Some properties on extremes for transient random walks in random sceneries

Nicolas Chenavier* Ahmad Darwiche ${ }^{\dagger}$

Abstract

Let $\left(S_{n}\right)_{n \geq 0}$ be a transient random walk in the domain of attraction of a stable law and let $(\xi(s))_{s \in \mathbb{Z}}$ be a stationary sequence of random variables. In a previous work, under conditions of type $D\left(u_{n}\right)$ and $D^{\prime}\left(u_{n}\right)$, we established a limit theorem for the maximum of the first n terms of the sequence $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ as n goes to infinity. In this paper we show that, under the same conditions and under a suitable scaling, the point process of exceedances converges to a Poisson point process. We also give some properties of $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$.

Keywords: extreme values, random walks, point processes.
Mathematics Subject Classification: 60G70, 60G50, 60G55.

1 Introduction

In 2009, Franke and Saigo $[4,5]$ considered the following problem. Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of centered, integer-valued i.i.d. random variables and let $S_{0}=0$ a.s. and $S_{n}=X_{1}+\cdots+X_{n}$, $n \geq 1$. Assume that, for any $x \in \mathbb{R}$,

$$
\mathbb{P}\left(\frac{S_{n}}{n^{1 / \alpha}} \leq x\right) \underset{n \rightarrow \infty}{\longrightarrow} F_{\alpha}(x),
$$

where F_{α} is the distribution function of a stable law with characteristic function given by

$$
\phi(\theta)=\exp \left(-|\theta|^{\alpha}\left(C_{1}+i C_{2} \operatorname{sgn} \theta\right)\right), \quad \alpha \in(0,2] .
$$

Let $(\xi(s))_{s \in \mathbb{Z}}$ be a stationary sequence of \mathbb{R}-valued random variables which are independent of the sequence $\left(X_{k}\right)_{k \geq 1}$. The sequence $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ is referred to as a random walk in a random scenery. In [5], Franke and Saigo derive limit theorems for the random variable $\max _{i \leq n} \xi\left(S_{i}\right)$ as n goes to infinity when the $\xi(s)$'s are i.i.d.. The statements of their theorems depend on the value of α. When $\alpha<1$ (resp. $\alpha>1$), it is known that the random walk $\left(S_{n}\right)_{n \geq 0}$ is transient (resp. recurrent) $[7,8]$. An important concept concerning random walks is the

[^0]range. The latter is defined as the number of sites visited by the first n terms of the random walk, namely $R_{n}:=\#\left\{S_{1}, \ldots, S_{n}\right\}$. The following result, due to Le Gall and Rosen [8], deals with its asymptotic behavior.

Theorem 1 (LeGall and Rosen). (i) If $\alpha<1$, then

$$
\frac{R_{[n t]}}{n} \underset{n \rightarrow \infty}{\longrightarrow} q t \quad \mathbb{P} \text {-a.s. }
$$

with $q:=\mathbb{P}\left(S_{k} \neq 0, \forall k \geq 1\right)$.
(ii) If $\alpha=1$, then

$$
\frac{h(n) R_{[n t]}}{n} \underset{n \rightarrow \infty}{\longrightarrow} t \quad \text { in } \quad L^{p}(\mathbb{P}),
$$

where $h(n):=1+\sum_{k=1}^{n} \mathbb{P}\left(S_{k}=0\right)$.
(iii) If $1<\alpha \leq 2$, then for any $L \in \mathbb{N}$ and any $t_{1}<\cdots<t_{L}$,

$$
\frac{1}{n^{1 / \alpha}}\left(R_{\left\lfloor n t_{1}\right\rfloor}, \ldots, R_{\left\lfloor n t_{L}\right\rfloor}\right) \underset{n \rightarrow \infty}{\longrightarrow}\left(m\left(Y\left(0, t_{1}\right)\right), \ldots, m\left(Y\left(0, t_{L}\right)\right)\right),
$$

in distribution.
In the above result, $\{Y(t), t \in \mathbb{R}\}$ denotes the right-continuous α-stable Lévy process with characteristic function given by $\phi(t \theta)$ and m is the Lebesgue measure on \mathbb{R}. One of the results of [5] is the following. If u_{n} is a threshold such that $n \mathbb{P}\left(\xi>u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \tau$ for some $\tau>0$, with $\xi=\xi(1)$, and if the $\xi(s)$'s are i.i.d. then

$$
\mathbb{P}\left(\max _{i \leq n} \xi\left(S_{i}\right) \leq u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} e^{-\tau q}
$$

for $\alpha<1$. Such a result was generalized in [1] for sequences $(\xi(s))_{s \in \mathbb{Z}}$ which are not necessarily i.i.d., but which satisfy a slight modification of the classical $D\left(u_{n}\right)$ and $D^{\prime}\left(u_{n}\right)$ conditions of Leadbetter (see $[9,10]$ for a statement of these conditions).

In this paper, we give a more precise treatment of the extremes of $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$. To do it, we assume that the threshold is of the form $u_{n}=u_{n}(x)=a_{n} x+b_{n}\left(a_{n} \in \mathbb{R}, b_{n}>0\right.$ and $\left.x \in \mathbb{R}\right)$ and that, for any $x \in \mathbb{R}$, the following term exists and is finite:

$$
\begin{equation*}
\nu(x, \infty):=\lim _{n \rightarrow \infty} n \mathbb{P}\left(\xi>u_{n}(x)\right) . \tag{1}
\end{equation*}
$$

The quantity ν defines a measure on some topological space E. According to the Gnedenko's theorem [6], if ξ is in the domain of attraction of an extreme value distribution G, then ν is of the form:

$$
\nu(x, \infty)= \begin{cases}x^{-\beta}, & E=(0, \infty] \quad \text { if } G \text { is a Fréchet distribution; } \\ (-x)^{-\delta}, & E=(-\infty, 0] \quad \text { if } G \text { is a Weibull distribution; } \\ e^{-x}, & E=(-\infty, \infty] \text { if } G \text { is a Gumbel distribution; }\end{cases}
$$

for some $\beta, \delta>0$. Notice that if P_{n} denotes the distribution of $\frac{\xi-a_{n}}{b_{n}}$, then (1) can be rephrased as

$$
\begin{equation*}
n P_{n}(A) \underset{n \rightarrow \infty}{\longrightarrow} \nu(A) \tag{2}
\end{equation*}
$$

for any Borel subset $A \subset \mathbb{R}$. Secondly, we assume that the (stationary) sequence $(\xi(s))_{s \in \mathbb{Z}}$ satisfies conditions of type $D\left(u_{n}\right)$ and $D^{\prime}\left(u_{n}\right)$ in the same spirit as in [1]. To introduce the first one, we write for each $i_{1}<\cdots<i_{p}$ and for each $u \in \mathbb{R}$,

$$
F_{i_{1}, \ldots, i_{p}}(u)=\mathbb{P}\left(\xi\left(i_{1}\right) \leq u, \ldots, \xi\left(i_{p}\right) \leq u\right)
$$

$\mathbf{D}\left(u_{n}\right)$ condition We say that $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}\left(u_{n}\right)$ condition if there exist a sequence $\left(\alpha_{n, \ell}\right)_{(n, \ell) \in \mathbb{N}^{2}}$ and a sequence $\left(\ell_{n}\right)$ of positive integers such that $\alpha_{n, \ell_{n}} \underset{n \rightarrow \infty}{ } 0, \ell_{n}=o(n)$, and

$$
\left|F_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}\left(u_{n}\right)-F_{i_{1}, \ldots, i_{p}}\left(u_{n}\right) F_{j_{1}, \ldots, j_{p^{\prime}}}\left(u_{n}\right)\right| \leq \alpha_{n, \ell}
$$

for any integers $i_{1}<\cdots<i_{p}<j_{1}<\cdots<j_{p^{\prime}}$ such that $j_{1}-i_{p} \geq \ell$. Notice that the bound holds uniformly in p and p^{\prime}. Roughly, the $\mathbf{D}\left(u_{n}\right)$ condition (see e.g. p29 in [11]) is a weak mixing property for the tails of the joint distributions.

