Weighted eigenvalue problems for quasilinear elliptic operators with mixed Robin-Dirichlet boundary conditions

Mabel Cuestaa, Liamidi Leadib

a Université du Littoral ULCO, LMPA, 50 rue F. Buisson 62220 Calais (France)
b Institut de Mathématiques et de Sciences Physiques, Université d’Abomey Calavi, 613 Porto-Novo, (Bénin Republic, West Africa)

Abstract
We investigate the existence of principal eigenvalues type problems with weights for the quasilinear operator $-\Delta_p + V\psi_p$ with mixed weighted Robin-Dirichlet boundary conditions in a bounded regular domain. We also give some results on the existence of non principal eigenvalues.

Keywords: p-laplacian, indefinite weights, indefinite potential, principal eigenvalues Robin boundary conditions.

2000 MSC: 35J70

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a smooth boundary $\partial \Omega$ and let ν be its outer normal defined everywhere. Let V be a bounded function defined in Ω and σ a smooth function defined on $\partial \Omega$. It was pointed out in [8], [9] that the Fourier analysis for parabolic problems with dynamic boundary conditions leads, through a separation of variables, to the following eigenvalue problem with Robin type boundary conditions

$$(L) \quad \begin{cases} -\Delta u + V(x)u = \lambda u & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \lambda \sigma(x)u & \text{on } \partial \Omega. \end{cases}$$

The complete analysis of this eigenvalue problem when $V \geq 0$ has been done in [8] in the case $\sigma = \text{cst}$, and in [9] in the case $\sigma \neq \text{cst}$ (for an sligter general operator than the laplacian). As a common feature, it appears that problem (L) possesses an infinite sequence of positive eigenvalues $\{\lambda_n\}_{n \in \mathbb{N}}$ if σ^+ (the positive part of σ) is $\neq 0$, and an infinite sequence of negative eigenvalues $\{-\lambda_n\}_{n \in \mathbb{N}}$ if $\sigma^- \neq 0$ and $N \geq 2$. Moreover, $\lambda_{\pm 1}$ are both principal eigenvalue (i.e., an eigenvalue whose eigenfunctions are sign-constant) and simple (i.e the associated eigenfunctions are each a constant multiple of one another).

It is also well known that the spectra of the $-\Delta + V$, in the case $V^- \neq 0$, could present features different to those of the spectra in the case $V \geq 0$. Problem (L) with V indefinite and Dirichlet boundary conditions has been extensively studied for instance by Allegretto-Mingarelli [4], Fleckinger-Hernandez-de Thelin [15] and Lopez-Gomez [20] among others.

Our intention in this paper is to initiate the study of the spectrum of the more general problem

$$(P) \quad \begin{cases} -\Delta_p u + V(x)|u|^{p-2}u = \lambda m(x)|u|^{p-2}u & \text{in } \Omega, \\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \lambda \sigma|u|^{p-2}u & \text{on } \Gamma_1, \\ u = 0 & \text{on } \Gamma_2, \end{cases}$$

Email addresses: cuesta@lmpa.univ-littoral.fr (Mabel Cuesta), leadiare@imsp-uac.org (Liamidi Leadi)
with \(V, m \) and \(\sigma \) indefinite. Here \(\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u) \), denotes the \(p \)-Laplacian operator for \(p > 1 \). We will assume that \(\Omega \) is a bounded smooth domain and that \(\partial \Omega \) splits up in two sets \(\Gamma_1 \) and \(\Gamma_2 \) which are connected and closed \((n-1)\)-manifolds.

The existence of principal eigenvalues for the quasilinear equation in problem (P) with Dirichlet boundary condition and \(V, m \) indefinite has been treated by Binding-Huang [10, 11] and [13]. It appears that sometimes there are not principal eigenvalues, a phenomenon that depends, loosely speaking, in how big the negative part of \(V \) with respect to the negative part of \(m \) is.

Problem (P) for \(p = 2 \) with \(V \equiv 0, \Gamma_2 = \emptyset \) and \(m \) indefinite has already been considered by Afrouzi-Brown [2] when \(\sigma = \text{cst} \), and later by K. Umezu [23] for indefinite \(\sigma \). This last author proved that, besides the trivial eigenvalue \(\lambda = 0 \), problem (P) possesses a unique positive principal eigenvalue if and only if

\[
\int_{\partial \Omega} \sigma \, d\rho + \int_{\Omega} m \, dx < 0.
\]

Here \(d\rho \) stands for the surface element of \(\partial \Omega \).

In the case \(V \not\equiv 0 \) and possibly indefinite, the situation is much different since the energy functional \(E_V(u) \) is indefinite. One approach to find principal eigenvalues that has been used by many authors is to define a new eigenvalue problem for each fixed \(\lambda \) and to construct “an eigenvalue curve” as \(\lambda \) varies. We apply this approach in section 3 and we give in section 4 a necessary and sufficient condition for the existence of eigenvalues in terms of the infimum of \(E_V \) over the set of functions \(G \) satisfying

\[
\int_{\Omega} |u|^p \, dx = 1 \quad \text{and} \quad \int_{\Omega} m |u|^p \, dx + \int_{\Gamma_1} |u|^p \sigma \, d\rho = 0.
\]

Indeed, this set \(G \) was already considered by [10], [11] and [13] for the quasilinear equation of problem (P) with Dirichlet, Newmann or mixed boundary conditions. In fact, one cannot exclude that some eigenfunctions belong to \(G \) and, in that case, the corresponding energy levels are called in [11] “ghost states”. Ghost states are interesting because they have the property of losing of compactness, see the discussion in section 8 and remark 8.6.

This paper is organized as follows. We construct the eigencurve associated to problem (P) in section 3. The existence of principal eigenvalues is studied in section 4. A sufficient condition for the existence of principal eigenvalues is presented in section 5, where we also discuss the necessity of such condition for the coerciveness of the related functional. In section 6 we prove isolation and simplicity of principal eigenvalues of problem (P). In section 7 we investigate the coerciveness of the restricted functional and in section 8 we prove the existence of two unbounded sequences of eigenvalues in the case where either \(m^\pm \not\equiv 0 \) or \(\sigma^\pm \not\equiv 0 \). We also exhibit an example of problem (P) in dimension 1, with a changing-sign \(\sigma \), that fails to have a double sequence of eigenvalues.

Notice that the Dirichlet-Newmann eigenvalue problem associated to (P), that is

\[
\begin{cases}
-\Delta_p u + V(x)|u|^{p-2}u = \lambda m(x)|u|^{p-2}u & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = 0 & \text{on } \Gamma_1, \\
u = 0 & \text{on } \Gamma_2,
\end{cases}
\]

corresponds to the case \(\sigma \equiv 0 \). As a by-product of our main result in Theorem 4.1 we will show that there exists always a unique principal eigenvalue for this problem.

2. Main assumptions and useful inequalities

Let \(\Omega \subset \mathbb{R}^N \) be a bounded domain of class \(C^{2,\alpha} \) for some \(0 < \alpha < 1 \). The Lebesgue measure of a measurable set \(A \) of \(\mathbb{R}^N \) will be denoted by \(\lambda_N(A) \). We denote by \(\rho \) the restriction to \(\partial \Omega \) of
the $(N - 1)$-Hausdorff measure, which coincides with the usual Lebesgue surface measure as $\partial \Omega$ is regular enough. We denote by $\nu = \nu(x)$ its outer normal at x, defined for all $x \in \partial \Omega$. We will assume that $\partial \Omega$ splits up in two sets Γ_1 and Γ_2 which are connected and closed $(n-1)-$manifolds. We allow Γ_2 to be the empty set.

Throughout this paper we always assume that the weights $V, m \in L^{\infty}(\Omega)$ and $\sigma \in C^{0,r}(\Gamma_1)$ for some $0 < r < 1$, are possibly indefinite. We will always assume that either m or σ is not equivalent to 0. We will denote

$$\Omega^+ \overset{\text{def}}{=} \{x \in \Omega \mid m(x) > 0\}, \quad \Omega^- \overset{\text{def}}{=} \{x \in \Omega \mid m(x) < 0\}, \quad \Omega^0 \overset{\text{def}}{=} \{x \in \Omega \mid m(x) = 0\}.$$

Similarly, we will denote Γ_1^+, Γ_1^- and Γ_1^0 the positive, negative and null set of the weight σ in Γ_1.

We denote $W^{1,p}(\Omega)$ the classical Sobolev space endowed with the classical norm

$$\|u\| := \left(\int_{\Omega} |\nabla u|^p \, dx + \int_{\partial \Omega} |u|^p \, d\rho \right)^{1/p}.$$

The Lebesgue norm of $L^q(\Omega)$ will be denoted by $\| \cdot \|_q$, and the Lebesgue norm of $L^q(\partial \Omega, \rho)$ by $\| \cdot \|_{q, \partial \Omega}$, for any $q \in [1, +\infty]$.

The conjugate of any $r \in [1, +\infty]$ will be denoted by r', the critical Sobolev exponent for the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ will be denoted by $p^* := \frac{N}{N-p}$ if $1 < p < N$, $p^* = +\infty$ otherwise.

The trace operator will be denoted by γ, that is

$$\gamma : W^{1,p}(\Omega) \rightarrow W^{1-\frac{1}{p},p}(\partial \Omega, \rho).$$

Recall that there is a continuous boundary trace embedding $W^{1,p}(\Omega) \rightarrow L^q(\partial \Omega, \rho)$ for every $q \in [1, p_*]$ and that those embeddings are compact for $q \in [1, p_*]$. Here we denote by $p_* = \frac{p(N-1)}{(N-p)}$ the critical exponent for the above trace embedding. For the properties of γ (especially the surjectivity) we refer to [1].

We put $W \overset{\text{def}}{=} \{u \in W^{1,p}(\Omega) \mid \gamma(u) = 0 \text{ on } \Gamma_2\}$. One can show that

$$\|u\|_W := \begin{cases} \int_{\Omega} |\nabla u|^p \, dx + \int_{\partial \Omega} |u|^p \, d\rho & \text{if } \Gamma_2 = \emptyset; \\ \int_{\Omega} |\nabla u|^p \, dx & \text{if } \Gamma_2 \neq \emptyset, \end{cases}$$

is a norm on W equivalent to $\| \cdot \|$.

Let us recall Picone’s identity [3]:

Lemma 2.1 ([3]). Let $w \geq 0, v > 0$ be two continuous functions in Ω differentiable a.e. Denote

$$L(w, v) = |\nabla w|^p + (p - 1) \frac{w}{v^p} |\nabla v|^p - p \frac{w^{p-1}}{v^p} |\nabla v|^{p-2} \nabla v \nabla w,$$

$$R(w, v) = |\nabla w|^p - |\nabla v|^{p-2} \nabla (w^{p-1}) \nabla v.$$

Then (i) $L(w, v) = R(w, v)$, (ii) $L(w, v) \geq 0$ a.e. and (iii) Assume that $\frac{w}{v} \in W^{1,1}_{\text{loc}}(\Omega)$. Then $L(w, v) = 0$ a.e. in Ω if and only if $w = kv$ for some $k \in \mathbb{R}$.

The following property can be found for instance in [19]:

Lemma 2.2 ([19]). The operator $-\Delta_p : W^{1,p}(\Omega) \rightarrow (W^{1,p}(\Omega))^*$ satisfies the so called S^+ property: for all sequence $u_n \in W^{1,p}(\Omega)$ such that $u_n \rightarrow u_0$ weakly in $W^{1,p}(\Omega)$ and

$$\lim_{n \to +\infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla (u_n - u_0) dx = 0,$$

it holds $\|\nabla u_n - \nabla u_0\|_p \to 0$.

3. An eigenvalue curve associated to problem (P)

It is well established that, in order to prove the existence of principal eigenvalues of (P), one fixes λ and embeds the problem into the new eigenvalue problem of parameter μ:

$$
\begin{cases}
-\Delta_p u + V(x)|u|^{p-2}u = \lambda m(x)|u|^{p-2}u + \mu |u|^{p-2}u & \text{in } \Omega, \\
\nabla u|^{p-2}\frac{\partial u}{\partial\nu} = \lambda \sigma |u|^{p-2}u & \text{on } \Gamma_1, \\
u = 0 & \text{on } \Gamma_2.
\end{cases}
$$

(3.1)

A value $\mu \in \mathbb{R}$ is called an eigenvalue for problem (3.1) if and only if there exists $u \in W$, $u \neq 0$, satisfying the equation (P) in the weak sense, i.e., $\forall w \in W$

$$
\int_\Omega (|\nabla u|^{p-2}\nabla u \cdot \nabla w + (V - \lambda m)|u|^{p-2}uw) \, dx = \mu \int_\Omega |u|^{p-2}uw \, dx + \lambda \int_{\Gamma_1} \sigma |u|^{p-2}uw \, d\rho.
$$

The function $u \in W$ is called an eigenfunction. An eigenvalue is called principal if it possesses an eigenfunction $u > 0$ a.e. in Ω.

