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Abstract

Let (Sn)n≥0 be a transient random walk in the domain of attraction of a stable law and
let (ξ(s))s∈Z be a stationary sequence of random variables. In a previous work, under con-
ditions of type D(un) and D′(un), we established a limit theorem for the maximum of the
first n terms of the sequence (ξ(Sn))n≥0 as n goes to infinity. In this paper we show that,
under the same conditions and under a suitable scaling, the point process of exceedances
converges to a Poisson point process. We also give some properties of (ξ(Sn))n≥0.
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1 Introduction
In 2009, Franke and Saigo [4, 5] considered the following problem. Let (Xk)k≥1 be a sequence
of centered, integer-valued i.i.d. random variables and let S0 = 0 a.s. and Sn = X1 + · · ·+Xn,
n ≥ 1. Assume that, for any x ∈ R,

P
(
Sn
n1/α ≤ x

)
−→
n→∞

Fα(x),

where Fα is the distribution function of a stable law with characteristic function given by

φ(θ) = exp(−|θ|α(C1 + iC2sgn θ)), α ∈ (0, 2].

Let (ξ(s))s∈Z be a stationary sequence of R-valued random variables which are independent of
the sequence (Xk)k≥1. The sequence (ξ(Sn))n≥0 is referred to as a random walk in a random
scenery. In [5], Franke and Saigo derive limit theorems for the random variable maxi≤n ξ(Si)
as n goes to infinity when the ξ(s)’s are i.i.d.. The statements of their theorems depend on
the value of α. When α < 1 (resp. α > 1), it is known that the random walk (Sn)n≥0
is transient (resp. recurrent) [7, 8]. An important concept concerning random walks is the
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range. The latter is defined as the number of sites visited by the first n terms of the random
walk, namely Rn := #{S1, . . . , Sn}. The following result, due to Le Gall and Rosen [8], deals
with its asymptotic behavior.

Theorem 1 (LeGall and Rosen). (i) If α < 1, then

R[nt]
n
−→
n→∞

qt P− a.s.

with q := P (Sk 6= 0, ∀k ≥ 1).

(ii) If α = 1, then

h(n)R[nt]
n

−→
n→∞

t in Lp(P),

where h(n) := 1 +
∑n
k=1 P (Sk = 0).

(iii) If 1 < α ≤ 2, then for any L ∈ N and any t1 < · · · < tL,

1
n1/α

(
Rbnt1c, . . . , RbntLc

)
−→
n→∞

(m(Y (0, t1)), . . . ,m(Y (0, tL))) ,

in distribution.

In the above result, {Y (t), t ∈ R} denotes the right-continuous α−stable Lévy process with
characteristic function given by φ(tθ) and m is the Lebesgue measure on R. One of the results
of [5] is the following. If un is a threshold such that nP (ξ > un) −→

n→∞
τ for some τ > 0, with

ξ = ξ(1), and if the ξ(s)’s are i.i.d. then

P
(

max
i≤n

ξ(Si) ≤ un
)
−→
n→∞

e−τq

for α < 1. Such a result was generalized in [1] for sequences (ξ(s))s∈Z which are not necessarily
i.i.d., but which satisfy a slight modification of the classical D(un) and D′(un) conditions of
Leadbetter (see [9, 10] for a statement of these conditions).

In this paper, we give a more precise treatment of the extremes of (ξ(Sn))n≥0. To do it, we
assume that the threshold is of the form un = un(x) = anx+ bn (an ∈ R, bn > 0 and x ∈ R)
and that, for any x ∈ R, the following term exists and is finite:

ν(x,∞) := lim
n→∞

nP (ξ > un(x)) . (1)

The quantity ν defines a measure on some topological space E. According to the Gnedenko’s
theorem [6], if ξ is in the domain of attraction of an extreme value distribution G, then ν is
of the form:

ν(x,∞) =


x−β, E = (0,∞] if G is a Fréchet distribution;
(−x)−δ, E = (−∞, 0] if G is a Weibull distribution;
e−x, E = (−∞,∞] if G is a Gumbel distribution;
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for some β, δ > 0. Notice that if Pn denotes the distribution of ξ−anbn
, then (1) can be rephrased

as

nPn(A) −→
n→∞

ν(A), (2)

for any Borel subset A ⊂ R. Secondly, we assume that the (stationary) sequence (ξ(s))s∈Z
satisfies conditions of type D(un) and D′(un) in the same spirit as in [1]. To introduce the
first one, we write for each i1 < · · · < ip and for each u ∈ R,

Fi1,...,ip(u) = P (ξ(i1) ≤ u, . . . , ξ(ip) ≤ u) .

