defined by

µb([1, a)) = logb a

for any a ∈ [1, b). Let Mb(x) be the mantissa in base b of a positive number x, i.e. Mb(x) is
the unique number in [1, b) such that there exists an integer k satisfying x =Mb(x)bk. A set of
numbers (xn) is referred to as a Benford sequence if for any 1 ≤ a < b, we have

lim
N→∞

1
N

N∑
n=1

1Mb(xn)∈[1,a) = µb([1, a)).

In particular, each Benford sequence satisfies the first digit phenomenon since F (x) = k if and
only if Mb(x) ∈ [k, k + 1), with x > 0, k ∈ [1, b). For instance, the sequences (n!), (nn) and
(cn) (with logb c irrational) are Benford but the sequences (n) and (logn) are not. For various
examples of sequences of positive numbers whose mantissae are (or approach to be) distributed
with respect to µb, see e.g. [39].

It is straightforward that a sequence (xn) of positive numbers is Benford in base b if and only
if the sequence of fractional parts ({logb xn}) is uniformly distributed in [0, 1), i.e.

lim
N→+∞

1
N

N∑
n=1

1[0,c)({logb xn}) = c,

with c ∈ [0, 1). Combining this with the Weyl’s criterion (see p.7 in [66]), a sequence (xn) is
Benford if and only if, for any h ∈ Z∗,

lim
N→+∞

1
N

N∑
n=1

e2iπh logb xn = 0.

4.2.2 Products of random variables and the first digit phenomenon
In [31], we consider the following problem. Let (Xn) be a sequence of positive numbers and let
Yn =

∏n
k=1Xk, n ≥ 1. We discuss two concepts on the sequence of mantissae (Mb(Yn)):

(i) the sequence (Mb(Yn)) is a.s. a Benford sequence, i.e. for almost all ω and for all 1 ≤ a < b,

lim
N→∞

1
N

N∑
n=1

1Mb(Yn(ω))∈[1,a) = µb([1, a));

(ii) the sequence (Mb(Yn)) converges to the Benford’s law, i.e. for all 1 ≤ a < b,

lim
n→∞

P (Mb(Yn) ≤ a) = µb([1, a)).

Although the above concepts are connected, we provide counter-examples which show that the
latter are different if we have no assumption on the sequence (Xn) (see Section 2.1 in [31]). How-
ever, when the Xn’s are i.i.d., the property (i) (resp. (ii)) holds if and only if E

[
e2iπh logbX1

]
6= 1
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(resp.
∣∣E [e2iπh logbX1

]∣∣ 6= 1) for every h ∈ Z∗. In particular, in the i.i.d. case, if the sequence
(Mb(Yn)) converges to the Benford’s law then it is a.s. Benford.

Under the assumption that the sequence (Xn) is stationary, we prove that (Mb(Yn)) is a.s.
a Benford sequence if and only if

∀h ∈ Z∗, lim
N→+∞

1
N

N∑
n=1

E
[
e2iπh logb Yn

]
= 0. (4.2.1)

The direct part of this result is a consequence of the Weyl’s criterion whereas the reciprocal relies
on applications of Van der Corput inequality (see e.g. p25 in [66]), Riesz’s summation methods
and Birkhoff’s theorem. Since (Mb(Yn)) converges to the Benford’s law if and only if ({logb Yn})
converges to the uniform distribution, i.e. if and only if E

[
e2iπh logb Yn

]
−→
n→∞

0 for any h ∈ Z∗, a
consequence of (4.2.1) gives the following result:

Proposition 4.2.1. Let (Xn) be a stationary sequence of positive random variables and let
Yn =

∏n
k=1Xk. If (Mb(Yn)) converges to the Benford’s law then (Mb(Yn)) is a.s. a Benford

sequence.

The above result extends our observation on the i.i.d. case. Other criterions ensuring that
(Mb(Yn)) is a.s. a Benford sequence, or converges to the Benford’s law, are also provided in [31].
These criterions, as well as (4.2.1), are illustrated through various examples including log-normal,
exchangeable and 1-dependent random variables.