Remark 3.1. We recall that, by the regularity results of [14] and [18, Theorem 2], bounded weak solutions of (3.1) are of class $C^{1,\beta}(\Omega)$ for some $0 < \beta < 1$. We use here that Ω is of class $C^{2,\alpha}$ as well as that $\sigma \in C^{0,r}(\partial\Omega)$ for some $0 < \alpha, r < 1$. That all the solutions of (3.1) belongs to $L^\infty(\Omega) \cap L^\infty(\partial\Omega, \rho)$ has been proved, for instance, in [17] in the case $m = 0$. See Theorem 9.1 in the appendix for a more general result.

We are going to consider the smaller eigenvalue $\mu \in \mathbb{R}$ of problem (3.1). In order to do so, we define the energy functional

$$
J_\lambda : W \to \mathbb{R}; \quad J_\lambda(u) \overset{\text{def}}{=} E_V(u) - \lambda I(u),
$$

where

$$
E_V(u) \overset{\text{def}}{=} \int_\Omega (|\nabla u|^p + V|u|^p) \, dx,
$$

and

$$
I(u) \overset{\text{def}}{=} \int_\Omega m |u|^p \, dx + \int_{\Gamma_1} \sigma |u|^p \, d\rho.
$$

Let us also consider the manifold

$$
S \overset{\text{def}}{=} \{ u \in W \mid \int_\Omega |u|^p \, dx = 1 \}.
$$

Proposition 3.2. The value

$$
\mu_1(\lambda) \overset{\text{def}}{=} \inf\{ J_\lambda(u) \mid u \in S \} \in \mathbb{R}
$$

is the smaller eigenvalue of (3.1). Moreover $\mu_1(\lambda)$ is principal, simple and it is the unique principal eigenvalue associated to (3.1).

If we denote by $\varphi_\lambda \in S$ the (unique) positive eigenfunction for problem (3.1), it holds that $\varphi_\lambda \in C^{1,\beta}(\Omega)$, $\varphi_\lambda > 0$ in $\Omega \cup \Gamma_1$.

Proof. The proof is quite standard but we include it for the sake of completeness. One uses the following simple estimate that can be proved by arguing by contradiction:

$$
\forall \epsilon > 0 \quad \exists c(\epsilon) > 0 \text{ such that}
$$

$$
\int_{\partial\Omega} |u|^p \, d\rho \leq \epsilon \int_\Omega |\nabla u|^p \, dx + c(\epsilon) \int_\Omega |u|^p \, dx \quad \forall u \in W^{1,p}(\Omega). \quad (3.2)
$$
Thus we have, for all $u \in S$ and all $\lambda \in \mathbb{R}$,

$$J_\lambda(u) \geq (1 - |\lambda| \|\sigma\|_{\infty, \Gamma_1}) \int_\Omega |\nabla u|^p \, dx - \|V\|_{\infty} - |\lambda| (\|m\|_{\infty} + c(\epsilon) \|\sigma\|_{\infty, \Gamma_1}). \quad (3.3)$$

Then, by choosing any $0 < \epsilon < (|\lambda| \|\sigma\|_{\infty, \Gamma_1})^{-1}$ in (3.3), it comes that J_λ is bounded from below on S. Since J_λ is sequentially weakly lower semi-continuous, it follows that $\mu_1(\lambda)$ is achieved at some $u \in S$. By Lagrange multipliers rule, one concludes that $\mu_1(\lambda)$ is an eigenvalue for (3.1) and u is an associated eigenfunction. Since $J_\lambda(u) = J_\lambda(|u|)$ it follows that $|u|$ is also an eigenfunction for $\mu_1(\lambda)$. By the regularity results already quoted in Remark 3.1, $u \in C^{1,\beta}(\Omega)$ and, by the well known Strong Maximum Principle of [24], we conclude that $|u|$ is bounded in Ω and $u < 0$ in Ω, that is, $\mu_1(\lambda)$ is principal. Moreover $u > 0$ on Γ_1 otherwise, by the Hopf maximum principle of [24], one will infer that $\frac{\partial u}{\partial \nu} < 0$ on Γ_1, in contradiction with the boundary condition of (3.1).

To prove that $\mu_1(\lambda)$ is simple, assume that $w, v \in W$ are two different eigenfunctions of (3.1) for μ_1. Thus we can then assume that $w > 0$ and $v > 0$ in Ω. Next, one uses Picone’s identity as follows. Choose for any $\eta > 0$ the function $\frac{w^p}{(v+\eta)^p}$ as a test function in the equation (3.1) satisfied by v and w as a test function in the equation (3.1) satisfied by w to get

$$0 \leq \int_\Omega R(w, v + \eta) \, dx = \int_\Omega |\nabla w|^p \, dx - \int_\Omega |\nabla v|^{p-2} \nabla v \cdot \nabla (\frac{w^p}{(v+\eta)^{p-1}}) \, dx =$$

$$= \int_\Omega |\nabla w|^p \, dx - \int_\Omega (V - \lambda m - \mu_1(\lambda)) w^p \frac{v^p}{(v+\eta)^{p-1}} \, dx - \lambda \int_{\Gamma_1} \sigma w^p \frac{v^p}{(v+\eta)^{p-1}} \, d\rho.$$

By letting $\eta \to 0$ it comes that $R(u,v) = 0$ and the conclusion follows. \hfill \Box

The curve $\mu_1 : \mathbb{R} \to \mathbb{R}$ is known as eigencurve associated to problem (P). This notion was first used by [10, 11], for Newmann or Dirichlet boundary problems, as well as the following properties that we will prove here for the weighted Robin-Dirichlet boundary conditions.

Proposition 3.3. Assume that m or σ are $\neq 0$. The following properties hold:

1. μ_1 is concave, differentiable and

$$\mu_1'(\lambda) = - \left(\int_\Omega m \varphi_\lambda^p \, dx + \int_{\Gamma_1} \sigma \varphi_\lambda^p \, d\rho \right) \quad (3.4)$$

2. If $m^+ \neq 0$ in Ω or $\sigma^+ \neq 0$ on Γ_1 then $\lim_{\lambda \to +\infty} \mu_1(\lambda) = -\infty$.

3. If $m^- \neq 0$ in Ω or $\sigma^- \neq 0$ on Γ_1 then $\lim_{\lambda \to -\infty} \mu_1(\lambda) = -\infty$.

4. If $m \geq 0$ in Ω and $\sigma \geq 0$ on Γ_1 (resp. $m \leq 0$ in Ω and $\sigma \leq 0$ on Γ_1) then μ_1 is strictly decreasing (resp. strictly increasing).

5. Let us denote

$$\alpha \overset{\text{def}}{=} \inf \{ E_{\lambda}(u) \mid u \in S, \int_\Omega m |u|^p \, dx + \int_{\Gamma_1} \sigma |u|^p \, d\rho = 0 \}. \quad (3.5)$$

Then $\alpha = \sup_{\lambda \in \mathbb{R}} \mu_1(\lambda)$.

5
Proof. (1) For a fixed \(u \in W \) the mapping \(\lambda \to J_\lambda(u) \) is concave and then the infimum over \(S \), that is \(\mu_1(\lambda) \), is also concave and therefore continuous. Now let \(\lambda_n \to \lambda \) and \(\varphi_n, \varphi_\lambda \) be the \(L^p \)-normalized positive eigenfunctions related to \(\lambda_n, \lambda \) respectively. If we apply (3.3) with \(\lambda = \lambda_n \) and \(u = \varphi_n \) we have, after choosing \(\epsilon \) small enough, that

\[
\|\nabla \varphi_n\|_p^p \leq C_1
\]

for some \(C_1 > 0 \). So we conclude that the sequence \(\varphi_n \) is bounded in \(W \). Hence there exists \(\varphi_0 \) such that, up to a subsequence, \(\varphi_n \rightharpoonup \varphi_0 \) in \(W \), strongly in \(L^p(\Omega) \) and in \(L^p(\partial \Omega, \rho) \). Then \(\|\varphi_0\|_p = 1 \) and, from

\[
\mu(\lambda) = \lim_{n \to +\infty} \mu(\lambda_n) \geq E_{V - \lambda_n m}(\varphi_0) - \lambda \oint_{\Gamma_1} \sigma|\varphi_0|^p \, d\rho \geq \mu(\lambda),
\]

we infer that \(\varphi_0 = \varphi_\lambda \). Furthermore

\[
\begin{align*}
\mu(\lambda_n) &= E_{V - \lambda_n m}(\varphi_n) - \lambda_n \oint_{\Gamma_1} \sigma|\varphi_n|^p \, d\rho \\
&= E_{V - \lambda m}(\varphi_n) + (\lambda - \lambda_n) \oint_\Omega m|\varphi_n|^p \, dx - \lambda_n \oint_{\Gamma_1} \sigma|\varphi_n|^p \, d\rho \\
&\geq \mu(\lambda) + (\lambda - \lambda_n) \oint_\Omega m|\varphi_n|^p \, dx + (\lambda - \lambda_n) \oint_{\Gamma_1} \sigma|\varphi_n|^p \, d\rho
\end{align*}
\]

and replacing \(\lambda \) (resp. \(\varphi \)) by \(\lambda_n \) (resp. \(\varphi_n \)) in this inequality we have, for \(\lambda_n > \lambda \),

\[
-\oint m|\varphi_n|^p \, dx - \oint_{\Gamma_1} \sigma|\varphi_n|^p \, d\rho \leq \frac{\mu(\lambda_n) - \mu(\lambda)}{\lambda_n - \lambda} \leq -\oint m|\varphi_\lambda|^p \, dx - \oint_{\Gamma_1} \sigma|\varphi_\lambda|^p \, d\rho.
\]

Passing to the limit we get (3.4). A similar argument holds if \(\lambda_n < \lambda \).

(2) If \(m^+ \neq 0 \) then it is easy to see that there exists \(u_0 \in W_0^{1,p}(\Omega) \cap S \) such that \(\int_\Omega m|u_0|^p \, dx > 0 \). Indeed, one can choose \(u_0 \) as the regularization of the characteristic function of any small ball \(B \) strictly contained in \(\Omega \) for which \(m^+ \neq 0 \) in \(B \). Hence

\[
\mu_1(\lambda) \leq E_V(u_0) - \lambda \int_\Omega m|u_0|^p \, dx \to -\infty \quad \text{as} \quad \lambda \to +\infty.
\]

If \(m^+ = 0 \) in \(\Omega \) and \(\sigma^+ \neq 0 \) on \(\Gamma_1 \) we use Lemma 3.4 below to get the existence of \(u_0 \in S \) such that \(\int_\Omega m|u_0|^p \, dx + \oint_{\Gamma_1} \sigma|u_0|^p \, d\rho = 1 \) and the conclusion follows.

(3) Similar to the previous case.