D(un) condition We say that (ξ(s))s∈Z satisfies the D(un) condition if there exist a sequence
(αn,`)(n,`)∈N2 and a sequence (`n) of positive integers such that αn,`n −→n→∞ 0, `n = o(n), and

|Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)| ≤ αn,`

for any integers i1 < · · · < ip < j1 < · · · < jp′ such that j1 − ip ≥ `. Notice that the bound
holds uniformly in p and p′. Roughly, the D(un) condition (see e.g. p29 in [11]) is a weak
mixing property for the tails of the joint distributions.

The D′(un) condition (see e.g. p29 in [11]) is a local type property and precludes the
existence of clusters of exceedances. To introduce it, we consider a sequence (kn) such that

kn −→
n→∞

∞, n2

kn
αn,`n −→n→∞ 0, kn`n = o(n), (3)

where (`n) and (αn,l)(n,l)∈N2 are the same as in the D(un) condition.

D′(un) condition In conjunction with the D(un) condition, we say that (ξ(s))s∈Z satisfies
the D′(un) condition if there exists a sequence of integers (kn) satisfying (3) such that

lim
n→∞

n

bn/knc∑
s=1

P (ξ(0) > un, ξ(s) > un) = 0.

In the classical literature, the sequences (αn,l)(n,l)∈N2 and (kn) only satisfy knαn,`n −→n→∞ 0 (see

e.g. (3.2.1) in [11]) whereas in (3) we have assumed that n2

kn
αn,`n −→n→∞ 0. In this sense, the

D′(un) condition as written above is slightly more restrictive than the usual D′(un) condition.

Our paper is organized as follows. In Section 2, we prove that under suitable scaling the so-
called point process of exceedances converges to a Poisson point process in the transient case.
In Section 3, we give some properties of the random walk in random scenery. More precisely,
we show that the (stationary) sequence (ξ(Sn))n≥0 satisfies the classical D(un) condition of
Leadbetter, but does not satisfy the D′(un) condition. Our results generalize [5] for sequences
(ξ(s))s∈Z which are not i.i.d. but which only satisfy the D(un) and D′(un) conditions. We
also give some remarks on the so-called extremal index and on the D(k)(un) condition.
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2 Point process of exceedances

2.1 Poisson approximation

The main result of this section claims that the point process of exceedances converges to a
Poisson point process in the transient case, i.e. α < 1. To introduce it, we denote for any
k ≥ 1 by

τk = inf{m ≥ 0 : #{S1, . . . , Sm} ≥ k}

the time at which the random walk visits its k-th site. The point process of exceedances is
defined as

Φn =
{(

τk
n
,
ξ(Sτk)− bm(n)

am(n)

)
: τk ≤ n

}
k≥1
⊂ [0, 1]× R, (4)

where m(n) = bqnc.

Proposition 2. Let α < 1. Assume that the sequence (ξ(s))s∈Z satisfies the D(un) and D′(un)
conditions for any threshold un = un(x) = anx+ bn, x ∈ R, satisfying Equation (1). Then Φn

converges weakly to a Poisson point process Φ with intensity measure m[0,1] ⊗ ν, where m[0,1]
denotes the Lebesgue measure in [0, 1], i.e. for any Borel subsets B1, . . . , BK ⊂ [0, 1]×R with
m[0,1] ⊗ ν(∂Bi) = 0, 1 ≤ i ≤ K,

(#Φn ∩B1, . . . ,#Φn ∩BK) D−→
n→∞

(#Φ ∩B1, . . . ,#Φ ∩BK) .

By using the Laplace functional, Franke and Saigo (Theorem 3 in [5]) obtained a similar
result when the ξ(s)’s are i.i.d. Proposition 2 extends it and is based on Kallenberg’s theorem.
Our result is stated only in the transient case, i.e. for α < 1. However, it remains true for
α = 1 by taking m(n) =

⌊
n

h(n)

⌋
. When α > 1, the point process of exceedances is defined in

the same spirit as (4) by taking this time m(n) = bn1/αc. In this case, similarly to Theorem
4 in [5], we can show by adapting the proof of Proposition 2 that Φn converges weakly to a
Cox point process ΦY , i.e. a Poisson point process in [0, 1]×R with random intensity measure
µ(dt,dx) = mY (dt)ν(dx), where mY (t) = m(Y (0, t)).

2.2 Technical results

The proof of Proposition 2 is mainly based on Kallenberg’s theorem (see e.g. Proposition 3.22
in [?]) and on two technical lemmas which are stated below.