4.2.3 Discrepancy of powers of random variables
The main topic of [34] is to provide general conditions over a sequence of positive and inde-
pendent random variables (Xn) to ensure that (Xdn

n ) is a.s. Benford in base 10 (in the sense
of Section 4.2.2) for any (deterministic) sequence (dn) converging to infinity at a rate at most
polynomial. Such a question extends a work of Eliahou et al. [48] in which it is proved that
several deterministic sequences at a power d tend to be Benford when d is large enough.

To define a deviation between the sequence (Xdn
n ) and the Benford’s law, we introduce the

following (random) quantity:

DN ((Xdn
n )) = sup

1≤s<t<10

∣∣∣∣∣ 1
N

N∑
n=1

1[s,t)(M10(Xdn
n ))− µ10([s, t))

∣∣∣∣∣ .
The above term is called the discrepancy. Our main result (Theorem 1 in [34]) is an upper
bound for DN ((Xdn

n )), depending on N and on some integrable random variable, which holds
for any sequence (dn) under suitable assumptions on the tails and on the characteristic functions
of the Xn’s. Such a result comes from the so-called Erdös-Turán inequality (see e.g. [85]). As a
consequence, we prove that DN ((Xdn

n )) converges a.s. to 0 as N goes to infinity, and therefore
that (Xdn

n ) is a.s. Benford, when dn −→
n→∞

∞ and dn = O(nα) for some α > 0. A second
consequence is that DN ((Xd

n)) converges to 0 a.s. as N, d → ∞. Roughly, it means that the
sequence (Xd

n) is likely Benford as d goes to infinity.
Our main result is theoretically illustrated through various examples including geometric,

(discrete and continuous) uniform, exponential and Fréchet distributions. Table 4.1 gives the
frequencies of the first significant digits of Xd

1 , . . . , X
d
N when Xn follows the continuous uniform

distribution on [1, n] for all n ≥ 1, with N = 1000 and d = 2. As observed in this table, the
latter are close to the frequencies of the first significant digit of the Benford’s law.
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First digit (Xd
n) Benford’s law

1 0.293 0.306
2 0.183 0.184
3 0.130 0.116
4 0.099 0.106
5 0.081 0.082
6 0.065 0.055
7 0.058 0.050
8 0.047 0.053
9 0.043 0.048

Table 4.1: A simulation of the frequencies of the first significant digits of Xd
1 , . . . , X

d
N , where Xn

has a uniform distribution on [1, n] for each n ≥ 1, with N = 1000 and d = 2.

4.3 Recent works and works in progress
In this section, we present three works. The first one has been recently submitted (September
2022) and is the most significant. The two others are works in progress which should be submitted
in 2022 or in 2023.

4.3.1 Composite likelihood estimators for Brown-Resnick random fields
in a fixed domain

In a common work with C. Y. Robert, we estimate parameters of a widely used class of stationary
max-stable random fields: the Brown-Resnick random field. The latter can be defined w.r.t. its
spectral representation as follows (see Section 1.1.2). Let (Ui) be the decreasing enumeration of
the points of a Poisson point process on (0,∞) with intensity u−2du. Let (Wi) be a family of
i.i.d. fractional Brownian fields in R2 with scale parameter σ > 0 and range parameter α ∈ (0, 2)
(the term H = α/2 is also known as the Hurst parameter), i.e. Wi is a centered Gaussian field
with W (0) = 0 and with variance

V [Wi(x)] = σ2|x|α =: 2γ(x), (4.3.1)

for any x ∈ R2. The (isotropic) Brown-Resnick random field is defined as

η(x) =
∨
i≥1

Ui exp (Wi(x)− γ(x)) ,

where
∨

denotes the pointwise maximum. While the Wi’s have stationary increments (i.e. the
distribution of (Wi(x + x0) −Wi(x0))x∈R2 does not depend on x0 ∈ R2), it can be shown that
the Brown-Resnick process is stationary (i.e. the distribution of (η(x+ x0))x∈R2 is the same as
η). The random field η is simple in the sense that it has standard unit Fréchet marginals, i.e.
P (η(x) ≤ z) = exp(−z−1) for any z > 0.