(4) If \(m \geq 0 \) in \(\Omega \) and \(\sigma \geq 0 \) on \(\Gamma_1 \), the result is clear from the fact that

\[
\int_\Omega |\varphi_\lambda|^p \, dx + \oint_{\Gamma_1} \sigma|\varphi_\lambda|^p \, d\rho > 0
\]

for any \(\lambda \in \mathbb{R} \). Indeed, if \(\lambda_1 < \lambda_2 \) then

\[
\begin{align*}
\mu(\lambda_1) &= E_V(\varphi_{\lambda_1}) - \lambda_1 \int_\Omega m|\varphi_{\lambda_1}|^p \, dx + \oint_{\Gamma_1} \sigma|\varphi_{\lambda_1}|^p \, d\rho \\
&> E_V(\varphi_{\lambda_1}) - \lambda_2 \int_\Omega m|\varphi_{\lambda_1}|^p \, dx + \oint_{\Gamma_1} \sigma|\varphi_{\lambda_1}|^p \, d\rho \geq \mu(\lambda_2).
\end{align*}
\]

(5) Let us prove that \(\sup_{\lambda \in \mathbb{R}} \mu(\lambda) = \alpha \). Notice that trivially

\[
\alpha \geq \mu(\lambda)
\]

\[
\int_\Omega m|\varphi_{\lambda_1}|^p \, dx + \oint_{\Gamma_1} \sigma|\varphi_{\lambda_1}|^p \, d\rho
\]

for any \(\lambda \in \mathbb{R} \). Indeed, if \(\lambda_1 < \lambda_2 \) then

\[
\begin{align*}
\mu(\lambda_1) &= E_V(\varphi_{\lambda_1}) - \lambda_1 \int_\Omega m|\varphi_{\lambda_1}|^p \, dx + \oint_{\Gamma_1} \sigma|\varphi_{\lambda_1}|^p \, d\rho \\
&> E_V(\varphi_{\lambda_1}) - \lambda_2 \int_\Omega m|\varphi_{\lambda_1}|^p \, dx + \oint_{\Gamma_1} \sigma|\varphi_{\lambda_1}|^p \, d\rho \geq \mu(\lambda_2).
\end{align*}
\]
for all \(\lambda \in \mathbb{R} \). We distinguish the following two complementary cases:

(a1) Either \(m \geq 0 \) and \(\sigma \geq 0 \) or \(m \leq 0 \) and \(\sigma \leq 0 \). In this first alternative we know that \(\mu(\lambda) \) is strictly decreasing so then

\[
\sup \mu(\lambda) = \lim_{\lambda \to -\infty} \mu(\lambda). \tag{3.6}
\]

Let \(\lambda_n \to -\infty \) when \(n \to \infty \) and let \(\varphi_n \) be the associated \(L^p \)-normalized eigenfunction. We have

\[
\mu(\lambda_n) = E_{V - \lambda_n} \varphi_n - \lambda_n \int_{\Gamma_1} \sigma |\varphi_n|^p \, d\rho \geq E_V(\varphi_n) \geq ||\varphi_n||^p - 1 - \|V\|\infty
\]

for all \(\lambda_n \leq 0 \). Thus the sequence \(\varphi_n \) is bounded in \(W \) so there exists \(\varphi \in W \) such that, up to a subsequence, \(\varphi_n \to \varphi \) in \(W \), strongly in \(L^p(\Omega) \cap L^p(\partial\Omega, \rho) \). Thus ||\varphi||_p = 1 and

\[
\alpha \geq \lim_{n \to \infty} \mu(\lambda_n) \geq E_V(\varphi) - \lim_{n \to \infty} \lambda_n \left(\int_{\Omega} |\varphi_n|^p \, dx + \int_{\Gamma_1} \sigma |\varphi_n|^p \, d\rho \right). \tag{3.7}
\]

If \(m > 0 \) a.e on \(\Omega \) then, from (3.7), we have

\[
\lim_{\lambda \to -\infty} \mu(\lambda) = +\infty = \alpha.
\]

If \(\lambda_N(\{x \in \Omega \mid m(x) = 0\}) > 0 \) then from Proposition 3.5(iii) \(\alpha < +\infty \) and therefore \(\mu \) is bounded from above. We conclude from (3.7) that \(\int_{\Omega} |\varphi|^p \, dx + \int_{\Gamma_1} \sigma |\varphi|^p \, d\rho = 0 \) and then \(\varphi \) is admissible in the definition of \(\alpha \). Again from (3.7), we get

\[
\alpha \geq \lim_{n \to \infty} \mu(\lambda_n) \geq E_V(\varphi) \geq \alpha
\]

and the result follows from (3.6). If \(m \leq 0 \) and \(\sigma \leq 0 \) we argue similarly.

(a2) Either \(m^+ \neq 0 \) and \(\sigma^- \neq 0 \) or \(m^- \neq 0 \) and \(\sigma^+ \neq 0 \). In both cases \(\alpha < +\infty \) from Proposition 3.5 below and it follows from (1)-(3) that \(\mu \) is bounded from above. Then \(\sup_{\lambda \in \mathbb{R}} \mu(\lambda) \) is achieved at some \(\lambda_0 \) that satisfies \(0 = \mu'(\lambda_0) = -\int_{\Omega} |\varphi_{\lambda_0}|^p \, dx - \int_{\Gamma_1} \sigma |\varphi_{\lambda_0}|^p \, d\rho \). We conclude that \(\varphi_{\lambda_0} \) is admissible in the definition of \(\alpha \) and hence

\[
\alpha \leq E_V(\varphi_{\lambda_0}) = \mu(\lambda_0) = \sup_{\lambda \in \mathbb{R}} \mu(\lambda).
\]

\[\square\]

Lemma 3.4. If \(\sigma^- \neq 0 \) or \(m^- \neq 0 \) then there exists \(u_0 \in W \) such that \(\text{supp} \, u_0 \subset \Omega^- \), \(\text{supp} \, \gamma(u_0) \subset \Gamma_\Gamma^- \) and

\[
\int_{\Omega} |u_0|^p \, dx + \int_{\Gamma_1} \sigma |u_0|^p \, d\rho < 0. \tag{3.8}
\]

Proof. If \(m^- \neq 0 \) one can take \(u_0 \in W^{1,p}_0(\Omega) \) such that \(\int_{\Omega} |u_0|^p \, dx < 0 \) and \(\text{supp} \, u_0 \subset \Omega^- \). If \(m^- \equiv 0 \) pick any \(0 < \psi \in C^\infty(\Gamma_1) \) with \(\text{supp} \, \psi \subset \Gamma_\Gamma^- \). Put \(a := \int_{\Gamma_1} \sigma \psi^p \, d\rho < 0 \) and take a function \(0 \leq v \in W^{1,\infty}(\Omega) \) such that \(\gamma(v) = \psi \). Consider for \(\epsilon > 0 \) small a cut-function \(\xi_\epsilon \in C^\infty(\mathbb{R}^N) \) such that

\[
\xi_\epsilon \equiv 1 \text{ in } \Omega_\epsilon, \quad \xi_\epsilon \equiv 0 \text{ in } \mathbb{R}^N \setminus \Omega_{\epsilon/2},
\]

where

\[
\Omega_\epsilon := \{ x \in \Omega \mid \text{dist} \, (x, \Gamma_1) > \epsilon \}.
\]

Thus \(u_0 := (1 - \xi_\epsilon)v \in W \) and \(\gamma(u_0) = \psi \). Choose \(\epsilon > 0 \) small enough to have

\[
\lambda_N(\Omega \setminus \Omega_\epsilon) < \frac{-a}{2\|m\|_\infty \|v\|_\infty^p}.
\]
Hence

\[\int_{\Omega} |m| |u_0|^p \, dx \leq \|m\|_{\infty} \|v\|_p^p \lambda_N(\Omega \setminus \Omega_\varepsilon) \leq -\frac{1}{2} \int_{\Gamma_1} \sigma |u_0|^p \, d\rho \]

and therefore

\[\int_{\Omega} m |u_0|^p \, dx + \int_{\Gamma_1} \sigma |u_0|^p \, d\rho < 0. \]

\[\square \]

Let us state in which cases the value \(\alpha \) is finite.

Proposition 3.5. Let us define the set \(\mathcal{G} \) as

\[\mathcal{G} \overset{\text{def}}{=} \{ u \in S \mid \int_{\Omega} m |u|^p \, dx + \int_{\Gamma_1} \sigma |u|^p \, d\rho = 0 \}. \]

Then \(\mathcal{G} \neq \emptyset \) if and only if either

(i) \(m^+ \neq 0 \) or (ii) \(m^+ \neq 0 \) and \(\sigma^- \neq 0 \) or \(m^- \neq 0 \) and \(\sigma^+ \neq 0 \) or (iii) \(\lambda_N(\{x \in \Omega \mid m(x) = 0\}) > 0 \).

In all these cases the value \(\alpha \) defined in (3.5) is achieved at some \(0 \leq \xi_0 \in \mathcal{W} \).

Proof. (i) If \(m^+ \neq 0 \) one can always find function on \(W^{1,p}_0(\Omega) \) belonging to \(\mathcal{G} \) by taking, for instance, \(u = u_1 - u_2 \) with \(u_1 \) a positive function with support on \(\Omega^+ \), \(u_2 \) a positive function with support on \(\Omega^- \) and, after rescaling, then make \(u \in \mathcal{G} \).

(ii) If, say, \(m^+ \neq 0 \) and \(\sigma^+ \neq 0 \), we pick any \(0 < \psi \in C^\infty(\Gamma_1) \) such that \(a := \oint_{\Gamma_1} \sigma \psi^p \, d\rho < 0 \). Let \(v \in W^{1,\infty}(\Omega) \) such that \(\gamma(v) = \psi \) and \(u_0 = (1 - \xi)v \) with \(\xi \), as in Lemma 3.4 above. We now choose \(\epsilon > 0 \) small enough to guarantee that \(\lambda_N(\Omega \cap \Omega^+) \neq 0 \). Let us take another function \(0 \leq w \in W^{1,p}_0(\Omega_\varepsilon) \) such that

\[\int_{\Omega_\varepsilon} mw^p \, dx = -a. \]

Hence, as \(u_0 \) and \(w \) have disjoint supports,

\[\int_{\Omega} m |w + u_0|^p \, dx + \int_{\Gamma_1} \sigma |u_0 + w|^p \, d\rho = 0. \]

(iii) If \(\lambda_N(\Omega^0) > 0 \) we can always find a function \(0 \neq u \in W^{1,p}_0(\Omega) \) satisfying \(\int_{\Omega} m |u|^p \, dx = 0 \), so, after normalisation, \(u \) is admissible in the definition of \(\alpha \).

Finally notice that any minimizing sequence of \(\alpha \) is bounded by the estimate

\[E_V(u) \geq \int_{\Omega} |\nabla u|^p \, dx - \|V\|_{\infty} \]

valid for any \(u \in S \). Then, by standard arguments, one can show that \(\alpha \) is achieved at some \(\xi_0 \geq 0 \).

\[\square \]

4. Existence of principal eigenvalues of \((P) \)

As a consequence of Proposition 3.3 we prove our main result of this section. Recall that the value \(\alpha \) have been defined in (3.5) and the set \(\mathcal{G} \) in (3.9).

Theorem 4.1. 1. (a) If \(m \geq 0 \) in \(\Omega \) and \(\sigma \geq 0 \) on \(\Gamma_1 \) then there exists a principal eigenvalue of \((P) \) if and only if \(\alpha > 0 \). The principal eigenvalue is unique and will be denoted by \(\lambda_1 \). It is characterized by

\[\lambda_1 = \min_{\mathcal{M}^+} E_V, \]

where \(\mathcal{M}^+ := \{ u \in W \mid I(u) = 1 \} \neq \emptyset \).
(b) If \(m \leq 0 \) in \(\Omega \) and \(\sigma \leq 0 \) on \(\Gamma_1 \) then there exists a principal eigenvalue of \((P)\) if and only if \(\alpha > 0 \). The principal eigenvalue is unique and will be denoted by \(\lambda_{-1} \). It is characterized by

\[
\lambda_{-1} = \min_{M^-} E_V, \tag{4.2}
\]

where \(M^- := \{ u \in W \mid I(u) = -1 \} \neq \emptyset \).

2. If either \(m \) and \(\sigma \) are definite but with opposite sign or one of them is indefinite then there exists a principal eigenvalue of \((P)\) if and only if \(\alpha \geq 0 \). More precisely:

(a) if \(\alpha > 0 \) then \((P)\) admits exactly two principal eigenvalues \(\lambda_{-1} < \lambda_1 \), with \(\lambda_1 \) characterized as in (4.1) and \(\lambda_{-1} \) characterized as in (4.2).

(b) If \(\alpha = 0 \) then \((P)\) has a unique principal eigenvalue \(\lambda_* \) given by

\[
\lambda_* = \inf_{M^+} E_V = -\inf_{M^-} E_V.
\]

These infima are not achieved. Moreover a function \(u \in G \) satisfies \(E_V(u) = \alpha \) if and only if \(u \in S \) is an eigenfunction associated to \(\lambda_* \).

Whenever they exist, one has \(\lambda_{-1} \leq \lambda_1 \).

By the regularity results mentioned earlier, the eigenfunctions associated to principal eigenvalues belong to \(C^{1,2}(\Omega) \) and are \(> 0 \) in \(\Omega \cup \Gamma_1 \).