Theorem 3 (Kallenberg). Suppose Φ is a simple point process on E and I is a basis of
relatively compact open sets such that I is closed under finite unions and intersections and,
for I ∈ I,

P (#Φ ∩ ∂I = 0) = 1,
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where ∂I is the boundary of I. Let (Φn) be a sequence of point processes on E such that, for
all I ∈ I,

lim
n→+∞

E (#Φn ∩ I) = E (#Φ ∩ I)

and

lim
n→+∞

P (#Φn ∩ I = 0) = P (#Φ ∩ I = 0) .

Then Φn converges weakly to Φ in distribution.

The following lemma is a direct adaptation of Lemma 1 in [5] and deals with the indepen-
dence between the sequence (ξ(Sn))n≥0 and the sequence (τk)k≥1.

Lemma 1. For all measurable sets B ⊂ N+ and A ⊂ R, we have

P (τk ∈ B, ξ(Sτk) ∈ A) = P (τk ∈ B)P (ξ ∈ A) .

The second lemma is an extension of [1]. More precisely, under the assumptions that the
D(un) and D′(un) conditions hold for the sequence (ξ(s))s∈Z, we have shown in [1] that

P

 ⋂
k≥1: τk

n
∈(0,1]

{
ξ(Sτk)− bm(n)

am(n)
/∈ (x,∞)

}− E
(

exp
(
− Rn
m(n)ν(x,∞)

))
−→
n→∞

0

when (1) holds for any threshold un = un(x), x ∈ R. The following lemma deals with the
case where the interval (0, 1] (resp. (x,∞)) is replaced by (a, b] (resp. A ⊂ R) in the above
equation.

Lemma 2. Let A be a Borel subset in R and let 0 ≤ a < b ≤ 1. Under the same assumptions
as Proposition 2, for almost all realization of (Sn)n≥0, we have

lim
n→∞

P

 ⋂
k≥1: τk

n
∈(a,b]

{
ξ(Sτk)− bm(n)

am(n)
/∈ A

}− E
(

exp
(
−
Rbnbc −Rbnac

m(n) ν(A)
))

= 0.

2.3 Proofs

Proof of Lemma 1. Since the random walk and the random scenery are independent, we
have

P (τk ∈ B, ξ(Sτk) ∈ A) =
∑
m∈B

P (τk = m, ξ(Sm) ∈ A)

=
∑
m∈B

∑
s∈Z

P (τk = m,Sm = s, ξ(s) ∈ A)

=
∑
m∈B

∑
s∈Z

P (τk = m,Sm = s)P (ξ(s) ∈ A)

= P (τk ∈ B)P (ξ ∈ A) .
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Proof of Lemma 2. The proof will be sketched since it relies on a simple adaptation of the
proof of Theorem 1 in [1].

Let (kn), (`n) be as in (3) and let

rn =
⌊

n

kn − 1

⌋
+ 1, (5)

for n large enough. Given a realization of (Sn)n≥0, we write

S(na,nb] =
{
Sτk : k ≥ 1, τk

n
∈ (a, b]

}
and Rbnbc −Rbnac = #S(na,nb].

To capture the fact that (ξ(s))s∈Z satisfies the condition D(un), we construct blocks and
stripes as follows. Let

Kn =
⌊
Rbnbc −Rbnac

rn

⌋
+ 1.

We subdivide the set S(na,nb] into subsets Bi ⊂ S(na,nb], 1 ≤ i ≤ Kn, referred to as blocks, in
such a way that #Bi = rn and maxBi < minBi+1 for all i ≤ Kn − 1. Notice that Kn ≤ kn
and #BKn = Rbnbc −Rbnac − (Kn − 1) · rn a.s.. For each j ≤ Kn, we denote by Lj the family
consisting of the `n largest terms of Bj (e.g. if Bj = {x1, . . . , xrn}, with x1 < · · · < xrn ,
j ≤ Kn − 1, then Lj = {xrn−`n+1, . . . , xrn}). When j = Kn, we take the convention LKn = ∅
if #BKn < `n. The set Lj is referred to as a stripe, and the union of the stripes is denoted by
Ln =

⋃
j≤Kn Lj . Proceeding in the same spirit as in the proofs of Lemmas 1 and 2 of [1], we

can easily that for almost all realization of (Sn)n≥0,

• P
(⋂

s∈S(na,nb]

{
ξ(s)−bm(n)
am(n)

/∈ A
})
− P

(⋂
s∈S(na,nb]\Ln

{
ξ(s)−bm(n)
am(n)

/∈ A
})
−→
n→∞

0;

• P
(⋂

s∈S(na,nb]\Ln

{
ξ(s)−bm(n)
am(n)