The goal of our work is to infer the parameters σ and α in infill asymptotic. More precisely,
we consider more and more datas which are observed in some fixed bounded sampling domain.
Making inference in infill is much more difficult than if we do it in an increasing window (tend-
ing to infinity) since we do not have mixing properties. From a theoretical point of view, the
maximum likelihood method is the best approach. Nevertheless, the evaluation of the likelihood
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function is computationally impractical for large datasets. Indeed, although there exists a the-
oretical formula for the joint distributions (see Equation (1.1.7)), the latter is not useable from
a practical point of view. To overcome this difficulty, we apply composite likelihood methods.
These methods use objective functions which are based on the likelihood of lower dimensional
marginals or conditional events and, in general, provide a good balance between computational
complexity and statistical efficiency, see e.g. [97].

We consider a Poisson stochastic spatial sampling scheme and use the Poisson-Delaunay graph
to select the pairs and triples of sites with their associated marginal distributions that will be
integrated into the composite likelihood (CL) objective functions, i.e. we exclude pairs that are
not edges of the Delaunay graph or triples that are not vertices of triangles in the graph. More
precisely, we consider a stationary Poisson point process PN with intensity N in R2 and a fixed
window, say [0, 1]2. The pairwise (log) CL function is defined as

`2,N (σ, α) =
∑

(x1,x2)∈EN

log fx1,x2(η(x1), η(x2))

while the triplewise (log) CL function is defined as

`3,N (σ, α) =
∑

(x1,x2,x3)∈DTN

log fx1,x2,x3(η(x1), η(x2), η(x3)).

In the above expressions, fx1,x2 (resp. fx1,x2,x3) denotes the density of (η(x1), η(x2)) (resp.
(η(x1), η(x2), η(x3))) and EN (resp. DTN ) denotes the set of couples of points (x1, x2) (resp. of
triples of points (x1, x2, x3)) such that

• x1 and x2 are Delaunay neighbors (resp. x1, x2, x3 are the vertices of a Delaunay triangle)
in the Delaunay graph associated with PN ;

• x1 is the leftmost point, with x1 ∈ [0, 1]2.

To the best of our knowledge, this is the first time that a Delaunay graph is used to select the
pairs and triples. Using this graph is natural since we only use the distributions of pairs and
triples. Moreover, the Delaunay graph appears to be the most regular graph in the sense that it
is the one which maximises the minimum of the angles of the triangles. When α is assumed to
be known, the pairwise and triplewise maximum CL estimators of σ are respectively defined as

σ̂j,N = argmaxσ>0 `j,N (σ, α), j = 2, 3

whereas, when σ is assumed to be known, the pairwise and triplewise maximum CL estimators
of α are respectively defined as

α̂j,N = argmaxα∈(0,2) `j,N (σ, α), j = 2, 3.

To avoid heavy notation, we only present our results on the pairwise estimation of σ. Using
a known expression of fx1,x2 (see e.g. [59]), we prove that

lim
d→0

∂

∂σ
log fx1,x2(z1, z2) = 1

σ
(u2 − 1),

where u is fixed, z1, z2 are such that u = d−α/2σ−1 log(z2/z1) and d = |x2 − x1| > 0. Since
the typical distance between two Delaunay neighbors tends to 0 as N goes to infinity, the above
expression roughly ensures that the estimator σ̂2,N satisfies the following property:

1
σ̂2,N

∑
(x1,x2)∈EN

(
σ2

σ̂2,N
U2
x1,x2

− 1
)
' 0,
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where

Ux1,x2 = |x2 − x1|−α/2σ−1 log (η(x2)/η(x1)) .

According to [42], we can prove that Ux1,x2 is asymptotically a standard Gaussian random
variable as |x2−x1| converges to 0, where x1 is fixed. Our main theorem deals with the asymptotic
distribution of squared increment sums for the max-stable Brown-Resnick random field and can
be stated as follows.

Theorem 4.3.1. Let α ∈ (0, 1) and let

V2,N = 1√
|EN |

∑
(x1,x2)∈EN

(
U2
x1,x2

− 1
)
.

Then there exists a constant c2 and there exist a family of positive random variables LZk\j (0),
k, j ≥ 1, such that

N−(2−α)/4V2,N
P−→

n→∞
c2
∑
j≥1

∑
k>j

LZk\j (0).