Proof. We only prove (2)(b) since the proof of the other statements can be carried with minor changes from the proof of [13, Theorem 7]. If \(\alpha = 0 \) then \(\mu(\lambda_0) = 0 \) at some \(\lambda_0 \), providing a principal eigenvalue of \((P)\). By Lemma 7.1 below this point \(\lambda_0 \) is unique. Moreover \(\mu'(\lambda_0) = -\int \! m|\varphi_{\lambda_0}|^p \, dx - \int \! \sigma|\varphi_{\lambda_0}|^p \, d\rho = 0 \). Let us prove that \(\lambda_0 = \inf_{M^+} E_V \). Take \(u \in M^+ \) and assume that \(u \geq 0 \) by replacing \(u \) by \(|u| \) if necessary. Picone’s identity (c.f. Lemma 2.1) applied to \(u_T := \min\{u, T\} \) and \(\varphi_{\lambda_0} \) yields (notice that \(\frac{u_T}{\varphi_{\lambda_0}} \in W^{1,1}_{loc}(\Omega) \))

\[
0 \leq \int_{\Omega} L(u_T, \varphi_{\lambda_0}) \, dx = \int_{\Omega} R(u_T, \varphi_{\lambda_0}) \, dx
\]

\[
= \int_{\Omega} \left[|\nabla u_T|^p - |\nabla \varphi_{\lambda_0}|^{p-2} \nabla \left(\frac{u_T^p}{\varphi_{\lambda_0}^{p-1}} \right) \nabla \varphi_{\lambda_0} \right] \, dx
\]

\[
= \int_{\Omega} |\nabla u_T|^p \, dx + \int_{\Omega} V u_T^p \, dx - \lambda_0 \int_{\Omega} m u_T^p \, dx - \lambda_0 \int_{\Gamma_1} \sigma u_T^p \, d\rho.
\]

Now we let \(T \to \infty \) to get \(E_V(u) \geq \lambda_0 \). Consider the sequence \(u_n \in M^+ \) given by

\[
u_n = \frac{\varphi_{\lambda_0} + \psi}{I(\varphi_{\lambda_0} + \frac{\psi}{n})^{\frac{1}{p}}}, \tag{4.3}\]

for some fixed \(0 \leq \psi \in C^\infty(\Omega), \psi = 0 \) on \(\Gamma_2 \), such that \(I(\psi) > 0 \), and \(< I(\varphi_{\lambda_0}), \psi > > 0 \). The existence of such a function \(\psi \) can be proved using arguments similar to those in Lemma 3.4. One can easily prove that \(I(\varphi_{\lambda_0} + \frac{\psi}{n}) > 0 \) for \(n \) large enough. Moreover, for such \(n \) we can find \(0 < t_n, s_n < \frac{1}{n} \) such that

\[
E_V(\varphi_{\lambda_0} + \frac{\psi}{n}) = \frac{1}{n} \langle E'_V(\varphi_{\lambda_0} + t_n \psi), \psi \rangle
\]
and

\[I(\varphi_{\lambda_0} + \frac{\psi}{n}) = \langle I'(\varphi_{\lambda_0} + s\psi), \psi \rangle \]

Hence \(E_V(u_n) \to \lambda_0 \). Since \(\varphi_{\lambda_0} \) satisfies \(I(\varphi_{\lambda_0}) = 0 \) it is clear that the inf\(\mathcal{M}_+ \) \(E_V \) is not achieved. Finally for any \(L^p \)-normalized function \(u \) satisfying \(E_V(u) = I(u) = 0 \) one has

\[\sup_{\lambda \in \mathbb{R}} \mu(\lambda) = 0 = E_V(u) = E_{V-\lambda_0 m}(u) - \lambda_0 \int_{\Gamma_1} \sigma|u|^p \, d\rho \geq \mu(\lambda_0) = 0, \]

so \(u \) achieves \(\mu(\lambda_0) \). Thus \(u = c\varphi_{\lambda_0} \) for some constant \(c \) and the result follows with \(\lambda_* := \lambda_0 \). \(\square \)

5. A sufficient condition for the existence of principal eigenvalues

Let us consider the following eigenvalue problem with mixed Dirichlet-Newmann boundary conditions:

\[
\begin{cases}
-\Delta_p u + V(x)|u|^{p-2}u = \lambda|u|^{p-2}u & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = 0 & \text{on } \Gamma_1, \\
u = 0 & \text{on } \Gamma_2,
\end{cases}
\]

which correspond to the case \(\sigma = 0 \) and \(m \equiv 1 \) in problem \((P) \). Denote

\[\lambda_1^{N,D}(V) = \inf\{E_V(u) \mid u \in W, \int_{\Omega} |u|^p \, dx = 1\}. \]

Noticing that that \(\mu(0) = \lambda_1^{N,D}(V) \) we have the following trivial consequence of Theorem 4.1:

Proposition 5.1. Assume that \(\alpha \geq 0 \).

(1) If \(\lambda_1^{N,D}(V) > 0 \) then problem \((P) \) possesses exactly two principal eigenvalues of different sign except in the cases (i) \(m \geq 0 \) in \(\Omega \) and \(\sigma \geq 0 \) on \(\Gamma_1 \) where there is exactly one principal eigenvalue, which is positive, or in the case (ii) \(m \leq 0 \) in \(\Omega \) and \(\sigma \leq 0 \) on \(\Gamma_1 \) where there is exactly one principal eigenvalue, which is negative.

(2) If \(\lambda_1^{N,D}(V) = 0 \) then problem \((P) \) possesses a unique nontrivial eigenvalue (which is positive) if and only if \(m^+ \neq 0 \) in \(\Omega \) or \(\sigma^+ \neq 0 \) on \(\Gamma_1 \) and

\[d := \int_{\Omega} m|\varphi_0|^p \, dx + \int_{\Gamma_1} \sigma|\varphi_0|^p \, d\rho < 0, \]

where \(\varphi_0 \) is the positive eigenfunction associated to \(\lambda_1^{N,D}(V) \) of \(L^p \)-norm equal to 1.

(3) If \(\lambda_1^{N,D}(V) = 0 \) then problem \((P) \) possesses a unique nontrivial eigenvalue (which is negative) if and only if \(m^- \neq 0 \) in \(\Omega \) or \(\sigma^- \neq 0 \) on \(\Gamma_1 \) and \(d > 0 \).

(4) If \(\lambda_1^{N,D}(V) = 0 \) and \(d = 0 \) then \(\lambda = 0 \) is the unique principal eigenvalue of problem \((P) \).

Proof. One uses that

\[\mu'(0) = -\int_{\Omega} m|\varphi_0|^p \, dx - \int_{\Gamma_1} \sigma|\varphi_0|^p \, d\rho = -d. \]

(1) In this case \(\alpha = \sup_{\lambda \in \mathbb{R}} \mu(\lambda) \geq \mu(0) = \lambda_1^{N,D}(V) > 0 \) and the situations (i) and (ii) correspond to those of case (1) of Theorem 4.1.

(2) In this case we have \(\lambda_{-1} = \mu(0) = \lambda_1^{N,D}(V) > 0 \). Since \(\mu'(0) = -d > 0 \), by the concavity of the curve \(\lambda \to \mu(\lambda) \) it must be \(\alpha > 0 \) and the result follows from the case (2)(a) of Theorem 4.1.

(3) Similar to case (2).

(4) If \(\mu(0) = \lambda_1^{N,D}(V) = 0 \) and \(d = 0 \) then \(\alpha = 0 \) and therefore \(\lambda = 0 \) is the unique principal eigenvalue of problem \((P) \). \(\square \)
Remark 5.2. When $V \equiv 0$ and $\Gamma_2 = \emptyset$ then $\lambda^{N,D}_1(V) = 0 = \mu(0)$ and we can choose $\varphi_0 = \text{cst}$. Our results (2) and (3) in Proposition 5.1 generalize for the p-laplacian operator the result of [23].

6. On the coerciveness of the restricted functional

Let us show in this section that $\alpha > 0$ is a sufficient condition for the coerciveness of E_V under the constrain M^\pm.

Proposition 6.1. If $\alpha > 0$ then, for any $M \in \mathbb{R}$, the set

$$\{ u \in M^+ | E_V(u) \leq M \}$$

is bounded. A similar result can be stated for $-E_V$ on M^-.

Proof. Assume by contradiction that for some $M \in \mathbb{R}$ there is sequence (u_n) unbounded in M^+ and satisfying $E_V(u_n) \leq M$. Then, there exits a subsequence of $v_n = \frac{u_n}{\|u_n\|}$, still denoted as v_n, that converges to some v_0 weakly in W and strongly in $L^p(\Omega) \cap L^p(\partial \Omega, \rho)$. Since $I(v_n) = \frac{1}{\|u_n\|^p} \to 0$, we deduce that $I(v_0) = 0$ and

$$\int \Omega |\nabla v_0|^p dx + \int \Omega V|v_0|^p dx \leq \liminf_{n \to +\infty} E_V(v_n) = \liminf_{n \to +\infty} \frac{E_V(u_n)}{\|u_n\|^p} = 0. \quad (6.1)$$

We claim that $v_0 \neq 0$, otherwise

$$0 \leq \liminf_{n \to +\infty} \int \Omega |\nabla v_n|^p dx = \liminf_{n \to +\infty} (E_v(v_n) - \int \Omega V|v_n|^p dx) \leq 0$$

and consequently $v_n \to 0$ strongly in W, which is impossible since $\|v_n\| = 1$. Hence $\frac{w}{\|v_0\|^p}$ is an admissible function in the definition of α and consequently

$$\alpha \leq E_V\left(\frac{v_0}{\|v_0\|^p}\right) \leq 0,$$

gives a contradiction with the assumption $\alpha > 0$. \hfill \Box

Next let us justify that $\alpha > 0$ is “almost” a necessary for E_V to be coercive on M^\pm. The case $\Gamma_1 = \emptyset$ was already considered in [13].

Proposition 6.2. Assume that $\sigma^+ \not\equiv 0$ (resp. $\sigma^- \not\equiv 0$). If $\alpha < 0$ then E_V (resp. $-E_V$) is unbounded from below on M^+ (resp. on M^-).

Proof. Let $0 \leq u_0 \in \mathcal{G}$ realize α. We distinguish four cases:

(a) If $m^+ \not\equiv 0$, we pick $0 \leq w \in W_0^{1,p}(\Omega)$ such that $0 \not\equiv w$ and $\text{supp } w \subset \Omega^+$. Thus, for each n, there is $0 < s_n < \frac{1}{n}$ such that

$$I(u_0 + \frac{w}{n}) = \frac{1}{n} \int_{\Omega^+} m(u_0 + s_n w)^{p-2}(u_0 + s_n w) w \, dx + \int_{\Gamma_1} \sigma u_0^p d\rho > 0.$$

Hence

$$\frac{E_V(u_0 + \frac{w}{n})}{I(u_0 + \frac{w}{n})} \to -\infty.$$
Assume that \(\sigma \not\equiv 0 \). We deduce in particular that
\[
I(u_0 - \frac{w}{n}) = \int_{\Omega} m|u_0 - \frac{w}{n}|^p \, dx + \int_{\Gamma_1} \sigma u_0^p \, d\rho \geq I(u_0) = 0
\]
Then
\[
\frac{E_V(u_0 - \frac{w}{n})}{I(u_0 - \frac{w}{n})} \to -\infty.
\]

(c) If \(m \leq 0 \), \(m u_0 \equiv 0 \) and the adherence of \(\Omega^0 \) intersects \(\Gamma_1^+ \) we take a function \(0 \leq w \in W \) with support in \(\Omega^0 \) and such that \(\text{supp} \gamma(w) \subset \Gamma_1^+ \) (we construct \(w \) as in Lemma 3.4). Then
\[
I(u_0 + \frac{w}{n}) = \frac{1}{n^p} I(w) > 0, \quad \frac{E_V(u_0 + \frac{w}{n})}{I(u_0 + \frac{w}{n})} \to -\infty.
\]

(d) If \(m \leq 0 \), \(m u_0 \equiv 0 \) and we are not in the previous cases, then we must have \(\Omega^0 \subset \Gamma_1^0 \) because \(I(u_0) = \int_{\Gamma_1} \sigma u_0^p \, d\rho = 0 \). In this case we take a function \(0 \leq w \in W \) from Lemma 3.4 such that \(\int_{\Gamma_1} \sigma w^p \, d\rho > 0 \) and having support in \(\Omega^- \) and also \(\text{supp} \gamma(w) \subset \Gamma_1^+ \). Then we also have (6.2).