/∈ A
})
−
∏
i≤Kn P

(⋂
s∈Bi\Ln

{
ξ(s)−bm(n)
am(n)

/∈ A
})
−→
n→∞

0;

•
∏
i≤Kn P

(⋂
s∈Bi\Ln

{
ξ(s)−bm(n)
am(n)

/∈ A
})
−
∏
i≤Kn P

(⋂
s∈Bi

{
ξ(s)−bm(n)
am(n)

/∈ A
})
−→
n→∞

0;

•
∏
i≤Kn P

(⋂
s∈Bi

{
ξ(s)−bm(n)
am(n)

/∈ A
})
− E

(
exp

(
−Rbnbc−Rbnac

m(n) ν(A)
))
−→
n→∞

0.

The first and the third assertions come from the fact that the size of the stripes is negligible
compared to the size of the blocks, i.e. `n = o(rn). The second assertion is a consequence of
the fact that the sequence (ξ(s))s∈Z satisfies the D(un) condition and the last one is obtained
by using the D(un) and D′(un) conditions. Lemma 2 follows directly from the four assertions.
�

Proof of Proposition 2. According to Kallenberg’s theorem, it is sufficient to show that
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(i) lim
n→∞

E (#Φn ∩ I) = m[0,1] ⊗ ν(I),

(ii) lim
n→∞

P (#Φn ∩ I = 0) = e−m[0,1]⊗ν(I),

for all set I of the form I = (a, b]×A, where 0 ≤ a < b ≤ 1 and where A is an open subset of
E.

To deal with (i), we write

E (#Φn ∩ I) =
∑
k≥1

P
((

τk
n
,
ξ(Sτk)− bbqnc

abqnc

)
∈ I

)

=
∑
k≥1

P
(
τk
n
∈ (a, b]

)
P
(
ξ − bbqnc
abqnc

∈ A
)

=
∑
k≥1

P
(
τk
n
∈ (a, b]

)
Pbqnc(A),

where the second line comes from Lemma 1. Using the fact that
∑
k≥1 1 τk

n
∈(a,b] = Rbnbc−Rbnac,

we have

E (#Φn ∩ I) = E

∑
k≥1

1 τk
n
∈(a,b]

Pbqnc(A)

= E
(
Rbnbc −Rbnac

)
Pbqnc(A).

Moreover, according to Theorem 1 and to the Lebesgue’s dominated convergence theorem, we
know that E(Rbnbc −Rbnac) ∼n→∞ nq(b− a). This, together with (2) implies

E (#Φn ∩ I) −→
n→∞

(b− a)× ν(A) = m[0,1] ⊗ ν(I).

To deal with (ii), we observe that

P (#Φn ∩ I = 0) = P

 ⋂
k≥1: τk

n
∈(a,b]

{
ξ(Sτk)− bbqnc

abqnc
/∈ A

} .
According to Lemma 2, Theorem 1 and the Lebesgue’s dominated convergence theorem, we
have

P (#Φn ∩ I = 0) = E
(

exp
(
−
Rbnbc −Rbnac
bqnc

ν(A)
))

+ o(1)

−→
n→∞

exp (−(b− a)ν(A)) .

This, together with the fact that (b−a)ν(A) = m[0,1]⊗ν(I), concludes the proof of Proposition
2. �
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3 Properties of (ξ(Sn))n≥0

In this section, we give some properties of (ξ(Sn))n≥0. More precisely, we show that the latter
satisfies the D(un) condition and an extension of the so-called D(k)(un) condition, but does
not satisfy the D′(un) condition.

3.1 Distributional mixing property

The following extends Proposition 2 in [5], which deals with the case where the ξ(s)’s are i.i.d.,
to sequences which only satisfy the D(un) and D′(un) conditions.

Proposition 4. Let α < 1. Assume that the sequence (ξ(s))s∈Z satisfies the D(un) and D′(un)
conditions for a threshold un such that nP (ξ > un) −→

n→∞
τ , with τ > 0. Then (ξ(Sn))n≥0

satisfies the D(un) condition.

Proof of Proposition 4. We adapt several arguments of [5] in our context. Let 0 ≤ i1 <
· · · < ip < j1 < · · · < jp′ ≤ n be a family of integers, with j1 − ip > `n and kn`n = o(n). To
prove that (ξ(Sn))n≥0 satisfies the D(un), we have to show that

|F ′i1,...,ip,j1,...,jp′ (un)− F ′i1,...,ip(un)F ′j1,...,jp′ (un)| ≤ α̃n,`n ,

for some sequence (α̃n,`)(n,`)∈N2 such that knα̃n,`n −→n→∞ 0, with

F ′i1,...,ip(un) = P
(
ξ(Si1) ≤ un, . . . , ξ(Sip) ≤ un

)
.