The $\mathbf{D}^{\prime}\left(u_{n}\right)$ condition (see e.g. p29 in [11]) is a local type property and precludes the existence of clusters of exceedances. To introduce it, we consider a sequence $\left(k_{n}\right)$ such that

$$
\begin{equation*}
k_{n} \underset{n \rightarrow \infty}{\longrightarrow} \infty, \quad \frac{n^{2}}{k_{n}} \alpha_{n, \ell_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0, \quad k_{n} \ell_{n}=o(n) \tag{3}
\end{equation*}
$$

where $\left(\ell_{n}\right)$ and $\left(\alpha_{n, l}\right)_{(n, l) \in \mathbb{N}^{2}}$ are the same as in the $\mathbf{D}\left(u_{n}\right)$ condition.
$\mathbf{D}^{\prime}\left(u_{n}\right)$ condition In conjunction with the $\mathbf{D}\left(u_{n}\right)$ condition, we say that $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}^{\prime}\left(u_{n}\right)$ condition if there exists a sequence of integers $\left(k_{n}\right)$ satisfying (3) such that

$$
\lim _{n \rightarrow \infty} n \sum_{s=1}^{\left\lfloor n / k_{n}\right\rfloor} \mathbb{P}\left(\xi(0)>u_{n}, \xi(s)>u_{n}\right)=0
$$

In the classical literature, the sequences $\left(\alpha_{n, l}\right)_{(n, l) \in \mathbb{N}^{2}}$ and $\left(k_{n}\right)$ only satisfy $k_{n} \alpha_{n, \ell_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0$ (see e.g. (3.2.1) in [11]) whereas in (3) we have assumed that $\frac{n^{2}}{k_{n}} \alpha_{n, \ell_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0$. In this sense, the $\mathbf{D}^{\prime}\left(u_{n}\right)$ condition as written above is slightly more restrictive than the usual $D^{\prime}\left(u_{n}\right)$ condition.

Our paper is organized as follows. In Section 2, we prove that under suitable scaling the socalled point process of exceedances converges to a Poisson point process in the transient case. In Section 3, we give some properties of the random walk in random scenery. More precisely, we show that the (stationary) sequence $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ satisfies the classical $D\left(u_{n}\right)$ condition of Leadbetter, but does not satisfy the $D^{\prime}\left(u_{n}\right)$ condition. Our results generalize [5] for sequences $(\xi(s))_{s \in \mathbb{Z}}$ which are not i.i.d. but which only satisfy the $\mathbf{D}\left(u_{n}\right)$ and $\mathbf{D}^{\prime}\left(u_{n}\right)$ conditions. We also give some remarks on the so-called extremal index and on the $D^{(k)}\left(u_{n}\right)$ condition.

2 Point process of exceedances

2.1 Poisson approximation

The main result of this section claims that the point process of exceedances converges to a Poisson point process in the transient case, i.e. $\alpha<1$. To introduce it, we denote for any $k \geq 1$ by

$$
\tau_{k}=\inf \left\{m \geq 0: \#\left\{S_{1}, \ldots, S_{m}\right\} \geq k\right\}
$$

the time at which the random walk visits its k-th site. The point process of exceedances is defined as

$$
\begin{equation*}
\Phi_{n}=\left\{\left(\frac{\tau_{k}}{n}, \frac{\xi\left(S_{\tau_{k}}\right)-b_{m(n)}}{a_{m(n)}}\right): \tau_{k} \leq n\right\}_{k \geq 1} \subset[0,1] \times \mathbb{R} \tag{4}
\end{equation*}
$$

where $m(n)=\lfloor q n\rfloor$.
Proposition 2. Let $\alpha<1$. Assume that the sequence $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}\left(u_{n}\right)$ and $\mathbf{D}^{\prime}\left(u_{n}\right)$ conditions for any threshold $u_{n}=u_{n}(x)=a_{n} x+b_{n}, x \in \mathbb{R}$, satisfying Equation (1). Then Φ_{n} converges weakly to a Poisson point process Φ with intensity measure $m_{[0,1]} \otimes \nu$, where $m_{[0,1]}$ denotes the Lebesgue measure in $[0,1]$, i.e. for any Borel subsets $B_{1}, \ldots, B_{K} \subset[0,1] \times \mathbb{R}$ with $m_{[0,1]} \otimes \nu\left(\partial B_{i}\right)=0,1 \leq i \leq K$,

$$
\left(\# \Phi_{n} \cap B_{1}, \ldots, \# \Phi_{n} \cap B_{K}\right) \underset{n \rightarrow \infty}{\mathcal{D}}\left(\# \Phi \cap B_{1}, \ldots, \# \Phi \cap B_{K}\right)
$$

By using the Laplace functional, Franke and Saigo (Theorem 3 in [5]) obtained a similar result when the $\xi(s)$'s are i.i.d. Proposition 2 extends it and is based on Kallenberg's theorem. Our result is stated only in the transient case, i.e. for $\alpha<1$. However, it remains true for $\alpha=1$ by taking $m(n)=\left\lfloor\frac{n}{h(n)}\right\rfloor$. When $\alpha>1$, the point process of exceedances is defined in the same spirit as (4) by taking this time $m(n)=\left\lfloor n^{1 / \alpha}\right\rfloor$. In this case, similarly to Theorem 4 in [5], we can show by adapting the proof of Proposition 2 that Φ_{n} converges weakly to a Cox point process Φ_{Y}, i.e. a Poisson point process in $[0,1] \times \mathbb{R}$ with random intensity measure $\mu(\mathrm{d} t, \mathrm{~d} x)=m_{Y}(\mathrm{~d} t) \nu(\mathrm{d} x)$, where $m_{Y}(t)=m(Y(0, t))$.

2.2 Technical results

The proof of Proposition 2 is mainly based on Kallenberg's theorem (see e.g. Proposition 3.22 in [?]) and on two technical lemmas which are stated below.