If \(\alpha = 0 \) we have a less general result:

Proposition 6.3. Assume that \(\sigma \not\equiv 0 \). If \(\alpha = 0 \) and \(u_n \geq 0 \) is a sequence in \(\mathcal{M}^+ \) such that \(\lambda_N(\{x \in \Omega \mid u_n(x) > 0\}) \to 0 \) and \((E_V(u_n)) \) is bounded then \((u_n) \) is bounded in \(W \). A similar result can be stated in the case \(\sigma \not\equiv 0 \) for \(-E_V \) over \(\mathcal{M}^- \).

Proof. Assume by contradiction that the sequence \((u_n)_n \) is unbounded. Consider \(v_n = \frac{u_n}{\|u_n\|} \), which converges weakly to some \(v_0 \in W \) and strongly in \(L^p(\Omega) \cap L^p(\partial\Omega, \rho) \). Thus, passing to the limit, we get \(I(v_0) = 0 \) and
\[
\lim_{n \to +\infty} E_V(v_n) = \lim_{n \to +\infty} \frac{E_V(u_n)}{\|u_n\|^p} = 0.
\]
Moreover
\[
1 + \int_{\Omega} V |v_n|^p \, dx = 1 + \lim_{n \to +\infty} \int_{\Omega} V |v_n|^p \, dx = \lim_{n \to +\infty} E_V(v_n) = 0.
\]
We deduce in particular that \(v_0 \not\equiv 0 \). Hence \(\frac{v_n}{\|v_n\|^p} \) is admissible in the definition of \(\alpha \). By Proposition 4.1 (2)(b) \(v_0 > 0 \) on \(\Omega \), in contradiction with
\[
\lambda_N(\{x \in \Omega \mid v_n(x) > 0\}) = \lambda_N(\{x \in \Omega \mid u_n(x) > 0\}) \to 0.
\]

It is not difficult to construct examples of \(V \) and \(m \) such that \(\alpha = \alpha(V, m, \sigma) = 0 \) by adapting some ideas of [13].

Example 6.3.1. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^N \) and \(B_0 \subset \Omega \) be an open subset such that \(\|\psi_1\|_{L^2,B_0}^2 = \frac{1}{2} \), where \(\psi_1 \) is an eigenfunction associated to the first eigenvalue of
\[
\begin{cases}
-\Delta_p u = \lambda |u|^{p-2} u & \text{in } \Omega, \\
\nabla u \cdot \nu = \lambda \sigma |u|^{p-2} u & \text{on } \Gamma_1, \\
u = 0 & \text{on } \Gamma_2,
\end{cases}
\]
satisfying \(\int_{\Omega} \psi_1^p \, dx + \int_{\Gamma_1} \sigma \psi_1^p \, d\rho = 1 \). Thus, \(\lambda_1 = \lambda_1(V \equiv 0, m \equiv 1, \sigma) \) as defined in Theorem 4.1. Set
\[
m = \begin{cases}
a & \text{in } \Omega \setminus B_0, \\
b & \text{in } B_0.
\end{cases}
\]
for some a, b to be determined later. We have $\int_{\Omega} m \psi^p_1 \, dx + \oint_{\Gamma_1} \sigma \psi^p_1 \, d\rho = 0$ by choosing $\frac{a+b}{2} - 1 = -\left(\int_{\Omega} \psi^p_1\right)^{-1}$. Let

$$V = \begin{cases} \lambda_1(a - 1), & \text{in } \Omega \setminus B_0 \\ \lambda_1(b - 1), & \text{in } B_0. \end{cases} \quad (6.4)$$

If u is such that $\int_{\Omega} m|u|^p \, dx + \oint_{\Gamma_1} \sigma|u|^p \, d\rho = 0$ then

$$E_V(u) = \int_{\Omega} |\nabla u|^p \, dx + \lambda_1(b - 1)\|u\|^p_{p,B_0} + \lambda_1(a - 1)\|u\|^p_{p,\Omega \setminus B_0}$$

$$= \int_{\Omega} |\nabla u|^p \, dx - \lambda_1(\int_{\Omega} |u|^p \, dx + \oint_{\Gamma_1} \sigma|u|^p \, d\rho) \geq 0$$

Moreover, $E_V(u) = 0$ holds precisely for multiples of ψ_1. Therefore $\alpha(V,m,\sigma) = 0$.

Example 6.3.2. We give another example where $\alpha(V,m,\sigma) = 0$ in the case $m \equiv 0$. Let us assume here that Γ_1 is not a single point if $N = 1$. For a given $V \in L^\infty(\Omega)$, let us take $\Gamma_0 \subset \Gamma_1$ a subset such that $\|\psi_0\|^p_{p,\Gamma_0} = \frac{1}{2}$, where ψ_0 is an eigenfunction associated to the first eigenvalue of problem (N)

$$\begin{cases} -\Delta_p u = \lambda_1|u|^{p-2}u & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \Gamma_1, \\ u = 0 & \text{on } \Gamma_2, \end{cases}$$

satisfying $\oint_{\Gamma_1} \psi_0^p \, d\rho = 1$. Thus, $\lambda_1 = \lambda_1^{N,D}(0)$. Set

$$\sigma = \begin{cases} 1 & \text{in } \Gamma_1 \setminus \Gamma_0, \\ -1 & \text{in } \Gamma_0, \end{cases} \quad (6.5)$$

then we have $\oint_{\Gamma_1} \sigma \psi_0^p \, d\rho = 0$. Set $V := -\lambda_1^{N,D}(0)$. If u is such that $\oint_{\Gamma_0} \sigma|u|^p \, d\rho = 0$ then

$$E_V(u) = \int_{\Omega} |\nabla u|^p \, dx + \int_{\Omega} V|u|^p \, dx \geq 0$$

and $E_V(u) = 0$ holds precisely for multiples of ψ_0. Therefore $\alpha(V,0,\sigma) = 0$.

7. Simplicity and isolation of the principal eigenvalues

Here below we prove two properties of the principal eigenvalues of problem (P).

Proposition 7.1 (Simplicity). Assume that $u, v \in W$ are two eigenfunctions of Problem (P) associated respectively to λ and β. Assume also that $u > 0$ and $v > 0$ in Ω. If $\beta \geq \lambda$ (resp. $\beta \leq \lambda$) when $I(u) \geq 0$ (resp. when $I(u) \leq 0$) then $u = cv$ for some $c > 0$ and $\lambda = \beta$.

In particular, if $\alpha \geq 0$, the principal eigenvalues λ_1 and λ_{-1} are simple. There are no other principal eigenvalues.
Proof. We apply Picone’s Identity of Lemma 2.1 to \(u \) and \(v + \eta \). After integration and letting \(\eta \to 0 \) we find

\[
0 \leq \int_{\Omega} L(u,v) \, dx = \int_{\Omega} R(u,v) \, dx
\]

\[
= \int_{\Omega} \left[|\nabla u|^p - |\nabla v|^p - 2 \nabla \left(\frac{u^p}{v^{p-1}} \right) \nabla v \right] \, dx
\]

\[
= \lambda \int_{\Omega} m |u|^p \, dx + \int_{\Gamma_1} \sigma u^p \, d\rho - \int_{\Omega} V u^p \, dx + \int_{\Omega} (V - \beta m) u^p \, dx - \beta \int_{\Gamma_1} \sigma u^p \, d\rho
\]

\[
= (\lambda - \beta) \left(\int_{\Omega} m u^p \, dx + \int_{\Gamma_1} \sigma u^p \, d\rho \right).
\]

If \(\int_{\Omega} m u^p \, dx + \int_{\Gamma_1} \sigma u^p \, d\rho > 0 \) (resp. \(\int_{\Omega} m u^p \, dx + \int_{\Gamma_1} \sigma u^p \, d\rho < 0 \)) and \(\beta \geq \lambda \) (resp. \(\beta \leq \lambda \)) then \(L(u,v) = 0 \). Hence \(u = cv \) for some \(c > 0 \) and therefore \(\alpha = \beta \). If \(\int_{\Omega} m u^p \, dx + \int_{\Gamma_1} \sigma u^p \, d\rho = 0 \) then \(L(u,v) = 0 \) and we conclude again that \(u = cv \) and \(\alpha = \beta \). \(\square \)

Proposition 7.2 (Isolation). Assume that \(\alpha \geq 0 \). Then the principal eigenvalues are isolated in the spectrum of \((P) \).

Proof. We only prove that \(\lambda_1 \) is isolated, an analogous proof can be given for \(\lambda_{-1} \). We can use similar arguments to those of [12]. First one gets an a-priori estimate of the measure of any nodal set \(\mathcal{N} \) of a non-principal eigenfunction \(u \) associated to \(\lambda \) by using Sobolev and trace embeddings. We recall that a nodal domain of \(u \) is a connected component of \(\Omega \setminus \{ x \in \Omega \mid u(x) = 0 \} \). This estimate will read as follows

\[
\lambda_{N} (\mathcal{N}) \frac{p - 2}{p} + \rho (\bar{\mathcal{N}} \cap \Gamma_1)^{\frac{p - 2}{p}} \geq (|\lambda| c_1 + c_2)^{-1}
\]

(7.1)

for some positive constants \(c_1, c_2 \) depending only upon \(m, \sigma, V \) and \(\Omega \). We explain briefly how to prove (7.1). First observe that, since \(u \in W \cap C(\bar{\Omega}) \), then \(u|_{\mathcal{N}} \in W_{\mathcal{N}} \). Hence the function \(w \) defined as \(w(x) = u(x) \) if \(x \in \mathcal{N} \) and \(w(x) = 0 \) if \(x \in \Omega \setminus \mathcal{N} \) belongs to \(W \). Assume that \(1 < p < N \). Using \(w \) as a test function in the weak equation satisfied by \(u \) we find

\[
\int_{\mathcal{N}} |\nabla w|^p \, dx + \int_{\mathcal{N} \cap \Gamma_1} |u|^p \, d\rho \leq C (\|u\|_{p,\mathcal{N}}^p \lambda_{\mathcal{N}} (\mathcal{N})^{\frac{p - 2}{p}} + \|u\|_{p,\mathcal{N} \cap \Gamma_1} \rho(\bar{\mathcal{N}} \cap \Gamma_1)^{\frac{p - 2}{p}})
\]

by H"{o}lder inequality, with \(C = (|\lambda| (\|m\|_{\infty} + \|\sigma\|_{\infty}) + \|V\|_{\infty} + 1) \). On the other hand, using Sobolev’s and trace embeddings we have that

\[
\int_{\mathcal{N}} |\nabla w|^p \, dx + \int_{\mathcal{N} \cap \Gamma_1} |u|^p \, d\rho \geq D (\|v\|_{p,\mathcal{N}}^p + \|u\|_{p,\mathcal{N} \cap \Gamma_1}^p)
\]

for some new constant \(D = D(N, p, \Omega) \) and the result follows. In the case \(p \geq N \) we will proceed similarly.

Assume now by contradiction that there exists \((\lambda_n, u_n) \) a sequence of eigenvalues and eigenfunctions such that \(\lambda_n \searrow \lambda_1 \).

(a) Assume \(\alpha > 0 \). If \(I(u_n) = 0 \) then \(0 < \alpha \leq E_V (u_n) = \lambda_n I(u_n) = 0 \), a contradiction. Since \(\lambda_n > \lambda_1 \) it follows that \(I(u_n) > 0 \), otherwise

\[
-\lambda_{-1} \leq - \frac{E_V (u_n)}{I(u_n)} = - \lambda_n < - \lambda_1,
\]
a contradiction. Thus $v_n := \frac{u_n}{I(u_n)} \in \mathcal{M}^+$ is such that $E_V(v_n) = \lambda_n \prec \lambda_1$. By Proposition 6.1 the sequence v_n is bounded in W so there exists $v_0 \in W$ such that $v_n \rightharpoonup u_0$ weakly in W and strongly in $L^p(\Omega) \cap L^p(\partial \Omega, \rho)$. Using the fact that $\lambda_1 \leq E_V(v_0) \leq \lim_{n \to +\infty} E_0(v_n) = \lambda_1$, we conclude that $u_0 = \pm \varphi_1$. Remember that, by Proposition 3.2, $\varphi_1 > 0$ in Ω and $\varphi_1 > 0$ on Γ_1. In the case $v_0 = \varphi_1$, let Ω_n^- be a negative nodal domain of v_n. From the convergence in measure of v_n towards v_0 we conclude that $\lambda_N(\Omega_n^-) + \rho(\overline{\Omega_n^-} \cap \Gamma_1) \to 0$ as $n \to +\infty$, in contradiction with (7.1). In the case $v_0 = -\varphi_1$ we will argue similarly.