We will use below the following notation:

• Ri1,...,ip,j1,...,jp′ = #{Si1 , . . . , Sip , Sj1 , . . . , Sjp′};

• Ri1,...,ip = #{Si1 , . . . , Sip};

• Rj1,...,jp′ = #{Sj1 , . . . , Sjp′};

• Ri1,...,ipj1,...,jp′
= #{Si1 , . . . , Sip} ∩ {Sj1 , . . . , Sjp′} = Ri1,...,ip +Rj1,...,jp′ −Ri1,...,ip,j1,...,jp′ .

We have

|F ′i1,...,ip,j1,...,jp′ (un)− F ′i1,...,ip(un)F ′j1,...,jp′ (un)|

≤
∣∣∣∣∣F ′i1,...,ip,j1,...,jp′ (un)− E

(
exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

))∣∣∣∣∣
+
∣∣∣∣∣E
(

exp
(
−
Ri1,...,ip,j1,...,jp′

n
τ

))
− E

(
exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

))∣∣∣∣∣
+
∣∣∣∣∣E
(

exp
(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

))
− F ′i1,...,ip(un)F ′j1,...,jp′ (un)

∣∣∣∣∣ . (6)

To deal with the first and the third terms of the right-hand side of (6), we will use the following
lemma.
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Lemma 3. For almost all realization of (Sn)n≥0 and for all 0 ≤ i1 < i2 < · · · < ip ≤ n,∣∣∣∣F ′i1,...,ip(un)− exp
(
−
Ri1,...,ip
n

τ

)∣∣∣∣ ≤ εn,
with εn = ε

(1)
n + ε

(2)
n , where ε(1)

n and ε(2)
n are defined in (7) and (9) respectively.

Proof of Lemma 3. Similarly to Lemma 2, the main idea is to adapt several arguments
appearing in the proofs of Lemmas 1 and 2 in [1] in our context. Let (kn) and (rn) be as in
(3) and (5). Given 1 ≤ i1 < i2 < · · · < ip ≤ n, we subdivide the random set {Si1 , . . . , Sip}
into Kn blocks, with Kn = bRi1,...,iprn

c+ 1, in the same spirit as we did in the proof of Lemma
2. More precisely, there exists a unique Kn-tuple of subsets Bi ⊂ Sn, i ≤ Kn, such that
the following properties hold:

⋃
j≤Kn Bj = {Si1 , . . . , Sip}, #Bi = rn and maxBi < minBi+1

for all i ≤ Kn − 1. In particular, we have Kn ≤ kn and #BKn = Rn − (Kn − 1) · rn a.s..
Without loss of generality, we assume that #BKn = #Bi = rn for all i ≤ Kn − 1, so that
Ri1,...,ip = Knrn. For each j ≤ Kn, we also denote by Lj the family consisting of the `n largest
terms of Bj and we let Ln =

⋃
j≤Kn Lj . In the rest of the paper, we write MB = maxs∈B ξ(s)

for all subset B ⊂ Z.
Adapting the proof of Lemma 1 in [1], we can show that the following inequalities hold for

almost all realization of (Sn)n∈≥0 and for n larger than some deterministic integer n0:∣∣∣P (M{Si1 ,...,Sip} ≤ un)− P
(
M{Si1 ,...,Sip}\Ln ≤ un

)∣∣∣ ≤ kn`nP (ξ > un) ;∣∣∣∣∣∣P
(
M{Si1 ,...,Sip}\Ln ≤ un

)
−

∏
j≤Kn

P
(
MBj\Ln ≤ un

)∣∣∣∣∣∣ ≤ knαn,`n ;

∣∣∣∣∣∣
∏
j≤Kn

P
(
MBj\Ln ≤ un

)
−

∏
j≤Kn

P
(
MBj ≤ un

)∣∣∣∣∣∣ ≤ 2τkn`n
n

.