Theorem 3 (Kallenberg). Suppose Φ is a simple point process on E and \mathcal{I} is a basis of relatively compact open sets such that \mathcal{I} is closed under finite unions and intersections and, for $I \in \mathcal{I}$,

$$
\mathbb{P}(\# \Phi \cap \partial I=0)=1
$$

where ∂I is the boundary of $I . \operatorname{Let}\left(\Phi_{n}\right)$ be a sequence of point processes on E such that, for all $I \in \mathcal{I}$,

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left(\# \Phi_{n} \cap I\right)=\mathbb{E}(\# \Phi \cap I)
$$

and

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(\# \Phi_{n} \cap I=0\right)=\mathbb{P}(\# \Phi \cap I=0)
$$

Then Φ_{n} converges weakly to Φ in distribution.
The following lemma is a direct adaptation of Lemma 1 in [5] and deals with the independence between the sequence $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ and the sequence $\left(\tau_{k}\right)_{k \geq 1}$.
Lemma 1. For all measurable sets $B \subset \mathbb{N}_{+}$and $A \subset \mathbb{R}$, we have

$$
\mathbb{P}\left(\tau_{k} \in B, \xi\left(S_{\tau_{k}}\right) \in A\right)=\mathbb{P}\left(\tau_{k} \in B\right) \mathbb{P}(\xi \in A)
$$

The second lemma is an extension of [1]. More precisely, under the assumptions that the $\mathbf{D}\left(u_{n}\right)$ and $\mathbf{D}^{\prime}\left(u_{n}\right)$ conditions hold for the sequence $(\xi(s))_{s \in \mathbb{Z}}$, we have shown in [1] that

$$
\mathbb{P}\left(\bigcap_{k \geq 1: \frac{\tau_{k}}{n} \in(0,1]}\left\{\frac{\xi\left(S_{\tau_{k}}\right)-b_{m(n)}}{a_{m(n)}} \notin(x, \infty)\right\}\right)-\mathbb{E}\left(\exp \left(-\frac{R_{n}}{m(n)} \nu(x, \infty)\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

when (1) holds for any threshold $u_{n}=u_{n}(x), x \in \mathbb{R}$. The following lemma deals with the case where the interval $(0,1]$ (resp. (x, ∞)) is replaced by $(a, b]$ (resp. $A \subset \mathbb{R})$ in the above equation.

Lemma 2. Let A be a Borel subset in \mathbb{R} and let $0 \leq a<b \leq 1$. Under the same assumptions as Proposition 2, for almost all realization of $\left(S_{n}\right)_{n \geq 0}$, we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcap_{k \geq 1: \frac{\tau_{k}}{n} \in(a, b]}\left\{\frac{\xi\left(S_{\tau_{k}}\right)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right)-\mathbb{E}\left(\exp \left(-\frac{R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}}{m(n)} \nu(A)\right)\right)=0
$$

2.3 Proofs

Proof of Lemma 1. Since the random walk and the random scenery are independent, we have

$$
\begin{aligned}
\mathbb{P}\left(\tau_{k} \in B, \xi\left(S_{\tau_{k}}\right) \in A\right) & =\sum_{m \in B} \mathbb{P}\left(\tau_{k}=m, \xi\left(S_{m}\right) \in A\right) \\
& =\sum_{m \in B} \sum_{s \in \mathbb{Z}} \mathbb{P}\left(\tau_{k}=m, S_{m}=s, \xi(s) \in A\right) \\
& =\sum_{m \in B} \sum_{s \in \mathbb{Z}} \mathbb{P}\left(\tau_{k}=m, S_{m}=s\right) \mathbb{P}(\xi(s) \in A) \\
& =\mathbb{P}\left(\tau_{k} \in B\right) \mathbb{P}(\xi \in A) .
\end{aligned}
$$

Proof of Lemma 2. The proof will be sketched since it relies on a simple adaptation of the proof of Theorem 1 in [1].

Let $\left(k_{n}\right),\left(\ell_{n}\right)$ be as in (3) and let

$$
\begin{equation*}
r_{n}=\left\lfloor\frac{n}{k_{n}-1}\right\rfloor+1 \tag{5}
\end{equation*}
$$

for n large enough. Given a realization of $\left(S_{n}\right)_{n \geq 0}$, we write

$$
\mathcal{S}_{(n a, n b]}=\left\{S_{\tau_{k}}: k \geq 1, \frac{\tau_{k}}{n} \in(a, b]\right\} \quad \text { and } \quad R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}=\# \mathcal{S}_{(n a, n b]}
$$

To capture the fact that $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the condition $\mathbf{D}\left(u_{n}\right)$, we construct blocks and stripes as follows. Let

$$
K_{n}=\left\lfloor\frac{R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}}{r_{n}}\right\rfloor+1
$$

We subdivide the set $\mathcal{S}_{(n a, n b]}$ into subsets $B_{i} \subset \mathcal{S}_{(n a, n b]}, 1 \leq i \leq K_{n}$, referred to as blocks, in such a way that $\# B_{i}=r_{n}$ and $\max B_{i}<\min B_{i+1}$ for all $i \leq K_{n}-1$. Notice that $K_{n} \leq k_{n}$ and $\# B_{K_{n}}=R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}-\left(K_{n}-1\right) \cdot r_{n}$ a.s.. For each $j \leq K_{n}$, we denote by L_{j} the family consisting of the ℓ_{n} largest terms of B_{j} (e.g. if $B_{j}=\left\{x_{1}, \ldots, x_{r_{n}}\right\}$, with $x_{1}<\cdots<x_{r_{n}}$, $j \leq K_{n}-1$, then $\left.L_{j}=\left\{x_{r_{n}-\ell_{n}+1}, \ldots, x_{r_{n}}\right\}\right)$. When $j=K_{n}$, we take the convention $L_{K_{n}}=\emptyset$ if $\# B_{K_{n}}<\ell_{n}$. The set L_{j} is referred to as a stripe, and the union of the stripes is denoted by $\mathcal{L}_{n}=\bigcup_{j \leq K_{n}} L_{j}$. Proceeding in the same spirit as in the proofs of Lemmas 1 and 2 of [1], we can easily that for almost all realization of $\left(S_{n}\right)_{n \geq 0}$,

- $\mathbb{P}\left(\bigcap_{s \in \mathcal{S}_{(n a, n b]}}\left\{\frac{\xi(s)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right)-\mathbb{P}\left(\bigcap_{s \in \mathcal{S}_{(n a, n b]} \backslash \mathcal{L}_{n}}\left\{\frac{\xi(s)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 ;$
- $\mathbb{P}\left(\bigcap_{s \in \mathcal{S}_{(n a, n b]} \backslash \mathcal{L}_{n}}\left\{\frac{\xi(s)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right)-\prod_{i \leq K_{n}} \mathbb{P}\left(\bigcap_{s \in B_{i} \backslash \mathcal{L}_{n}}\left\{\frac{\xi(s)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 ;$
- $\prod_{i \leq K_{n}} \mathbb{P}\left(\bigcap_{s \in B_{i} \backslash \mathcal{L}_{n}}\left\{\frac{\xi(s)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right)-\prod_{i \leq K_{n}} \mathbb{P}\left(\bigcap_{s \in B_{i}}\left\{\frac{\xi(s)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 ;$
- $\prod_{i \leq K_{n}} \mathbb{P}\left(\bigcap_{s \in B_{i}}\left\{\frac{\xi(s)-b_{m(n)}}{a_{m(n)}} \notin A\right\}\right)-\mathbb{E}\left(\exp \left(-\frac{R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}}{m(n)} \nu(A)\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$.

The first and the third assertions come from the fact that the size of the stripes is negligible compared to the size of the blocks, i.e. $\ell_{n}=o\left(r_{n}\right)$. The second assertion is a consequence of the fact that the sequence $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}\left(u_{n}\right)$ condition and the last one is obtained by using the $\mathbf{D}\left(u_{n}\right)$ and $\mathbf{D}^{\prime}\left(u_{n}\right)$ conditions. Lemma 2 follows directly from the four assertions.