(b) Assume $\alpha = 0$. If $I(u_n) = 0$ then, by the result of Theorem 4.1(2)(b), u_n will be a multiple of φ_λ, which is impossible as $\lambda_n \neq \lambda_\ast$. Arguing as in the previous case we have that $I(u_n) > 0$. Let us prove that the sequence $v_n = \frac{u_n}{I(u_n)} \in \mathcal{M}^+$ is bounded in W. If not, take $w_n = \frac{u_n}{\|u_n\|}$ and w_0 a weak limit of a subsequence converging strongly in $L^p(\Omega) \cap L^p(\partial \Omega, \rho)$. Then $E_V(w_0) = I(w_0) = 0$. Moreover, since

$$\int_{\Omega} |\nabla w_0|^p \, dx \leq \liminf_{n \to +\infty} (E_V(w_n) - \int_{\Omega} V|w_n|^p \, dx) = 0,$$

then $w_0 \neq 0$ otherwise $w_n \rightharpoonup w_0 = 0$ strongly in W, which will contradict that $\|w_n\| = 1$. So $\frac{w_0}{\|w_0\|^p} \in \mathcal{G}$ is a function where the value $\alpha = 0$ is achieved. By Theorem 4.1 (2)(b), w_0 is an eigenfunction for the principal eigenvalue λ_\ast. Hence we will reach a contradiction using, as before, the estimate of the measure of the nodal domains of w_n.

8. Existence of non principal eigenvalues

Our aim is to prove the existence of a sequence of eigenvalues for problem (P). In some cases we can even establish the existence of two sequences of eigenvalues, one converging to $+\infty$ and the other to $-\infty$.

For simplicity, we will assume that either $\sigma^+ \neq 0$ or $m^+ \neq 0$ and we will prove the existence of a sequence of eigenvalues going to $+\infty$ by constructing a sequence of critical values of E_V restricted to \mathcal{M}^+ via the Ljusternik-Schnirelmann critical theory on C^1 manifolds (see [21] or [22]). In order to do so, we define for any $k \in \mathbb{N}^*$,

$$\mathcal{A}_k \overset{\text{def}}{=} \{K \subset \mathcal{M}^+ | K \text{ symmetric, compact and } i(K) = k\},$$

where $i(K)$ denotes the Krasnoselski’s genus of K on $W^{1,p}(\Omega)$. Let us first investigate when \mathcal{A}_k is a non empty set.

Lemma 8.1. Assume that either $\sigma^+ \neq 0$ or $m^+ \neq 0$. In the case $m^+ = 0$ assume furthermore that $N > 1$. Then $\mathcal{A}_k \neq \emptyset$ for all $k \in \mathbb{N}^*$.

Proof. Let $k \in \mathbb{N}^*$ be fixed. If $m^+ \neq 0$, we can construct functions $e_i \in W^{1,p}_0(\Omega)$, $i = 1, \ldots, k$, such that for $i \neq j$, $\text{supp} e_i \cap \text{supp} e_j = \emptyset$ and $\int_\Omega |m| e_i|^p \, dx > 0$ by regularizing, for instance, characteristic functions on small disjoint balls of $\overline{\Omega}$ that have non empty intersection with \mathcal{M}^+. Then

$$F := \left\{ \sum_{i=1}^k a_i e_i | a_i \in \mathbb{R} \right\} \cap \mathcal{M}^+ \in \mathcal{A}_k.$$

If $m^+ = 0$ we show how to construct functions $e_i \in W$ with $\text{supp} e_i \cap \text{supp} e_j = \emptyset$ and $\text{supp} \gamma(e_i) \cap \text{supp} \gamma(e_j) = \emptyset$, if $i \neq j$. To be more precise, pick k disjoint balls B_i of Ω such that $S_i := \overline{B_i} \cap \Gamma_1 \neq \emptyset$ and such that $\rho(S_i \cap \{x \in \Gamma_1 | \sigma(x) > 0\}) > 0$ for all $i = 1, \ldots k$. Notice that, in order to assure the existence of such disjoint supports on Γ_1, we need to assure that the boundary set Γ_1 is not a single point, and therefore we exclude the case of dimension $N = 1$. Then take $\psi_i \in C^\infty(\Gamma_1)$ a non negative function such that $a_i := \int_{\Gamma_1} \sigma_i |\psi_i|^p \, d\rho > 0$, by regularizing the characteristic
function of \(S_i \cap \{ x \in \Gamma_1 \mid \sigma(x) > 0 \} \). Let \(v_i \in C^\infty(\Omega) \) such that \(\gamma(v_i) = \psi_i \). Then multiply \(v_i \) by a regularization of the characteristic function of a small \(B^0_i \subset B_i \) chosen in such a way that

\[
\lambda_N(B^0_i) < \frac{a_i}{2\|m\|_\infty\|v_i\|_\infty},
\]

to get a function \(e_i \in W \) with trace \(\gamma(e_i) = \psi_i \), \(\text{supp} e_i \cap \text{supp} e_j = \emptyset \), if \(i \neq j \), and such that

\[
\int_\Omega m|e_i|^p \, dx + \int_{\Gamma_1} \sigma|\psi_i|^p \, d\rho > 0.
\]

Theorem 8.2. Let us assume \(\alpha > 0 \) and that either \(\sigma^+ \neq 0 \) or \(m^+ \neq 0 \). In the case \(m^+ = 0 \) assume that \(N > 1 \). Define, for any \(k \in \mathbb{N}^* \),

\[
\lambda_k \overset{\text{def}}{=} \inf_{K \in \mathcal{A}_k} \max_{u \in K} E_V(u). \tag{8.1}
\]

Then \((\lambda_k)\) is a nondecreasing sequence of eigenvalues of the problem (P) such that \(\lim_{k \to +\infty} \lambda_k = +\infty \). Moreover

\[
\lambda_2 = \inf\{ \lambda \mid \lambda > \lambda_1 \text{ and } \lambda \text{ is an eigenvalue of (P)} \}. \tag{8.2}
\]

Proof. In order to apply the Ljusternik-Schnirelmann critical theory on \(C^1 \) manifolds it suffices to prove that the restriction of \(E_V \) to \(\mathcal{M}^+ \) satisfies the Palais-Smale condition at the level \(\lambda_k \). This will imply (c.f. [21, Theorem 3.54] or [22]) both that \(\lambda_k \) is an eigenvalue associated to Problem (P), and also \(\lim_{k \to +\infty} \lambda_k = +\infty \).

Let \((u_n)\) be a Palais-Smale sequence in \(\mathcal{M}^+ \) for \(E_V \), i.e.

\[
\begin{align*}
&\text{(PS1)} \quad E_V(u_n) \longrightarrow c \\
&\text{(PS2)} \quad |\langle E'_V(u_n), \xi \rangle| \leq \varepsilon_n \|\xi\| \quad \text{for all } \xi \in T_{u_n}\mathcal{M}^+.
\end{align*}
\]

For any \(w \in W \), it is clear that

\[
a_n(w) = w - \left[\int_\Omega m|u_n|^{p-2}u_n w + \int_{\Gamma_1} \sigma|u_n|^{p-2}u_n w \right] u_n \in T_{u_n}\mathcal{M}^+.
\]

Hence, taking \(\xi = a_n(w) \) in (PS2), we get

\[
|\langle E'_V(u_n), w - A_n E_V(u_n) \rangle| \leq \varepsilon_n \|w - A_n u_n\|, \tag{8.3}
\]

where

\[
A_n := \int_\Omega m|u_n|^{p-2}u_n w + \int_{\Gamma_1} \sigma|u_n|^{p-2}u_n w.
\]

By Proposition 6.1, the sequence \(u_n \) is bounded and therefore, there exits a subsequence still denoted \(u_n \), such that \(u_n \to u_0 \) weakly in \(W \) and strongly in \(L^p(\Omega) \cap L^p(\partial\Omega, \rho) \) for some \(u_0 \). Choosing \(v = u_n - u_0 \) in (8.3) and passing to the limit we obtain

\[
\lim_{n \to +\infty} \int_\Omega |\nabla u_n|^{p-2}\nabla u_n \nabla(u_n - u_0) \, dx = 0.
\]

Applying Lemma 2.2 and Hölder inequality, one easily derives that \(\nabla u_n \to \nabla u_0 \) in \(L^p(\Omega) \) and consequently \(u_n \to u_0 \) in \(W^{1,p}(\Omega) \).

Let us prove the characterization of \(\lambda_2 \). Of course \(\lambda_2 > \lambda_1 \) otherwise one will have \(i(K_{\lambda_1}) \geq 2 \), where \(K_{\lambda_1} \) is the set of eigenfunctions in \(\mathcal{M}^+ \) associated to \(\lambda_1 \). This is a contradiction because \(\lambda_1 \) is simple. Assume now by contradiction that there exists an eigenvalue \(\lambda \) of problem

16
(P) between λ_1 and λ_2 and let $v \in \mathcal{M}^+$ a corresponding eigenfunction. Since v changes sign by Proposition 7.1, by multiplying the equation (P) by v^\pm if follows that $E_v(v^\pm) = \lambda I(v^\pm)$. It comes from this identity that $I(v^\pm) \neq 0$ otherwise $v^\pm \in \mathcal{G}$, and $E_V(v^\pm) = 0$ and therefore $\alpha \leq 0$, a contradiction. Also $I(v^\pm) > 0$ otherwise

$$-\lambda_{-1} \leq \frac{E_V(v^\pm)}{I(v^\pm)} = -\lambda < -\lambda_1,$$

which is absurd. Consider then the set

$$A = \{av^+ + bv^- \mid a, b \in \mathbb{R}\} \cap \mathcal{M}^+.$$

Using the fact that the supports of v^+ and v^- are disjoint, one can easily prove that A is homomorphic to a sphere of \mathbb{R}^2 and therefore $i(A) = 2$. Hence

$$\lambda_2 \leq \max_{v \in A} E_V(v) = \lambda,$$

a contradiction. \hfill \Box

A trivial corollary of the Theorem 8.2 is

Corollary 8.3. Assume that $\sigma^- \neq 0$ or $m^- \neq 0$. In the case $m^- \equiv 0$ assume that $N > 1$. Assume also $\alpha > 0$. Then there exists a nonincreasing sequence λ_{-k} of eigenvalues of the problem (P) defined as

$$\lambda_{-k} \overset{\text{def}}{=} \inf_{K \in B_k} \max_{u \in K} -E_V(u),$$

where $B_k \overset{\text{def}}{=} \{K \subset \mathcal{M}^- \mid K \text{ symmetric, compact and } i(K) = k\}$, satisfying $\lim_{k \to +\infty} \lambda_{-k} = -\infty$.

Remark 8.4. The characterization of λ_2 as the second eigenvalue on the right of (P) was first proved, for the Dirichlet problem and $V \equiv 0$, by [5]. In [13] a second characterization of the second eigenvalue on the right was found for the Dirichlet problem with V,m indefinite.

In the case $\alpha = 0$, it is more delicate to construct non principal eigenvalues by variational methods since the (PS) fails at the level $\lambda_1 = \lambda_{-1} = \lambda_\ast$. Indeed, notice that the eigenvalue λ_\ast of Theorem 4.1 is not achieved neither at \mathcal{M}^+ nor \mathcal{M}^-, but at any function of \mathcal{G}. Although one can define the Ljusternik-Schnirelmann sequence $\{\lambda_k\}_k$ as above, one needs a compactness condition to prove that those values are critical values of E_V restricted to the manifold \mathcal{M}^+. We will prove in the next lemma a weaker compactness condition for all levels greater than λ_\ast.

Lemma 8.5. Assume that $\alpha = 0$. Then E_V satisfies the Palais-Smith Condition of Cerami at level c ((PSC)$_c$ for short) on \mathcal{M}^+ for any $c > \lambda_\ast$.

Proof. Let us prove the (PSC)$_c$ condition for any $c > \lambda_\ast$. Let u_n be a (PSC)$_c$ sequence in \mathcal{M}^+ for E_V, i.e., there exists $\varepsilon_n \to 0$ such that

1. (PSC1) $E_V(u_n) \to c$
2. (PSC2) $\|\langle E'_V(u_n), \xi \rangle \| \leq \frac{\varepsilon_n}{1 + \|u_n\|} \|\xi\|$ for all $\xi \in T_{u_n} \mathcal{M}^+$.