The constant c2 can be made explicit and is (strictly) negative. To define the random variables
LZk\j (0), we proceed as follows. First, following an idea of Dombry and Kabluchko [44], we define
for each k, j a random cell

Ck,j =

x ∈ [0, 1]2 : Zk(x) ∧ Zj(x) >
∨
i 6=j,k

Zi(x)

 ,

where Zi(x) = logUi + (Wi(x)− γ(x)), x ∈ R2. In other words, the random cell Ck,j is the set
of points for which the two largest trajectories in η are the k-th and the j-th. The family of cells
defines a random tessellation of [0, 1]2, not in the sense of Stochastic Geometry (the cells are not
necessarily convex and connected), but in the sense that each point belongs a.s. to a unique cell.
Besides, there exists a.s. a finite number of cells which are non-empty. Given a realization of η,
and thus a realization of the tessellation, the random variable LZk\j (0) is the local time at level
0 of the random field Zk\j = Zk − Zj . This random variable is defined as the density, evaluated
in 0, w.r.t. the Lebesgue measure of the random measure

ν(k\j)(A) =
∫
Ck,j

1Zk\j(x)∈Adx,

with A ⊂ R, provided that Ck,j has a positive Lebesgue measure (if not, we take LZk\j (0) = 0).
In other words, LZk\j (0) = dν(k\j)

d` (0). Roughly, the local time LZk\j (0) measures the set of
points x such that Zk\j(x) = 0.

Theorem 4.3.1 is not at all classical in the sense that the limit distribution is not a Gaussian
random variable but a (finite) sum of local times. Local times already appeared in the context
of max-stable random fields. Indeed, Robert [87] recently establishes a biased central limit
theorem, whose bias depends on local times, in the context of power variations for a class of
Brown-Resnick processes defined on R. The proof of Theorem 4.3.1 is divided into three steps.
First, applying a result on normal approximations due to Nourdin and Peccati (Theorem 6.3.1
in [78]), we establish a central limit theorem for the sum of squared increments when we consider
only one trajectory, i.e. only one fractional Brownian random field. More precisely, we obtain the
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asymptotic behaviour of the random variable defined in the same spirit as V2,N when we replace
the term log(η(x2)/η(x1)) by W1(x2) −W1(x1) in the expression of Ux1,x2 . Then, we extend
our result to the case where we consider the maximum of two trajectories. Here, the random
variable which appears in the limit is a local time. Finally we get Theorem 4.3.1 by considering
the random tessellation described above.

As a consequence of Theorem 4.3.1, we can derive asymptotic properties of the maximum CL
estimators. More precisely, we get√

|EN |N−(2−α)/4(σ̂2
2,N − σ2) P−→

n→∞
c2σ

2
∑
j≥1

∑
k>j

LZk\j (0).

In a similar way, we obtain the asymptotic behaviours of σ̂2
3,N (i.e. the triplewise CL estimator of

σ based on Delaunay triangles) and of α̂2
2,N and α̂2

3,N (i.e. the pairwise/triplewise CL estimators
of α).

4.3.2 Compound Poisson process approximation with explicit rate of
convergence

In a common work with M. Otto, we establish compound Poisson approximations with examples
in Stochastic Geometry.

The framework is the following. Let η be a Poisson point process in some locally compact
separable metric space (X, d) with finite intensity measure and let g : X × NX → {0, 1} be
a measurable function, where NX denotes the space of all σ-finite counting measures on X.
Assume that g is localized in the sense that, for any ω ∈ NX and x ∈ X, there exists a set
S(x) ⊂ X such that, for any S ⊂ S(x), we have

g(x, ω) = g(x, ω ∩ S).

We are interested by the following discrete random measure:

ξ[η] =
∑
x∈η

g(x, η)δx.

The function g has to be seen as the indicator function that an extreme event occurs. For
instance, if g(x, ω) = 1Rk(x,ω)>v, where Rk denotes the distance between x and its k-th nearest
neighbor in ω (provided that such a quantity exists and is unique) and where v is a suitable
threshold, then ξ[η] counts the number of points with distances to the k-th nearest neighbors
larger than v.

Our main result is an upper bound for the Kantorovich distance between ξ[η] and a compound
Poisson point process in X (see e.g. [5] for a definition of the Kantorovich distance). The
proof is mainly based on a paper of Barbour and Månsson [5] and strongly uses the Chen-Stein
method. As an application, we obtain compound Poisson approximations for the maximum
(resp. minimum) spheres in the k-nearest neighbor graph. Our work complements [30] in which
only a Poisson approximation is established. We try to apply our result to more examples and
to adapt it in the context of binomial point process.