Proof of Proposition 2. According to Kallenberg's theorem, it is sufficient to show that
(i) $\lim _{n \rightarrow \infty} \mathbb{E}\left(\# \Phi_{n} \cap I\right)=m_{[0,1]} \otimes \nu(I)$,
(ii) $\lim _{n \rightarrow \infty} \mathbb{P}\left(\# \Phi_{n} \cap I=0\right)=e^{-m_{[0,1]} \otimes \nu(I)}$,
for all set I of the form $I=(a, b] \times A$, where $0 \leq a<b \leq 1$ and where A is an open subset of E.

To deal with (i), we write

$$
\begin{aligned}
\mathbb{E}\left(\# \Phi_{n} \cap I\right) & =\sum_{k \geq 1} \mathbb{P}\left(\left(\frac{\tau_{k}}{n}, \frac{\xi\left(S_{\tau_{k}}\right)-b_{\lfloor q n\rfloor}}{a_{\lfloor q n\rfloor}}\right) \in I\right) \\
& =\sum_{k \geq 1} \mathbb{P}\left(\frac{\tau_{k}}{n} \in(a, b]\right) \mathbb{P}\left(\frac{\xi-b_{\lfloor q n\rfloor}}{a_{\lfloor q n\rfloor}} \in A\right) \\
& =\sum_{k \geq 1} \mathbb{P}\left(\frac{\tau_{k}}{n} \in(a, b]\right) P_{\lfloor q n\rfloor}(A),
\end{aligned}
$$

where the second line comes from Lemma 1. Using the fact that $\sum_{k \geq 1} \mathbf{1}_{\frac{\tau_{k}}{n} \in(a, b]}=R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}$, we have

$$
\begin{aligned}
\mathbb{E}\left(\# \Phi_{n} \cap I\right) & =\mathbb{E}\left(\sum_{k \geq 1} \mathbf{1}_{\frac{\tau_{k}}{n} \in(a, b]}\right) P_{\lfloor q n\rfloor}(A) \\
& =\mathbb{E}\left(R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}\right) P_{\lfloor q n\rfloor}(A) .
\end{aligned}
$$

Moreover, according to Theorem 1 and to the Lebesgue's dominated convergence theorem, we know that $\mathbb{E}\left(R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}\right) \underset{n \rightarrow \infty}{\sim} n q(b-a)$. This, together with (2) implies

$$
\mathbb{E}\left(\# \Phi_{n} \cap I\right) \underset{n \rightarrow \infty}{\longrightarrow}(b-a) \times \nu(A)=m_{[0,1]} \otimes \nu(I) .
$$

To deal with (ii), we observe that

$$
\mathbb{P}\left(\# \Phi_{n} \cap I=0\right)=\mathbb{P}\left(\bigcap_{k \geq 1: \frac{\tau_{k}}{n} \in(a, b]}\left\{\frac{\xi\left(S_{\tau_{k}}\right)-b_{\lfloor q n\rfloor}}{a_{\lfloor q n\rfloor}} \notin A\right\}\right) .
$$

According to Lemma 2, Theorem 1 and the Lebesgue's dominated convergence theorem, we have

$$
\begin{aligned}
\mathbb{P}\left(\# \Phi_{n} \cap I=0\right) & =\mathbb{E}\left(\exp \left(-\frac{R_{\lfloor n b\rfloor}-R_{\lfloor n a\rfloor}}{\lfloor q n\rfloor} \nu(A)\right)\right)+o(1) \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} \exp (-(b-a) \nu(A)) .
\end{aligned}
$$

This, together with the fact that $(b-a) \nu(A)=m_{[0,1]} \otimes \nu(I)$, concludes the proof of Proposition 2.

3 Properties of $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$

In this section, we give some properties of $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$. More precisely, we show that the latter satisfies the $D\left(u_{n}\right)$ condition and an extension of the so-called $D^{(k)}\left(u_{n}\right)$ condition, but does not satisfy the $D^{\prime}\left(u_{n}\right)$ condition.

3.1 Distributional mixing property

The following extends Proposition 2 in [5], which deals with the case where the $\xi(s)$'s are i.i.d., to sequences which only satisfy the $\mathbf{D}\left(u_{n}\right)$ and $\mathbf{D}^{\prime}\left(u_{n}\right)$ conditions.

Proposition 4. Let $\alpha<1$. Assume that the sequence $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}\left(u_{n}\right)$ and $\mathbf{D}^{\prime}\left(u_{n}\right)$ conditions for a threshold u_{n} such that $n \mathbb{P}\left(\xi>u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \tau$, with $\tau>0$. Then $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ satisfies the $\mathbf{D}\left(u_{n}\right)$ condition.

Proof of Proposition 4. We adapt several arguments of [5] in our context. Let $0 \leq i_{1}<$ $\cdots<i_{p}<j_{1}<\cdots<j_{p^{\prime}} \leq n$ be a family of integers, with $j_{1}-i_{p}>\ell_{n}$ and $k_{n} \ell_{n}=o(n)$. To prove that $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ satisfies the $\mathbf{D}\left(u_{n}\right)$, we have to show that

$$
\left|F_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}^{\prime}\left(u_{n}\right)-F_{i_{1}, \ldots, i_{p}}^{\prime}\left(u_{n}\right) F_{j_{1}, \ldots, j_{p^{\prime}}}^{\prime}\left(u_{n}\right)\right| \leq \tilde{\alpha}_{n, \ell_{n}}
$$

for some sequence $\left(\tilde{\alpha}_{n, \ell}\right)_{(n, \ell) \in \mathbb{N}^{2}}$ such that $k_{n} \tilde{\alpha}_{n, \ell_{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$, with

$$
F_{i_{1}, \ldots, i_{p}}^{\prime}\left(u_{n}\right)=\mathbb{P}\left(\xi\left(S_{i_{1}}\right) \leq u_{n}, \ldots, \xi\left(S_{i_{p}}\right) \leq u_{n}\right) .
$$

We will use below the following notation:

- $R_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}=\#\left\{S_{i_{1}}, \ldots, S_{i_{p}}, S_{j_{1}}, \ldots, S_{j_{p^{\prime}}}\right\} ;$
- $R_{i_{1}, \ldots, i_{p}}=\#\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\} ;$
- $R_{j_{1}, \ldots, j_{p^{\prime}}}=\#\left\{S_{j_{1}}, \ldots, S_{j_{p^{\prime}}}\right\} ;$
- $R_{j_{1}, \ldots, j_{p^{\prime}}}^{i_{1}, \ldots, i_{p}}=\#\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\} \cap\left\{S_{j_{1}}, \ldots, S_{j_{p^{\prime}}}\right\}=R_{i_{1}, \ldots, i_{p}}+R_{j_{1}, \ldots, j_{p^{\prime}}}-R_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}$.

We have

$$
\begin{align*}
& \left|F_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}^{\prime}\left(u_{n}\right)-F_{i_{1}, \ldots, i_{p}}^{\prime}\left(u_{n}\right) F_{j_{1}, \ldots, j_{p^{\prime}}}^{\prime}\left(u_{n}\right)\right| \\
& \leq\left|F_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}^{\prime}\left(u_{n}\right)-\mathbb{E}\left(\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}}{\prime}\right)\right)\right| \\
& +\left\lvert\, \mathbb{E}\left(\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right)\right)-\mathbb{E}\left(\left.\exp \left(-\frac{\left.\left.R_{i_{1}, \ldots, i_{p}}+R_{j_{1}, \ldots, j_{p^{\prime}}} \tau\right)\right) \mid}{n}\right) \right\rvert\,\right.\right. \\
& \quad+\left|\mathbb{E}\left(\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}+R_{j_{1}, \ldots, j_{p^{\prime}}}}{n}\right)\right)-F_{i_{1}, \ldots, i_{p}}^{\prime}\left(u_{n}\right) F_{j_{1}, \ldots, j_{p^{\prime}}}^{\prime}\left(u_{n}\right)\right| . \tag{6}
\end{align*}
$$

To deal with the first and the third terms of the right-hand side of (6), we will use the following lemma.