Let us assume by contradiction that (u_n) is unbounded and set $v_n = \frac{u_n}{\|u_n\|}$. Up to a subsequence, there is some v_0 such that $v_n \to v_0$ in W and $v_n \to v_0$ in $L^p(\Omega) \cap L^p(\partial \Omega, \rho)$. We choose $\xi = a_n(v_n - v_0)$ in (PSC2) and divide it by $\|u_n\|^{p-1}$ to obtain

$$\|\langle E'_V(v_n), v_n - v_0 \rangle - B_n E_v(u_n) \| \leq \frac{\varepsilon_n}{1 + \|u_n\|} \left\| \frac{v_n - v_0}{\|u_n\|^{p-1}} - B_n v_n \right\|,$$

(8.4)
where
\[B_n = \int_{\Omega} m|v_n|^p v_n (v_n - v_0) + \int_{\Gamma_1} \sigma|v_n|^p (v_n - v_0). \]

By letting \(n \to \infty \) and using the \((S^+)\) property of the \(p\)-laplacian (c.f. Lemma 2.2) we get that \(v_n \to v_0 \) in \(W \) and in particular \(v_0 \neq 0 \). Moreover \(E_V(v_0) = 0 \) and \(\int_{\Omega} m|v_0|^p \, dx + \int_{\Gamma_1} \sigma |v_0|^p \, d\rho = 0 \), then \(v_0 \) achieves \(\alpha \). By Theorem 4.1(2)(b), \(v_0 \) has definite sign and is an eigenfunction of \((P)\).

Remark 8.6. It is not clear in our context if the 2nd \(L - S \) infmax-value is strictly greater than \(\lambda_* \). To our knowledge, the compactness condition (either \((PS)\) or \((PSC)\)) is needed to prove both that the second \(L - S \) infmax-value is greater than \(\lambda_1 \) and that it is a critical value of \(E_V \) restricted to \(M^+ \). We fail to give an answer to any of these questions.

Next we construct a nonprincipal eigenvalue using the ideas of [13]. We refer the reader to this paper for complete details relative of the following theorem.

Theorem 8.7. Assume that either \(\sigma^+ \neq 0 \) or \(m^+ \neq 0 \). In the case \(m^+ = 0 \) assume that \(N > 1 \).

Let us also assume that \(\alpha = 0 \).

(i) Let \(\mathcal{L} := \{ h \in C([0,1], M^+) \mid h(0) \geq 0, h(1) \leq 0 \} \). Then the value
\[\mu \overset{\text{def}}{=} \inf_{h \in \mathcal{L}} \max_{u \in \mathcal{H}([0,1])} E_V(u), \]
satisfies \(\mu > \lambda_* \).

(ii) For any \(u_1 \in M^+ \), \(u_1 \geq 0 \), such that \(E_V(u_1) < \mu \),
\[\lambda_2 \overset{\text{def}}{=} \inf_{h \in \mathcal{H}} \max_{u \in \mathcal{H}([0,1])} E_V(u), \]
where \(\mathcal{H} := \{ h \in C([0,1], M^+) \mid h(0) = u_1, h(1) = -u_1 \} \), is an eigenvalue for problem \((P)\).

(iii) \(\mu = \lambda_2 \).

(iv) \(\lambda_2 \) is the first non principal eigenvalue of problem \((P)\) satisfying (8.2).

Proof. (i) First notice that \(\mathcal{L} \neq \emptyset \) as one can always pick two functions in \(M^+ \) of definite sign, \(v_1 \geq 0, v_2 \leq 0 \), with disjoint supports and construct the path \(\gamma_1(t) := \frac{\frac{1}{p} v_1 - (1-t) \frac{1}{p} v_2}{\int \frac{1}{p} v_1 - (1-t) \frac{1}{p} v_2} \) for \(t \in [0,1] \). Then \(\gamma_1 \in \mathcal{L} \). Let us assume by contradiction that equality \(\lambda_* = \mu \) holds. Then there exists \(h_k \in \mathcal{L} \) such that \(\max_{t \in [0,1]} E_V(h_k(t)) \to \lambda_* \) when \(k \to \infty \). For every \(k \) one can find \(t_k \in [0,1] \) satisfying
\[I(h_k(t_k)^+) = I(h_k(t_k)^-) = \frac{1}{2}. \]

(8.5)

We set \(u_k = h_k(t_k) \). Notice, from (8.5), that \(2 \frac{1}{p} u_k \in M^+ \) so that \(E_V(u_k) \geq \frac{1}{2} \lambda_* \). Hence
\[\frac{1}{2} \lambda_* \leq E_V(u_k) = E_V(u_k) - E_V(u_k^-) \leq \max_{t \in [0,1]} E_V(\gamma_k(t)) - \frac{\lambda_*}{2} \to \frac{\lambda_*}{2}, \]
so that
\[\lim_{k \to +\infty} E_V(u_k) = \frac{\lambda_*}{2}. \]

(8.6)

Let us show that the sequence \((u_k)\) is bounded in \(W \). Assume by contradiction that the sequence \((u_k)\) is unbounded and set \(v_k = \frac{u_k}{\|u_k\|} \), which, up to a subsequence, converges weakly to some
\(v_0 \in W \) and strongly in \(L^p(\Omega) \cap L^p(\partial\Omega, \rho) \). From \(I(u_k) = 1 \) we infer that \(I(v_0) = 0 \). If \(v_0 = 0 \) then from
\[
\int_\Omega |\nabla v_0|^p \, dx \leq \liminf_{k \to \infty} \frac{E_V(u_k)}{\|u_k\|^p} - \int_\Omega |u_k|^p \, dx = 0
\]
we deduce that \(v_k \to v_0 = 0 \) strongly in \(W^{1,p}(\Omega) \), a contradiction with \(\|v_k\| = 1 \). Thus it must be \(v_0 \neq 0 \). From (PSC1) we infer \(E_V(v_0) \leq \liminf_{k \to \infty} \frac{E_V(u_k)}{\|u_k\|^p} = 0 \), then \(\frac{u_0}{\|u_0\|^p} \) realizes \(\alpha \). By Theorem 4.1(2)(b), \(v_0 \) is a definite eigenfunction for \((P) \) associated to \(\lambda_* \). If, say, \(v_0 > 0 \), then the sequence \(u_k^- \) converges to \(0 \) in measure. By Proposition 6.3 and (8.6) we conclude that the sequence \(u_k^- \) is bounded in \(W \). Then, up to a subsequence, \(u_k^- \) converges weakly to some \(z_0 \) that satisfies \(E_V(z_0) = \frac{1}{2} \lambda_* \) and \(I(z_0) = \frac{1}{2} \). Hence \(2\frac{1}{2}z_0 \in M^+ \) realizes \(\lambda_* \). Thus \(z_0 > 0 \), a contradiction with the fact that \(u_k^- \) converges to \(0 \) in measure. Therefore the sequence \(u_k^- \) is bounded. Since the sequence \(u_k \) is bounded, passing to the limit for a weakly convergent subsequence, we prove that the value \(\lambda_* \) is achieved at some point of \(M^+ \), a contradiction. We have just proved that \(\mu > \lambda_* \).

(ii) Now, let us pick a function \(u_1 \) (for instance, a function belonging to the sequence defined in (4.3)) such that \(E_V(u_1) < \mu \). That \(\lambda_2 \) defined in the statement is an eigenvalue for problem \((P) \) is a consequence, for instance of the version of Mountain Pass Theorem on \(C^1 \)-manifolds of [7, Theorem 4.1]. Observe that: (1) by Lemma 8.5, (PSC)\(_{\lambda_2} \) holds because \(\lambda_* < \mu \leq \lambda_2 \) and (2) the geometric condition
\[
\max\{E_V(u_1), E_V(-u_1)\} < \mu \leq \lambda_2
\]
also holds.

(iii) Let us prove that \(\lambda_2 \leq \mu \). Let \(\epsilon > 0 \) be small enough and \(h \in L \) such that
\[
\max_h E_V \leq \mu + \epsilon.
\]
Put \(u_0 = h(0) \). We claim that there exists a path \(\tilde{h} \) in \(M^+ \) from \(u_0 \) to \(u_1 \) such that \(E_V \) stays below the level \(\mu + \epsilon \) on \(\tilde{h} \) and consequently \(\lambda_2 \leq \mu + \epsilon \) and the conclusion follows (since a similar argument holds for \(h(1) \) and \(-u_1 \)). For that purpose, we consider \(V + t \) for \(t > 0 \) small in order to have \(\alpha(V + t) > 0 \) and consequently the Palais-Smale condition will be satisfied everywhere. We also choose \(t > 0 \) small enough to have \(\max\{E_{V+t}(u_0), E_{V+t}(u_1)\} < \mu(V + t) + \epsilon \). Let us consider the open set \(O \) defined as \(\{u \in M^+ \mid E_{V+t}(u) < \mu(V + t) + \epsilon \} \). Observe that, if \(t > 0 \) is small enough, then \(\mu(V) < \mu(V + t) \). It follows from Lemma 14 of [6] that \(O \) has at most two arcwise connected components (because \(\varphi_1(V + t) \) and \(-\varphi_1(V + t) \) are the only critical points of the restriction of \(E_{V+t} \) to \(M^+ \) in \(O \)). If \(u_1 \) and \(-u_1 \) lie in the same component then it comes that \(\lambda_2 \leq \mu(V + t) + \epsilon \). Otherwise \(u_0 \) can be connected by a path to either \(u_1 \) or \(-u_1 \). But since \(E_{V+t}(u) = E_{V+t}(\pm|u|) \) for every \(u \in M^+ \), we can always find a path from \(u_0 \) to \(u_1 \) by taking absolute value.

(iv) Finally, the fact that \(\lambda_2 = \mu \) is the first nonprincipal eigenvalue is due to the following observation. If \(\lambda > \lambda_* \) is an eigenvalue for \((P) \) and \(u \) is a corresponding eigenfunction, then the path \(h \) defined as \(h(t) = \frac{tu^+ - (1-t)u^-}{(1-(1-t)^{-\mu})^{1/p}} \) is well defined (we leave the details to the reader) and belongs to \(H \). Moreover \(E_V(h(t)) = \lambda \) for all \(t \in [0, 1] \) because \(E_V(u^\pm) = \lambda I(u^\pm) \). Thus it comes from the definition of \(\mu \) that \(\mu \leq \lambda \). \(\square \)

Here below we give an example of problem \((P) \) in dimension \(N = 1 \) with a weight \(\sigma \) changing sign showing that one can have only one eigenvalue on the right of \(\lambda_1 \).

Example 8.7.1. Let us consider the problem
\[
\begin{align*}
-u'' + u &= -\sigma_1 u \quad \text{in } [0,1] \\
-\sigma_1 u'(0) &= \lambda u(0), \\
\sigma_2 u'(1) &= \lambda u(1)
\end{align*}
\]
With \(\sigma_1 + \sigma_2 = -1 \) and \(\sigma_1 < -1 \). Hence \(\lambda_1 = -1 \) is a principal eigenvalue with \(u(t) = t + \sigma_1 \) as corresponding eigenfunction. Any solution of the differential equation for \(\beta^2 := \lambda + 1 > 0 \) is of the form \(u(x) = Ae^{\beta x} + Be^{-\beta x} \) and the boundary condition are satisfied if and only if

\[
e^{2\beta} = \frac{\sigma_1 \sigma_2 \beta^2 - \beta(\beta^2 - 1) + (\beta^2 - 1)^2}{\sigma_1 \sigma_2 \beta^2 + \beta(\beta^2 - 1) + (\beta^2 - 1)^2} = h(\beta).
\]

A simple analysis of \(h \) shows that \(h(\beta) \leq 1 + 2\beta \), and that equality holds if and only if \(\beta = 0 \).

Thus, \(\lambda = \lambda_1 = -1 \) and there are not eigenvalues greater than \(\lambda_1 = -1 \).

9. Appendix

We want to give here a proof of the boundedness of the solutions of problem \((P)\). This type of result is well established for Dirichlet or Neumann boundary conditions and it has already been proved by several authors, see for instance [16]. However we didn’t find any precise reference for the type of equations with the mixed boundary conditions that we are considering here. We include the proof of the following theorem for sake of completeness.