Since F ′i1,...,ip(un) = P
(
M{Si1 ,...,Sip} ≤ un

)
and P (ξ > un) ∼

n→∞
τ
n , we get for almost all real-

ization of (Sn)n≥0,∣∣∣∣∣∣F ′i1,...,ip(un)−
∏
j≤Kn

P
(
MBj ≤ un

)∣∣∣∣∣∣ ≤ ε(1)
n ,

with

ε(1)
n = c ·

(
kn`n
n

+ knαn,`n

)
. (7)

Without loss of generality, we assume from now on that P (ξ > un) = τ
n . We show below

that ∣∣∣∣∣∣
∏
j≤Kn

P
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip
n

τ

)∣∣∣∣∣∣ ≤ ε(2)
n , (8)
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for some deterministic sequence ε(2)
n −→

n→∞
0. To do it, we adapt several arguments of Lemma

2 in [1]. First, we notice that for n large enough,

∏
j≤Kn

P
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip
n

τ

)

≥ exp (Kn log(1− rnP (ξ > un)))− exp
(
−
Ri1,...,ip
n

τ

)
≥ exp

(
−KnrnP (ξ > un)−Kn(rnP (ξ > un))2

)
− exp

(
−
Ri1,...,ip
n

τ

)
,

where the last line comes from the facts that log(1 − x) ≥ −x − x2 for |x| small enough and
that rnP (ξ > un) −→

n→∞
0. Because Knrn = Ri1,...,ip and P (ξ > un) = τ

n , we have

∏
j≤Kn

P
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip
n

τ

)

≥ exp
(
−
Ri1,...,ip
n

τ

)(
exp

(
−Kn(rnP (ξ > un))2

)
− 1

)
≥ exp(−kn(rnP (ξ > un))2)− 1,

where the last line comes from the fact that Kn ≤ kn a.s.. Since knrn ∼
n→∞

n, we have

∏
j≤Kn

P
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip
n

τ

)
≥ c · 1

kn
.

Moreover, because
∏
j≤Kn P

(
MBj ≤ un

)
≤ exp

(
−
∑
j≤Kn P

(
MBj > un

))
, it follows from

the Bonferroni inequalities (see e.g. p110 in Feller [3]) that

∏
j≤Kn

P
(
MBj ≤ un

)

≤ exp

−(Kn − 1)rnP (ξ > un) +
∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)

 .
Since Knrn = Ri1,...,ip and P (ξ > un) = τ

n , we have

∏
j≤Kn

P
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip
n

τ

)
= exp

(
−
Ri1,...,ip
n

τ

)

×

exp

rnP (ξ > un) +
∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)

− 1



10



and therefore

∏
j≤Kn

P
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip
n

τ

)

≤ exp

rnP (ξ > un) +
∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)

− 1.

Proceeding along the same lines as in the proof of Lemma 2 in [1], we can show that

exp

rnP (ξ > un) +
∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)

− 1

≤ c

 1
kn

+ n

bn/knc∑
s=1

P (ξ(0) > un, ξ(s) > un)

 .
This shows (8) with

ε(2)
n = c

 1
kn

+ n

bn/knc∑
s=1

P (ξ(0) > un, ξ(s) > un)

 . (9)

and consequently concludes the proof of Lemma 3. �

According to (3), the fact that (ξ(s))s∈Z satisfies the D′(un) condition and the fact that
knαn,`n −→n→∞ 0, we have εn −→

n→∞
0. It follows from Lemma 3 that the first and the third terms

of the right-hand side of (6) converge to 0 as n goes to infinity. To deal with the second one,
we write∣∣∣∣∣exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

)
− exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)∣∣∣∣∣
= exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)exp

Rj1,...,jp′i1,...,ip

n
τ

− 1


≤ exp

Rip+`n+1,...,n
1,...,ip

n
τ

− 1,

where the last line comes from the fact that j1 − ip > `n. Since `n ≥ 0, we get

sup
∣∣∣∣∣exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

)
− exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)∣∣∣∣∣
≤ sup

i≤n
exp

Ri+1,...,n
1,...,i
n

τ

 − 1, (10)
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where the supremum in the left-hand side is taken over all integers 0 ≤ i1 < · · · < ip < j1 <

· · · < jp′ ≤ n, with j1 − ip > `n. Moreover, using the fact that Ri+1,...,n
1,...,i = R1,...,i +Ri+1,...,n −

R1,...,n and following [8], we have supi≤n
Ri+1,...,n

1,...,i
n −→

n→∞
0 a.s.. This, together with (10) and the

Lebesgue’s dominated convergence theorem implies

sup
∣∣∣∣∣E
[
exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

)]
− E

[
exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)]∣∣∣∣∣ −→n→∞ 0

and consequently concludes the proof of Proposition 4. �

3.2 The D(k)(un) as k →∞

In [?], the authors introduce a local mixing condition, referred to as the D(k)(un) condition,
which allows to express the extremal index in terms of joint distribution. We recall the latter
below.