4.3.3 Properties of extremes for simple random walks in random scener-
ies

In a common work with A. Darwiche and A. Rousselle, we give a more specific treatment of
extremes of random walks in random sceneries (see Section 4.1). Similarly to [26], we consider
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a random walk (Sn)n≥0 in Z and a random scenery (ξ(s))s∈Z which consist of real random
variables. This time, the sequence (Sn)n≥0 is assumed to be the simple random walk, i.e.
Sn = X1 + · · · + Xn, where the Xi’s are i.i.d. and P (X1 = 1) = p, P (X1 = −1) = 1 − p.
Here again we assume that (Sn)n≥0 is transient, i.e. p 6= 1/2. As opposed to [26], we do not
assume that (ξ(s))s∈Z satisfies the D′(un) condition (thus, clusters of exceedances for the ξ(s)’s
can occur). However, throughout our work, we require that (ξ(s))s∈Z satisfies a slight stronger
assumption than the D(un) condition, referred to as the ∆(un) condition. Roughly, the latter
is a condition which ensures a mixing-type behaviour for the tails of the joint distributions of a
stationary sequence of random variables (see [56] for a precise definition). Similarly to Section
4.1 (see also Chapter 1), the threshold un is chosen in such a way that nP (ξ(0) > un) −→

n→∞
τ ,

for τ > 0. In addition, we assume that the following property holds:

max
A∈B̃n1 (un),B∈B̃n1 (un)

{|E [P (A|S1:n) P (B|S1:n)]− P (A) P (B)|} −→
n→∞

0, (4.3.2)

where B̃n1 (un) stands for the σ-algebra generated by events of the form {ξ(Si) ≤ un}, 1 ≤ i ≤ n
and S1:n = {S1, . . . , Sn}. Our main results can be stated as follows.

(i) The sequence (ξ(Sn))n≥0 satisfies the ∆(un) condition.

(ii) If the extremal index of (ξ(s))s∈Z exists and equals σ, then the extremal index of (ξ(Sn))n≥0
also exists and equals θ = σq, where q is as in (4.1.2).

(iii) Under suitable assumptions, the point process of exceedances Φn =
{
i
n : ξ(Si) > un, i ≤ n

}
converges to a compound Poisson point process.

Although the condition given in (4.3.2) is restrictive, we think that all our results remain
true when we do not assume such a condition. Assertion (i) is natural and can be understood
as follows: because (ξ(s))s∈Z has a mixing property for the tails and because (Sn)n≥0 has a
drift, then also (ξ(Sn))n≥0 has a mixing property for the tails. Assertion (ii) is, in some sense,
a generalization of [26]. Indeed, in this paper we prove that the extremal index of (ξ(Sn))n≥0
exists and equals θ = q provided that the sequence (ξ(s))s∈Z satisfies the D′(un) condition. Since
this condition ensures that the extremal index of (ξ(s))s∈Z exists and equals σ = 1 (see Section
1.1.2), we obtain as a special case of (ii) that θ = σq. We have in mind potential examples for
which we could make explicit the cluster size distribution of the compound Poisson point process
appearing in Assertion (iii). However, this requires to check condition (4.3.2), which is one of
the matters that we currently investigate.

4.4 Perspectives
We give below several lines of research. The latter are classified according to the order of our
chapters.