Lemma 3. For almost all realization of $\left(S_{n}\right)_{n \geq 0}$ and for all $0 \leq i_{1}<i_{2}<\cdots<i_{p} \leq n$,

$$
\left|F_{i_{1}, \ldots, i_{p}}^{\prime}\left(u_{n}\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right)\right| \leq \varepsilon_{n}
$$

with $\varepsilon_{n}=\varepsilon_{n}^{(1)}+\varepsilon_{n}^{(2)}$, where $\varepsilon_{n}^{(1)}$ and $\varepsilon_{n}^{(2)}$ are defined in (7) and (9) respectively.
Proof of Lemma 3. Similarly to Lemma 2, the main idea is to adapt several arguments appearing in the proofs of Lemmas 1 and 2 in [1] in our context. Let $\left(k_{n}\right)$ and $\left(r_{n}\right)$ be as in (3) and (5). Given $1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq n$, we subdivide the random set $\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\}$ into K_{n} blocks, with $K_{n}=\left\lfloor\frac{R_{i_{1}, \ldots, i_{p}}}{r_{n}}\right\rfloor+1$, in the same spirit as we did in the proof of Lemma 2. More precisely, there exists a unique K_{n}-tuple of subsets $B_{i} \subset \mathcal{S}_{n}, i \leq K_{n}$, such that the following properties hold: $\bigcup_{j \leq K_{n}} B_{j}=\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\}, \# B_{i}=r_{n}$ and max $B_{i}<\min B_{i+1}$ for all $i \leq K_{n}-1$. In particular, we have $K_{n} \leq k_{n}$ and $\# B_{K_{n}}=R_{n}-\left(K_{n}-1\right) \cdot r_{n}$ a.s.. Without loss of generality, we assume that $\# B_{K_{n}}=\# B_{i}=r_{n}$ for all $i \leq K_{n}-1$, so that $R_{i_{1}, \ldots, i_{p}}=K_{n} r_{n}$. For each $j \leq K_{n}$, we also denote by L_{j} the family consisting of the ℓ_{n} largest terms of B_{j} and we let $\mathcal{L}_{n}=\bigcup_{j \leq K_{n}} L_{j}$. In the rest of the paper, we write $M_{B}=\max _{s \in B} \xi(s)$ for all subset $B \subset \mathbb{Z}$.

Adapting the proof of Lemma 1 in [1], we can show that the following inequalities hold for almost all realization of $\left(S_{n}\right)_{n \in \geq 0}$ and for n larger than some deterministic integer n_{0} :

$$
\begin{aligned}
& \left|\mathbb{P}\left(M_{\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\}} \leq u_{n}\right)-\mathbb{P}\left(M_{\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\} \backslash \mathcal{L}_{n}} \leq u_{n}\right)\right| \leq k_{n} \ell_{n} \mathbb{P}\left(\xi>u_{n}\right) ; \\
& \left|\mathbb{P}\left(M_{\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\} \backslash \mathcal{L}_{n}} \leq u_{n}\right)-\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j} \backslash \mathcal{L}_{n}} \leq u_{n}\right)\right| \leq k_{n} \alpha_{n, \ell_{n}} ; \\
& \left|\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j} \backslash \mathcal{L}_{n}} \leq u_{n}\right)-\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq u_{n}\right)\right| \leq 2 \frac{\tau k_{n} \ell_{n}}{n} .
\end{aligned}
$$

Since $F_{i_{1}, \ldots, i_{p}}^{\prime}\left(u_{n}\right)=\mathbb{P}\left(M_{\left\{S_{i_{1}}, \ldots, S_{i_{p}}\right\}} \leq u_{n}\right)$ and $\mathbb{P}\left(\xi>u_{n}\right) \underset{n \rightarrow \infty}{\sim} \frac{\tau}{n}$, we get for almost all realization of $\left(S_{n}\right)_{n \geq 0}$,

$$
\left|F_{i_{1}, \ldots, i_{p}}^{\prime}\left(u_{n}\right)-\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq u_{n}\right)\right| \leq \varepsilon_{n}^{(1)},
$$

with

$$
\begin{equation*}
\varepsilon_{n}^{(1)}=c \cdot\left(\frac{k_{n} \ell_{n}}{n}+k_{n} \alpha_{n, \ell_{n}}\right) . \tag{7}
\end{equation*}
$$

Without loss of generality, we assume from now on that $\mathbb{P}\left(\xi>u_{n}\right)=\frac{\tau}{n}$. We show below that

$$
\begin{equation*}
\left|\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq u_{n}\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right)\right| \leq \varepsilon_{n}^{(2)}, \tag{8}
\end{equation*}
$$

for some deterministic sequence $\varepsilon_{n}^{(2)} \underset{n \rightarrow \infty}{\longrightarrow} 0$. To do it, we adapt several arguments of Lemma 2 in [1]. First, we notice that for n large enough,

$$
\begin{aligned}
\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq\right. & \left.u_{n}\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right) \\
& \geq \exp \left(K_{n} \log \left(1-r_{n} \mathbb{P}\left(\xi>u_{n}\right)\right)\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right) \\
& \geq \exp \left(-K_{n} r_{n} \mathbb{P}\left(\xi>u_{n}\right)-K_{n}\left(r_{n} \mathbb{P}\left(\xi>u_{n}\right)\right)^{2}\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right)
\end{aligned}
$$

where the last line comes from the facts that $\log (1-x) \geq-x-x^{2}$ for $|x|$ small enough and that $r_{n} \mathbb{P}\left(\xi>u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. Because $K_{n} r_{n}=R_{i_{1}, \ldots, i_{p}}$ and $\mathbb{P}\left(\xi>u_{n}\right)=\frac{\tau}{n}$, we have

$$
\begin{aligned}
\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq u_{n}\right)-\exp (- & \left.\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right) \\
& \geq \exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right)\left(\exp \left(-K_{n}\left(r_{n} \mathbb{P}\left(\xi>u_{n}\right)\right)^{2}\right)-1\right) \\
& \geq \exp \left(-k_{n}\left(r_{n} \mathbb{P}\left(\xi>u_{n}\right)\right)^{2}\right)-1,
\end{aligned}
$$

where the last line comes from the fact that $K_{n} \leq k_{n}$ a.s.. Since $k_{n} r_{n} \underset{n \rightarrow \infty}{\sim} n$, we have

$$
\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq u_{n}\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right) \geq c \cdot \frac{1}{k_{n}}
$$

Moreover, because $\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq u_{n}\right) \leq \exp \left(-\sum_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}}>u_{n}\right)\right)$, it follows from the Bonferroni inequalities (see e.g. p110 in Feller [3]) that

$$
\begin{aligned}
& \prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq u_{n}\right) \\
& \\
& \quad \leq \exp \left(-\left(K_{n}-1\right) r_{n} \mathbb{P}\left(\xi>u_{n}\right)+\sum_{j \leq K_{n}} \sum_{\alpha<\beta ; \alpha, \beta \in B_{j}} \mathbb{P}\left(\xi(\alpha)>u_{n}, \xi(\beta)>u_{n}\right)\right)
\end{aligned}
$$