Condition D(k)(un) Let (ξ(s))s∈Z be a sequence of random variables and let un be a thresh-
old such that nP (ξ > un) −→

n→∞
τ , for some τ > 0. In conjunction with the D(un) condition,

we say that the D(k)(un) condition, k ≥ 1, holds if there exist two sequences of integers (kn)
and (`n) such that

kn →∞, knαn,`n → 0, kn`n = o(n)

and

lim
n→∞

nP (ξ(1) > un ≥M2,k, Mk+1,rn > un) = 0, (11)

where rn is as in (5) and where Mi,j = max{ξ(i), ξ(i + 1), . . . , ξ(j)} for all i ≤ j, with the
conventionMi,j = −∞ if i > j. As mentioned in [?], Equation (11) is implied by the condition

lim
n→∞

n
rn∑

s=k+1
P (ξ(1) > un ≥M2,k, ξ(s) > un) = 0.

Observe that the last line is the D′(un) condition if k = 1.
Roughly, the following proposition states that the sequence (ξ(Sn))n≥0 satisfies theD(k)(un)

condition as k goes to infinity.

Proposition 5. Under the same assumptions as Proposition 4, we have

lim
k→∞

lim
n→∞

n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un

)
= 0,

where M ′i,j = maxi≤t≤j ξ(St) if i ≤ j and M ′i,j = −∞ if i > j.

12



Proof of Proposition 5. For all k ≥ 1, we have

n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un

)

= n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj = S1

)
P (Sj = S1)

+ n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj 6= S1

)
P (Sj 6= S1) . (12)

The first term of the right-hand side of (12) tends to zero as k, n→∞. Indeed,

P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj = S1

)
P (Sj = S1)

≤ P (ξ(S1) > un)P (Sj = S1) .

Moreover, because (Sn)n≥1 is a transient random walk, we have
∑∞
j=2 P (Sj = S1) <∞, which

implies

lim
k→∞

lim
n→∞

nP (ξ(S1) > un)
rn∑

j=k+1
P (Sj = S1) = 0,

and therefore

lim
k→∞

lim
n→∞

n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj = S1

)
P (Sj = S1) = 0.

To prove that the second term of the right-hand side of (12) goes to 0, we write

n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj 6= S1

)
P (Sj 6= S1)

= n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj ∈ B∗(S1, rn)

)
P (Sj ∈ B∗(S1, rn))

+ n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj /∈ B(S1, rn)

)
P (Sj /∈ B(S1, rn)) , (13)

where B(S1, rn) := {S ∈ Sn : |S − S1| ≤ rn} and B∗(S1, rn) = B(S1, rn) \ {S1}. We prove
below that the last two terms in (13) converge to 0. For the first one, we write

n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj ∈ B∗(S1, rn)

)
P (Sj ∈ B∗(S1, rn))

≤ n
rn∑
j=2

P (ξ(0) > un, ξ(Sj − S1) > un|Sj ∈ B∗(S1, rn)) .
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The last quantity converges to 0 as n goes to infinity since the sequence (ξ(s))s∈Z satisfies the
D′(un) condition. To deal with the second term of (13), we write

n
rn∑

j=k+1
P
(
ξ(S1) > un ≥M ′2,k, ξ(Sj) > un|Sj /∈ B(S1, rn)

)
P (Sj /∈ B(S1, rn))

≤ n
rn∑

j=k+1
P (ξ(S1) > un, ξ(Sj) > un|Sj /∈ B(S1, rn))

≤ n
rn∑

j=k+1
P (ξ > un)2 + n

rn∑
j=k+1

∣∣∣P (ξ(S1) > un, ξ(Sj) > un|Sj /∈ B(S1, rn))− P (ξ > un)2
∣∣∣ .

The first series tends to 0 as n goes to infinity because

n
rn∑

j=k+1
P (ξ > un)2 ≤ nrnP (ξ > un)2 ∼

n→∞
τ2 rn
n
,

and rn = o(n). To deal with the second series, we use the D(un) condition. This gives

n
rn∑

j=k+1
|P (ξ(S1) > un, ξ(Sj) > un|Sj /∈ B(S1, rn))− P (ξ > un)2 | ≤ nrnαn,rn

≤ n2

kn
αn,rn ,

which converges to 0 as n goes to infinity according to (3). This concludes the proof of
Proposition 5. �

3.3 The extremal index

Let (kn) and (rn) be as in (3) and (5). Let us denote by Rn = #Sn and Kn =
⌊
Rn
rn

⌋
+ 1. The

following proposition deals with MSn under the D(un) condition.