Theorem 9.1. Let \(\Omega \) be a bounded regular domain satisfying the main assumptions of the introduction. Let \(f : \Omega \times \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \Gamma_1 \times \mathbb{R} \rightarrow \mathbb{R} \) be two Carathéodory functions satisfying the growth assumption

\[
|f(x, t)| \leq a|t|^{q-1} + b \quad \forall (x, t) \in \Omega \times \mathbb{R}; \tag{9.1}
\]

\[
|g(x, t)| \leq a|t|^{r-1} + b \quad \forall (x, t) \in \Gamma_1 \times \mathbb{R}, \tag{9.2}
\]

for some \(a, b \in \mathbb{R}^+ \), \(1 \leq q \leq p^* \) and \(1 \leq r \leq p_* \). Then there exists a constant \(C = C(a, b, q, r, \Omega, \Gamma_1, \|u\|_{p^*}, \|u\|_{p_*, \Gamma_1}) \) such that any weak solution \(u \) of

\[
\begin{align*}
-\Delta_p u &= f(x, u) \quad \text{in} \quad \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} &= g(x, u) \quad \text{on} \quad \Gamma_1, \\
u &= 0 \quad \text{on} \quad \Gamma_2,
\end{align*}
\tag{9.3}
\]

satisfies

(i) if \(q < p^* \) and \(r < p_* \) then

\[
\|u\|_\infty + \|u\|_{\infty, \Gamma_1} \leq C,
\]

(ii) if \(q = p^* \) or \(r = p_* \), then \(u \in L^1(\Omega) \cap L^1(\partial \Omega, \rho) \) for all \(t \in [1, +\infty] \) and there exists a constant \(C_t \), depending on the previous parameters and on \(t \), such that

\[
\|u\|_t + \|u\|_{t, \Gamma_1} \leq C_t.
\]

Proof. By Sobolev’s embedding theorem, it suffices to consider the case \(N \geq p \). We may assume that \(u \geq 0 \) otherwise we will consider test functions involving \(u^+ \) and \(u^- \) to obtain the a-priori bounds.

(i) Let us assume that \(1 \leq q < p^* \) and \(1 \leq r < p_* \). For \(M > 0 \) we define \(u_M(x) := \min \{u(x), M\} \) and \(\Phi(x) := u_M^{kp+1}(x) \in W \cap L^\infty(\Omega) \cap L^\infty(\partial \Omega, \rho) \) for \(k > 0 \) to be determined later. Using \(\Phi \) as a test function in \((9.3)\), one obtains

\[
c_k^{-1} \|\nabla (u_M^{kp+1})\|_p^p \leq a \int_{\Omega} u_M^{kp+q} \, dx + \int_{\Gamma_1} u_M^{kp+r} \, d\rho + b \int_{\Omega} u_M^{kp+1} \, dx + \int_{\Gamma_1} u_M^{kp+1} \, d\rho.
\]
where $c_k := \frac{(k+1)^p}{kp+1}$. From now on C will denote a generic constant independent of k, but depending on $p, q, r,$ and Ω. Since $c_k > 1$ for any $k > 0$, adding $\|u_M^{(k+1)}\|_{p, \Gamma_1}$ to each side, letting $M \to +\infty$ and using Young's inequality twice it comes
\[
\|u^{(k+1)}\|_W \leq C c_k^{1/p} \left(\int_{\Omega} u^{kp+q} \, dx + \int_{\Gamma_1} u^{kp+r} \, d\rho + 1 \right)^{1/p}.
\]

Since our purpose is to make $k \to +\infty$ we will replace all the constants of the form $C^{1/k}$ that should appears in Holder’s estimates by a generic constant C.

By Sobolev’s embedding theorem, there exists C_1 such that
\[
\|u^{k+1}\|_{p^*} + \|u^{k+1}\|_{p, \Gamma_1} \leq C_1 \|u^{k+1}\|_W
\]
and hence
\[
\|u\|_{p^*(k+1)} + \|u\|_{p, (k+1), \Gamma_1} \leq C c_k^{1/p(k+1)} \left(\int_{\Omega} u^{kp+q} \, dx + \int_{\Gamma_1} u^{kp+r} \, d\rho + 1 \right)^{1/p(k+1)}.
\] (9.4)

Put $k_1 = \min\left\{ \frac{p^*-q}{p}, \frac{p-r}{p} \right\}$, $\xi_0 = \|u\|_{p^*} + \|u\|_{p^*}$ and $\xi_1 = \|u\|_{p^*(k_1+1)} + \|u\|_{p, (k_1+1), \Gamma_1}$. Using Holder’s inequality and that max$\{k_1 p + q, k_1 p + r\} \leq p^*$ it comes from (9.4) that
\[
\xi_1 \leq C c_{k_1}^{1/p(k_1+1)} (\xi_0 + 1)^{\frac{p^*}{p(k_1+1)}}.
\]

Define successively
\[
k_n = \min\left\{ \frac{(k_n-1+1)p^*-q}{p}, \frac{(k_n-1+1)p^*-r}{p} \right\}, \quad c_n := c_{k_n}.
\]

Observe that $k_n > 0$ for all $n \in \mathbb{N}$. Let us denote for simplicity $\xi_n := \|u\|_{p^*(k_n+1)} + \|u\|_{p, (k_n+1), \Gamma_1}$. By induction we get from (9.4) that
\[
\xi_n \leq C c_n^{1/p(k_n+1)} (\xi_{n-1} + 1)^{p^*/p(k_n+1)}.
\] (9.5)

Observe that $\lim_{n \to +\infty} k_n = +\infty$ and therefore $u \in L^{p^*}(\Omega) \cap L^{p^*}(\partial\Omega, \rho)$ for all $r > 1$. To obtain an uniform bound for u, we define a new sequence
\[
q_0 := p^*, \quad q_{n+1} := p\left(\frac{q_n}{sp} + \frac{1}{p'}\right)
\]
where s is any fixed number satisfying $1 < s < \frac{p^*}{p}$. Let us show the new estimate
\[
\left(\|u\|_{q_{n+1}} + \|u\|_{q_{n+1}, \Gamma_1}\right)^{q_{n+1}} \leq C \left(\frac{p^*}{q_n}\right)^{p^*/p} (\|u\|_{q_n} + \|u\|_{q_n, \Gamma_1})^{q_n p^*/sp}
\] (9.6)

Indeed, since we know that $u \in L^{p^*}(\Omega) \cap L^{p^*}(\partial\Omega, \rho)$ for all $r > 1$, we can use $u^{q_{n+1}}$ as a test function to get from the right hand side of the equation (9.3)
\[
R = \int_{\Omega} f(x, u) u^{q_{n+1}} \, dx + \int_{\Gamma_1} g(x, u) u^{q_{n+1}} \, d\rho
\leq \int_{\Omega} |au^{q_n-1} + b| u^{q_{n+1}} \, dx + \int_{\Gamma_1} |au^{r-1} + b| u^{q_{n+1}} \, d\rho
\leq D (\|u\|_{q_n} + \|u\|_{q_n, \Gamma_1})^{q_{n+1}}
\]

21
with \(D = \| au^{q-1} + b \|_{s'} + \| au^{r-1} + b \|_{s'_1}, \) and in the left hand side (the gradient term) of (3.8), after using Sobolev’s embedding as above,
\[
C_1 \frac{q_n}{s} \left(\frac{q_n}{sp} \right) + \frac{1}{p} = -p \left(\| u \|_{q_n+1} + \| u \|_{q_n+1', r_1} \right)^{\frac{pq}{q_n+1}} \leq L,
\]
where
\[
L = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla (u^{q_n/s}) \, dx.
\]
The equality \(R = L \) gives the estimate (9.6). For simplicity we denote
\[
\theta_n := q_n \ln (\| u \|_{q_n} + \| u \|_{q_n, r_1}), \quad B_n := \ln \left(C_1 \left(\frac{q_{n+1}}{q_n} \right)^{p^*} \right).
\]
By induction we get from (9.6) that
\[
\theta_{n+1} \leq B_n + (p_*/sp) \theta_n.
\]
Then
\[
\theta_n \leq (p_*/sp)^n \theta_0 + \sum_{i=1}^{n} (p_*/sp)^i B_{n-i}. \tag{9.7}
\]
A simple estimate gives
\[
d_0 \leq \sum_{i=1}^{n} (p_*/sp)^i B_{n-i} \leq d_1 (p_*/sp)^n
\]
for some \(d_0, d_1 > 0, \) and also we have \(q_n \geq d_2 (p_*/sp)^n \) for some \(d_2 > 0. \) Then from (9.7)
\[
\frac{\theta_n}{q_n} \leq \frac{(\theta_0 + d_1)(p_*/sp)^n}{q_n} \leq \frac{\theta_0 + d_1}{d_2}
\]
and hence
\[
\| u \|_{q_n} + \| u \|_{r_n, r_1} \leq e^{\frac{\theta_0 + d_1}{d_2}}.
\]
We conclude by letting \(n \to +\infty. \)

(ii) Assume for instance that \(q = p^* \) and \(r = p_*. \) The proof in the case when one of these exponents is subcritical can be done using both the arguments of case (i) and those of the present case. The details are left to the reader. Assume as before that \(u \geq 0 \) and take, for any \(t \geq p, \) the test function \(\Phi(x) = u_M^{t+1}(x). \) After multiplying the equation (9.3) by \(\Phi, \) integrating by parts and letting \(M \to +\infty, \) one obtains, from the gradient term, in the left hand side,
\[
L := \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \Phi \, dx = C_t \int_{\Omega} |\nabla u|^p \, dx \geq S_t (\| u \|_{r_2}^{t} + \| u \|_{r_2, r_1}),
\]
where we have used Sobolev’s embedding to obtain the last inequality. From the right hand side we get
\[
R := \int_{\Omega} f(x) u \Phi \, dx + \int_{\Gamma_1} g(x, u) \Phi \, d\rho
\]
\[
\leq a \int_{\Omega} u^{p^*+t-p} \, dx + \int_{\Gamma_1} u^{p^*+t-p} \, d\rho + b \int_{\Omega} u^{t-p+1} \, dx + \int_{\Gamma_1} u^{t-p+1} \, d\rho.
\]
To estimate the 1st and the 2nd integrals of \(R \) we define, for all \(m > 0, \) the sets
\[
\Omega_m := \{ x \in \Omega \mid u(x) \geq m \}, \quad \Gamma_m := \{ x \in \Gamma_1 \mid u(x) \geq m \}
\]
and we obtain, using again Holder’s inequality,
\[
\int_{\Omega} u^{p^*+t-p} \, dx \leq m^{p^*-p} \int_{\Omega \setminus \Omega_m} u^t \, dx + \int_{\Omega_m} u^{p^*+t-p} \, dx
\]
\[
\leq m^{p^*-p} \|u\|_t^{t} + \|u\|_{\frac{tp^*}{p}}^{t} \left(\int_{\Omega_m} u^p \, dx \right)^{p/N};
\]
and similarly
\[
\oint_{\Gamma_1} u^{p^*+t-p} \, d\rho \leq m^{p^*-p} \|u\|_{t,\Gamma_1}^{t} + \|u\|_{\frac{tp^*}{p},\Gamma_1}^{t} \left(\oint_{\Gamma_m} u^p \, d\rho \right)^{(p-1)/(N-1)}.
\]
Choose \(m > 0 \) such that \(\left(\int_{\Omega_m} u^p \, dx \right)^{p/N} + \left(\oint_{\Gamma_m} u^p \, d\rho \right)^{(p-1)/(N-1)} < S_t/2 \) and use that \(R = L \) to get
\[
S_t/2 \left(\|u\|_{\frac{tp^*}{p}}^{t} + \|u\|_{\frac{tp^*}{p},\Gamma_1}^{t} \right) \leq C_t \left(\|u\|_t^{t} + \|u\|_{t,\Gamma_1}^{t} + \int_{\Omega} u^{t-p+1} \, dx + \oint_{\Gamma_1} u^{t-p+1} \, d\rho \right)
\]
and, after using Holder’s and Young’s inequalities for the 3rd and 4th integrals,
\[
\frac{S_t}{4} \left(\|u\|_{\frac{tp^*}{p}}^{t} + \|u\|_{\frac{tp^*}{p},\Gamma_1}^{t} \right) \leq C_t \left(\|u\|_t^{t} + \|u\|_{t,\Gamma_1}^{t} + 1 \right).
\] (9.8)
Finally, we define
\[
t_0 := p, \quad t_n := p(\frac{p_n}{p})^{n}
\]
to obtain from (9.8) successively that \(u \in L^{\frac{tp^*}{p}}(\Omega) \cap L^{\frac{tp^*}{p}}(\partial \Omega, \rho) \). Since \(t_n \to +\infty \), we get the conclusion. \(\square \)

Acknowledgments. This work was partly carried out while the first author was visiting the IMSP of the Université d’Abomey Calavi (Porto-Novo) and also while the second author was visiting the Université du Littoral Côte d’Opale (ULCO) and the Université Libre de Bruxelles (ULB). We would like to express our gratitude to those institutions.