Since $K_{n} r_{n}=R_{i_{1}, \ldots, i_{p}}$ and $\mathbb{P}\left(\xi>u_{n}\right)=\frac{\tau}{n}$, we have

$$
\begin{aligned}
\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}}\right. & \left.\leq u_{n}\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right)=\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right) \\
& \times\left(\exp \left(r_{n} \mathbb{P}\left(\xi>u_{n}\right)+\sum_{j \leq K_{n}} \sum_{\alpha<\beta ; \alpha, \beta \in B_{j}} \mathbb{P}\left(\xi(\alpha)>u_{n}, \xi(\beta)>u_{n}\right)\right)-1\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\prod_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}} \leq\right. & \left.u_{n}\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}}{n} \tau\right) \\
& \leq \exp \left(r_{n} \mathbb{P}\left(\xi>u_{n}\right)+\sum_{j \leq K_{n}} \sum_{\alpha<\beta ; \alpha, \beta \in B_{j}} \mathbb{P}\left(\xi(\alpha)>u_{n}, \xi(\beta)>u_{n}\right)\right)-1
\end{aligned}
$$

Proceeding along the same lines as in the proof of Lemma 2 in [1], we can show that

$$
\begin{aligned}
& \exp \left(r_{n} \mathbb{P}\left(\xi>u_{n}\right)+\sum_{j \leq K_{n}} \sum_{\alpha<\beta ; \alpha, \beta \in B_{j}} \mathbb{P}\left(\xi(\alpha)>u_{n}, \xi(\beta)>u_{n}\right)\right)-1 \\
& \leq c\left(\frac{1}{k_{n}}+n \sum_{s=1}^{\left\lfloor n / k_{n}\right\rfloor} \mathbb{P}\left(\xi(0)>u_{n}, \xi(s)>u_{n}\right)\right) .
\end{aligned}
$$

This shows (8) with

$$
\begin{equation*}
\varepsilon_{n}^{(2)}=c\left(\frac{1}{k_{n}}+n \sum_{s=1}^{\left\lfloor n / k_{n}\right\rfloor} \mathbb{P}\left(\xi(0)>u_{n}, \xi(s)>u_{n}\right)\right) . \tag{9}
\end{equation*}
$$

and consequently concludes the proof of Lemma 3.
According to (3), the fact that $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}^{\prime}\left(u_{n}\right)$ condition and the fact that $k_{n} \alpha_{n, \ell_{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$, we have $\varepsilon_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$. It follows from Lemma 3 that the first and the third terms of the right-hand side of (6) converge to 0 as n goes to infinity. To deal with the second one, we write

$$
\begin{aligned}
\left\lvert\, \exp \left(-\frac{R_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right)-\right. & \left.\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}+R_{j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right) \right\rvert\, \\
& =\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}+R_{j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right)\left(\exp \left(\frac{R_{i_{1}, \ldots, i_{p}}^{j_{1}, \ldots, j_{p}}}{n} \tau\right)-1\right) \\
& \leq \exp \left(\frac{R_{1, \ldots, i_{p}}^{i_{p}+\ell_{n}+\ldots, \ldots, n}}{n} \tau\right)-1,
\end{aligned}
$$

where the last line comes from the fact that $j_{1}-i_{p}>\ell_{n}$. Since $\ell_{n} \geq 0$, we get

$$
\begin{align*}
\sup \left|\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right)-\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}+R_{j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right)\right| & \\
& \leq \sup _{i \leq n} \exp \left(\frac{R_{1, \ldots, i}^{i+1, \ldots, n}}{n} \tau\right)-1, \tag{10}
\end{align*}
$$

where the supremum in the left-hand side is taken over all integers $0 \leq i_{1}<\cdots<i_{p}<j_{1}<$ $\cdots<j_{p^{\prime}} \leq n$, with $j_{1}-i_{p}>\ell_{n}$. Moreover, using the fact that $R_{1, \ldots, i}^{i+1, \ldots, n}=R_{1, \ldots, i}+R_{i+1, \ldots, n}-$ $R_{1, \ldots, n}$ and following [8], we have $\sup _{i \leq n} \frac{R_{1, \ldots, i}^{i+1, \ldots}}{n} \underset{n \rightarrow \infty}{\longrightarrow} 0$ a.s.. This, together with (10) and the Lebesgue's dominated convergence theorem implies

$$
\sup \left|\mathbb{E}\left[\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right)\right]-\mathbb{E}\left[\exp \left(-\frac{R_{i_{1}, \ldots, i_{p}}+R_{j_{1}, \ldots, j_{p^{\prime}}}}{n} \tau\right)\right]\right| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

and consequently concludes the proof of Proposition 4.

3.2 The $D^{(k)}\left(u_{n}\right)$ as $k \rightarrow \infty$

In [?], the authors introduce a local mixing condition, referred to as the $D^{(k)}\left(u_{n}\right)$ condition, which allows to express the extremal index in terms of joint distribution. We recall the latter below.

Condition $\mathbf{D}^{(k)}\left(u_{n}\right) \quad$ Let $(\xi(s))_{s \in \mathbb{Z}}$ be a sequence of random variables and let u_{n} be a threshold such that $n \mathbb{P}\left(\xi>u_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} \tau$, for some $\tau>0$. In conjunction with the $D\left(u_{n}\right)$ condition, we say that the $D^{(k)}\left(u_{n}\right)$ condition, $k \geq 1$, holds if there exist two sequences of integers $\left(k_{n}\right)$ and $\left(\ell_{n}\right)$ such that

$$
k_{n} \rightarrow \infty, \quad k_{n} \alpha_{n, \ell_{n}} \rightarrow 0, k_{n} \ell_{n}=o(n)
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \mathbb{P}\left(\xi(1)>u_{n} \geq M_{2, k}, M_{k+1, r_{n}}>u_{n}\right)=0, \tag{11}
\end{equation*}
$$

where r_{n} is as in (5) and where $M_{i, j}=\max \{\xi(i), \xi(i+1), \ldots, \xi(j)\}$ for all $i \leq j$, with the convention $M_{i, j}=-\infty$ if $i>j$. As mentioned in [?], Equation (11) is implied by the condition

$$
\lim _{n \rightarrow \infty} n \sum_{s=k+1}^{r_{n}} \mathbb{P}\left(\xi(1)>u_{n} \geq M_{2, k}, \xi(s)>u_{n}\right)=0
$$

Observe that the last line is the $D^{\prime}\left(u_{n}\right)$ condition if $k=1$.
Roughly, the following proposition states that the sequence $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ satisfies the $D^{(k)}\left(u_{n}\right)$ condition as k goes to infinity.

Proposition 5. Under the same assumptions as Proposition 4, we have

$$
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n}\right)=0
$$

where $M_{i, j}^{\prime}=\max _{i \leq t \leq j} \xi\left(S_{t}\right)$ if $i \leq j$ and $M_{i, j}^{\prime}=-\infty$ if $i>j$.