Proposition 6. Let α < 1. Assume that the sequence (ξ(s))s∈Z satisfies the D(un) conditions
for a threshold un such that nP (ξ > un) −→

n→∞
τ , with τ > 0. Then for almost all realization

of (Sn)n≥0,

P (MSn ≤ un)− exp

− Kn∑
j=1

rn∑
i=1

P
(
ξ(S((j−1)rn+i)) > un ≥M ′((j−1)rn+i+1, jrn)

) −→
n→∞

0,

where

M ′(i,j) :=

 max
i≤t≤j

ξ(S(t)), i ≤ j

−∞, i > j

and where S(t) is the t-th largest value of the ξ(Si)′s, i ≤ n.
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A similar result was obtained by O’Brien (Theorem 2.1. in [12]). However, the above
proposition is not a consequence of the latter. Proposition 6 remains true if the sequence
(ξ(s))s∈Z only satisfies the D(un) condition (i.e. when knαn,`n −→n→∞ 0 instead of n2

kn
αn,`n −→n→∞

0). As a direct consequence of such a result, if for almost all realization of (Sn)n≥0,

1
n

∑
j≤Kn

rn∑
i=1

P
(
M ′((j−1)rn+i+1, jrn) ≤ un|ξ(S((j−1)rn+i)) > un

)
−→
n→∞

θ,

for some θ ∈ [0, 1], then P (MSn ≤ un) −→
n→∞

e−θτ . In this case, the term θ is referred to as the
extremal index (see e.g. [10]) and can be interpreted as the reciprocal of the mean size of a
cluster of exceedances. As stated in Theorem 1 in [1], when the sequence (ξ(s))s∈Z satisfies
the D(un) and D′(un) conditions, we have

P (MSn ≤ un) −→
n→∞

e−qτ . (14)

In other words, under these conditions, the extremal index θ exists and θ = q.

Proof of Proposition 6. Let us write Sn = {S(1), . . . , S(Rn)} with S(1) < S(2) < · · · <
S(Rn), and partitition Sn into Kn blocks as in Lemma 2. Without loss of generality, assume
that the last block has the same size as the others, so that Rn

Kn
is an integer. Let Bj =

{S((j−1)rn+1), . . . , S(jrn)} be the j-th block of size rn. According to Lemma 1 in [1], for almost
all realization of (Sn)n≥0, we have

P (MSn ≤ un)− exp

 ∑
j≤Kn

log
(
1− P

(
MBj > un

)) −→
n→∞

0.

Moreover, because | log(1− x) + x| ≤ Cx2 for |x| small enough and because P
(
MBj > un

)
≤

rnP (ξ > un) converges to 0 as n goes to infinity, we have∣∣∣∣∣∣
∑
j≤Kn

log
(
1− P

(
MBj > un

))
+
∑
j≤Kn

P
(
MBj > un

)∣∣∣∣∣∣
≤
∑
j≤Kn

∣∣∣log
(
1− P

(
MBj > un

))
+ P

(
MBj > un

)∣∣∣
≤ C

∑
j≤Kn

P
(
MBj > un

)2

≤ Cknr2
nP (ξ > un)2 .

The last term converges to 0 as n goes to infinity since knrn ∼
n→∞

n, nP (ξ > un) −→
n→∞

τ and
rnP (ξ > un) −→

n→∞
0. This shows that for almost all realization of (Sn)n≥0

P (MSn ≤ un)− exp

− ∑
j≤Kn

P
(
MBj > un

) −→
n→∞

0. (15)
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Besides, following the same lines as [12], we have

P
(
MBj ≤ un

)
= 1− P

(
MBj > un

)
= 1−

rn∑
i=1

P
(
ξ(S((j−1)rn+i)) > un ≥M ′((j−1)rn+i+1, jrn)

)
This together with (15) concludes the proof of Proposition 6. �

3.4 The D′(un) condition

Recall that, in the classical literature (see e.g. (3.2.1) in [11]), the D′(un) condition holds for
the sequence (Zn) if, in conjunction with the D(un) condition,

lim
n→∞

n

[n/kn]∑
i=2

P (Z1 > un, Zi > un) = 0,

for some sequence of integers (kn) such that kn −→
n→∞

∞, knαn,`n −→n→∞ 0 and kn`n = o(n). The
following result is an extension of Proposition 3 in [5]. However, we give a simpler proof which
is based on [10].

Proposition 7. Under the same assumptions as Proposition 4, the sequence (ξ(Sn))n≥0 does
not satisfy the D′(un) condition.

Proof of Proposition 7. On the opposite, if (ξ(Sn))n≥0 satisfies the D′(un) condition, then
P (MSn ≤ un) −→

n→∞
e−τ according to Theorem 1.2 in [10]. This contradicts (14) since q 6= 1.

�
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