Extremes in Stochastic Geometry A first perspective is to improve our results on extremes
in Stochastic Geometry. As described in Section 1.2.2, we obtained Poisson approximations for
the number of exceedances in the context of STIT and Poisson line tessellations. However, our
results only concern the inradius and only hold in R2. A natural question is to consider more
general geometric characteristics and to extend the Poisson approximations in higher dimension.
Another extension could concern the maximal degree for random graphs. As stated in Theorem
1.4.1, such a quantity is concentrated, with high probability, on two consecutive integers in the
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context of planar Poisson-Delaunay graph. Although we prove in [14] that the maximal degree
is also concentrated on a finite (and deterministic) number of consecutive integers in higher
dimension, we do not show that such a number equals two. It could be interesting to do it
and to consider more general geometric random graphs, e.g. Gabriel graphs. Another question
concerns our work on the stretch factor in a planar Delaunay graph (Section 1.4.2). As stated
in Theorem 1.4.2, as the intensity of the underlying Poisson point process goes to infinity and
for fixed points s, t ∈ R2, the latter is larger than (1 + ε)|s − t| for some explicit value of
ε > 0. However, the value which we obtain for ε is far from optimal. A natural question is to
improve it and to extend our result in Rd, d ≥ 3. In the light of [33] (see also Section 1.3),
it would be also very interesting to make explicit the cluster size distribution for (non-trivial)
examples which are discussed in this paper, namely the maximum of circumradius for Poisson-
Voronoi and Poisson-Delaunay tessellations. Another perspective is to give more examples of
computations of extremes for random tessellations; for instance the minimum of angles in a
planar Poisson-Delaunay tessellation and the minimum of areas in a planar Poisson-Voronoi
tessellation (including the study of the shape of the cell minimizing the underlying geometric
characteristic), or more generally geometric characteristics discussed in this manuscript (Chapter
1) but for random tessellations not necessarily based on a Poisson point process.

Topological Data Analysis A second perspective is to strengthen our research in TDA. With
T. Owada, we envisage to work together and to deepen a result that he recently obtained with
Z. Wei. The problem which is considered is the following. Given n i.i.d. points X1, . . . , Xn in
Rd distributed w.r.t. some isotropic density f , and given an increasing sequence (Rn) of positive
numbers tending to infinity, we construct the Čech complex with set of vertices {X1, . . . , Xn} ∩
B(0, Rn)c, i.e. outside of an expanding ball. In [80], T. Owada and Z. Wei establish various
functional strong law of large numbers for Betti numbers of the simplicial complex. Their results
depend on the decay rate of the density f and on how rapidly Rn diverges. With T. Owada,
we would like to deepen the latter by establishing large deviation principles. One of the main
difficulties is that the point process {X1, . . . , Xn} is not stationary.

IDLA forest and IDLA tree A third perspective is to deepen our work on the IDLA forest
(see Section 3.3) with D. Coupier, A. Rousselle and our future PhD student (K. Penner). Many
questions arise from [25]. A first one is to extend the construction of our random forest in higher
dimension. Such an extension is not trivial since one of the key results which allows us to define
our model in R2 (see Theorem 3.2.1) does not hold in Rd, d ≥ 3. A natural approach is to deal
with the chains of discrepancies as described in Section 3.3. A second type of questions concerns
properties of the random forest. For instance, is it true that a.s. all the trees are finite? In a
suitable direction, namely the x-axis, can we say (in a sense which has to be specified) that the
random forest coincides asymptotically with the IDLA tree? If so, can we deduce properties of
the IDLA tree from the one of the IDLA forest? Quite recently, it was proved by Jerison et al.
[62] that, under a suitable normalization, the fluctuations (taken over time and space) of the
classical IDLA model scale to a variant of the Gaussian free field. Do we obtain the same type of
results for the process which generates our random forest? Other questions concern properties
of the IDLA tree. Are there many infinite branches? If so, can we say that they are tight and
that they have asymptotic directions? These questions are delicate because the random tree has
a radial property and is based on particles which depend on each others.

Inference for Brown-Resnick on a grid in a fixed window A fourth perspective is to
extend the problem considered in Section 4.3.1 with C. Y. Robert. More precisely, given a
Brown-Resnick random field with parameters α, σ (see Equation (4.3.1)), we observe the latter
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in a fixed window, say [0, 1]2. Instead of fixing a parameter and estimating the other one as
we do in Section 4.3.1, we want to estimate the parameters α and σ simultaneously. Taking a
Delaunay graph for the sampling scheme seems very technical since it requires to take account
the distances between pairs of nodes. To simplify the problem, we can use instead a regular
grid. More precisely, we assume that the Brown-Resnick random field is observed on the set of
points {(i/n, j/n) : 0 ≤ i, j ≤ n}. We use the grid for selecting pairs of points and for defining
a pairwise composite likelihood estimator of (α, σ). Here, the pairs which are selected are not
at distance 1 in terms of distance of graph (as we do in Section 4.3.1) but at distance 2 for
identifying the parameters. Our aim is to show that our estimator is consistent and to deal with
its asymptotic behaviour as n goes to infinity.
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