Proof of Proposition 5. For all $k \geq 1$, we have

$$
\begin{align*}
& n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n}\right) \\
& =n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j}=S_{1}\right) \mathbb{P}\left(S_{j}=S_{1}\right) \\
& \quad+n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \neq S_{1}\right) \mathbb{P}\left(S_{j} \neq S_{1}\right) . \tag{12}
\end{align*}
$$

The first term of the right-hand side of (12) tends to zero as $k, n \rightarrow \infty$. Indeed,

$$
\begin{aligned}
& \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j}=S_{1}\right) \mathbb{P}\left(S_{j}=S_{1}\right) \\
& \leq \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n}\right) \mathbb{P}\left(S_{j}=S_{1}\right) .
\end{aligned}
$$

Moreover, because $\left(S_{n}\right)_{n \geq 1}$ is a transient random walk, we have $\sum_{j=2}^{\infty} \mathbb{P}\left(S_{j}=S_{1}\right)<\infty$, which implies

$$
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} n \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n}\right) \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(S_{j}=S_{1}\right)=0
$$

and therefore

$$
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j}=S_{1}\right) \mathbb{P}\left(S_{j}=S_{1}\right)=0
$$

To prove that the second term of the right-hand side of (12) goes to 0 , we write

$$
\begin{align*}
& n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \neq S_{1}\right) \mathbb{P}\left(S_{j} \neq S_{1}\right) \\
& =n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \in B^{*}\left(S_{1}, r_{n}\right)\right) \mathbb{P}\left(S_{j} \in B^{*}\left(S_{1}, r_{n}\right)\right) \\
& +n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \notin B\left(S_{1}, r_{n}\right)\right) \mathbb{P}\left(S_{j} \notin B\left(S_{1}, r_{n}\right)\right), \tag{13}
\end{align*}
$$

where $B\left(S_{1}, r_{n}\right):=\left\{S \in \mathcal{S}_{n}:\left|S-S_{1}\right| \leq r_{n}\right\}$ and $B^{*}\left(S_{1}, r_{n}\right)=B\left(S_{1}, r_{n}\right) \backslash\left\{S_{1}\right\}$. We prove below that the last two terms in (13) converge to 0 . For the first one, we write

$$
\begin{aligned}
n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime},\right. & \left.\xi\left(S_{j}\right)>u_{n} \mid S_{j} \in B^{*}\left(S_{1}, r_{n}\right)\right) \mathbb{P}\left(S_{j} \in B^{*}\left(S_{1}, r_{n}\right)\right) \\
& \leq n \sum_{j=2}^{r_{n}} \mathbb{P}\left(\xi(0)>u_{n}, \xi\left(S_{j}-S_{1}\right)>u_{n} \mid S_{j} \in B^{*}\left(S_{1}, r_{n}\right)\right) .
\end{aligned}
$$

The last quantity converges to 0 as n goes to infinity since the sequence $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}^{\prime}\left(u_{n}\right)$ condition. To deal with the second term of (13), we write

$$
\begin{aligned}
& n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n} \geq M_{2, k}^{\prime}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \notin B\left(S_{1}, r_{n}\right)\right) \mathbb{P}\left(S_{j} \notin B\left(S_{1}, r_{n}\right)\right) \\
& \leq n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{1}\right)>u_{n}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \notin B\left(S_{1}, r_{n}\right)\right) \\
& \leq n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi>u_{n}\right)^{2}+n \sum_{j=k+1}^{r_{n}}\left|\mathbb{P}\left(\xi\left(S_{1}\right)>u_{n}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \notin B\left(S_{1}, r_{n}\right)\right)-\mathbb{P}\left(\xi>u_{n}\right)^{2}\right|
\end{aligned}
$$

The first series tends to 0 as n goes to infinity because

$$
n \sum_{j=k+1}^{r_{n}} \mathbb{P}\left(\xi>u_{n}\right)^{2} \leq n r_{n} \mathbb{P}\left(\xi>u_{n}\right)^{2} \underset{n \rightarrow \infty}{\sim} \tau^{2} \frac{r_{n}}{n}
$$

and $r_{n}=o(n)$. To deal with the second series, we use the $\mathbf{D}\left(u_{n}\right)$ condition. This gives

$$
\begin{aligned}
n \sum_{j=k+1}^{r_{n}}\left|\mathbb{P}\left(\xi\left(S_{1}\right)>u_{n}, \xi\left(S_{j}\right)>u_{n} \mid S_{j} \notin B\left(S_{1}, r_{n}\right)\right)-\mathbb{P}\left(\xi>u_{n}\right)^{2}\right| & \leq n r_{n} \alpha_{n, r_{n}} \\
& \leq \frac{n^{2}}{k_{n}} \alpha_{n, r_{n}}
\end{aligned}
$$

which converges to 0 as n goes to infinity according to (3). This concludes the proof of Proposition 5.

3.3 The extremal index

Let $\left(k_{n}\right)$ and $\left(r_{n}\right)$ be as in (3) and (5). Let us denote by $R_{n}=\# \mathcal{S}_{n}$ and $K_{n}=\left\lfloor\frac{R_{n}}{r_{n}}\right\rfloor+1$. The following proposition deals with $M_{\mathcal{S}_{n}}$ under the $\mathbf{D}\left(u_{n}\right)$ condition.

Proposition 6. Let $\alpha<1$. Assume that the sequence $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}\left(u_{n}\right)$ conditions for a threshold u_{n} such that $n \mathbb{P}\left(\xi>u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \tau$, with $\tau>0$. Then for almost all realization of $\left(S_{n}\right)_{n \geq 0}$,

$$
\mathbb{P}\left(M_{\mathcal{S}_{n}} \leq u_{n}\right)-\exp \left(-\sum_{j=1}^{K_{n}} \sum_{i=1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{\left((j-1) r_{n}+i\right)}\right)>u_{n} \geq M_{\left((j-1) r_{n}+i+1, j r_{n}\right)}^{\prime}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

where

$$
M_{(i, j)}^{\prime}:=\left\{\begin{array}{l}
\max _{i \leq t \leq j} \xi\left(S_{(t)}\right), \quad i \leq j \\
-\infty, \quad i>j
\end{array}\right.
$$

and where $S_{(t)}$ is the t-th largest value of the $\xi\left(S_{i}\right)^{\prime} s, i \leq n$.

A similar result was obtained by O'Brien (Theorem 2.1. in [12]). However, the above proposition is not a consequence of the latter. Proposition 6 remains true if the sequence $(\xi(s))_{s \in \mathbb{Z}}$ only satisfies the $D\left(u_{n}\right)$ condition (i.e. when $k_{n} \alpha_{n, \ell_{n}}^{\longrightarrow} 0$ instead of $\frac{n^{2}}{k_{n}} \alpha_{n, \ell_{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow}$ $0)$. As a direct consequence of such a result, if for almost all realization of $\left(S_{n}\right)_{n \geq 0}$,

$$
\frac{1}{n} \sum_{j \leq K_{n}} \sum_{i=1}^{r_{n}} \mathbb{P}\left(M_{\left((j-1) r_{n}+i+1, j r_{n}\right)}^{\prime} \leq u_{n} \mid \xi\left(S_{\left((j-1) r_{n}+i\right)}\right)>u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \theta,
$$

for some $\theta \in[0,1]$, then $\mathbb{P}\left(M_{\mathcal{S}_{n}} \leq u_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} e^{-\theta \tau}$. In this case, the term θ is referred to as the extremal index (see e.g. [10]) and can be interpreted as the reciprocal of the mean size of a cluster of exceedances. As stated in Theorem 1 in [1], when the sequence $(\xi(s))_{s \in \mathbb{Z}}$ satisfies the $\mathbf{D}\left(u_{n}\right)$ and $\mathbf{D}^{\prime}\left(u_{n}\right)$ conditions, we have

$$
\begin{equation*}
\mathbb{P}\left(M_{\mathcal{S}_{n}} \leq u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} e^{-q \tau} . \tag{14}
\end{equation*}
$$

In other words, under these conditions, the extremal index θ exists and $\theta=q$.
Proof of Proposition 6. Let us write $\mathcal{S}_{n}=\left\{S_{(1)}, \ldots, S_{\left(R_{n}\right)}\right\}$ with $S_{(1)}<S_{(2)}<\cdots<$ $S_{\left(R_{n}\right)}$, and partitition \mathcal{S}_{n} into K_{n} blocks as in Lemma 2. Without loss of generality, assume that the last block has the same size as the others, so that $\frac{R_{n}}{K_{n}}$ is an integer. Let $B_{j}=$ $\left\{S_{\left((j-1) r_{n}+1\right)}, \ldots, S_{\left(j r_{n}\right)}\right\}$ be the j-th block of size r_{n}. According to Lemma 1 in [1], for almost all realization of $\left(S_{n}\right)_{n \geq 0}$, we have

$$
\mathbb{P}\left(M_{\mathcal{S}_{n}} \leq u_{n}\right)-\exp \left(\sum_{j \leq K_{n}} \log \left(1-\mathbb{P}\left(M_{B_{j}}>u_{n}\right)\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Moreover, because $|\log (1-x)+x| \leq C x^{2}$ for $|x|$ small enough and because $\mathbb{P}\left(M_{B_{j}}>u_{n}\right) \leq$ $r_{n} \mathbb{P}\left(\xi>u_{n}\right)$ converges to 0 as n goes to infinity, we have

$$
\begin{aligned}
\mid \sum_{j \leq K_{n}} \log \left(1-\mathbb{P}\left(M_{B_{j}}>u_{n}\right)\right)+ & \sum_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}}>u_{n}\right) \mid \\
& \leq \sum_{j \leq K_{n}}\left|\log \left(1-\mathbb{P}\left(M_{B_{j}}>u_{n}\right)\right)+\mathbb{P}\left(M_{B_{j}}>u_{n}\right)\right| \\
& \leq C \sum_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}}>u_{n}\right)^{2} \\
& \leq C k_{n} r_{n}^{2} \mathbb{P}\left(\xi>u_{n}\right)^{2} .
\end{aligned}
$$

The last term converges to 0 as n goes to infinity since $k_{n} r_{n} \underset{n \rightarrow \infty}{\sim} n, n \mathbb{P}\left(\xi>u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \tau$ and $r_{n} \mathbb{P}\left(\xi>u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. This shows that for almost all realization of $\left(S_{n}\right)_{n \geq 0}$

$$
\begin{equation*}
\mathbb{P}\left(M_{\mathcal{S}_{n}} \leq u_{n}\right)-\exp \left(-\sum_{j \leq K_{n}} \mathbb{P}\left(M_{B_{j}}>u_{n}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 . \tag{15}
\end{equation*}
$$

Besides, following the same lines as [12], we have

$$
\begin{aligned}
\mathbb{P}\left(M_{B_{j}} \leq u_{n}\right) & =1-\mathbb{P}\left(M_{B_{j}}>u_{n}\right) \\
& =1-\sum_{i=1}^{r_{n}} \mathbb{P}\left(\xi\left(S_{\left((j-1) r_{n}+i\right)}\right)>u_{n} \geq M_{\left((j-1) r_{n}+i+1, j r_{n}\right)}^{\prime}\right)
\end{aligned}
$$

This together with (15) concludes the proof of Proposition 6.

3.4 The $D^{\prime}\left(u_{n}\right)$ condition

Recall that, in the classical literature (see e.g. (3.2.1) in [11]), the $D^{\prime}\left(u_{n}\right)$ condition holds for the sequence $\left(Z_{n}\right)$ if, in conjunction with the $D\left(u_{n}\right)$ condition,

$$
\lim _{n \rightarrow \infty} n \sum_{i=2}^{\left[n / k_{n}\right]} \mathbb{P}\left(Z_{1}>u_{n}, Z_{i}>u_{n}\right)=0
$$

for some sequence of integers $\left(k_{n}\right)$ such that $k_{n} \underset{n \rightarrow \infty}{\longrightarrow} \infty, k_{n} \alpha_{n, \ell_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0$ and $k_{n} \ell_{n}=o(n)$. The following result is an extension of Proposition 3 in [5]. However, we give a simpler proof which is based on [10].

Proposition 7. Under the same assumptions as Proposition 4, the sequence $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ does not satisfy the $D^{\prime}\left(u_{n}\right)$ condition.

Proof of Proposition 7. On the opposite, if $\left(\xi\left(S_{n}\right)\right)_{n \geq 0}$ satisfies the $D^{\prime}\left(u_{n}\right)$ condition, then $\mathbb{P}\left(M_{\mathcal{S}_{n}} \leq u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} e^{-\tau}$ according to Theorem 1.2 in [10]. This contradicts (14) since $q \neq 1$.

References

[1] N. Chenavier and A. Darwiche. Extremes for transient random walks in random sceneries under weak independence conditions. Statist. Probab. Lett.. 158 pp. 108657, 6 (2020).
[2] M.Chernick, T. Hsing and W. McCormick. Calculating the extremal index for a class of stationary sequences. Adv. In Appl. Probab.. 23, 835-850 (1991).
[3] W. Feller. An introduction to probability theory and its applications. Vol. I. John Wiley \& Sons, Inc., New York-London-Sydney (1968).
[4] B. Franke and T. Saigo. The extremes of a random scenery as seen by a random walk in a random environment. Statist. Probab. Lett.. 79, 1025-1030 (2009).
[5] B. Franke and T. Saigo. The extremes of random walks in random sceneries. Advances In Applied Probability. 41, 452-468 (2009).
[6] B. Gnedenko. Sur la distribution limite du terme d'une série aléatoire . Ann Math. 44, 423-453 (1943).
[7] H. Kesten and F. Spitzer. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete. 50, 5-25 (1979).
[8] J. Le Gall and J. Rosen. The range of stable random walks. Ann Proba. 19, 650-705 (1991).
[9] M. R. Leadbetter. On extreme values in stationary sequences. Z. Wahrscheinlichkeitstheorie Und Verw. Gebiete. 28 pp. 289-303 (1973/74).
[10] M. R. Leadbetter. Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete. 65, 291-306 (1983).
[11] V. Lucarini, D. Faranda, A. Freitas, J. Freitas, M. Holland, T. Kuna, M. Nicol, M. Todd and S. Vaienti. Extremes and Recurrence in Dynamical Systems. Wiley (2016).
[12] G. O’Brien. Extreme values for stationary and Markov sequences. Ann. Probab.. 15, 281291 (1987).
[13] S. Resnick. Extreme Values, Regular Variation and Point Processes. Volume 4 of Applied Probability. A Series of the Applied Probability Trust. Springer-Verlag New York (1987).

[^0]: *Université du Littoral Côte d'Opale, Laboratoire de Mathématiques Pures et Appliquées J. Liouville, France. Mail: nicolas.chenavier@univ-littoral.fr
 ${ }^{\dagger}$ Université du Littoral Côte d’Opale, Laboratoire de Mathématiques Pures et Appliquées J. Liouville, France. Mail: darwich.ahmad.92@gmail.com

