CPI1 - ANALYSE 1.2

CORRECTION Exercices Chapitre 1 - Suites géométriques.

Exercice 1.1

On peut utiliser les 3 résultats suivants pour traiter certaines suites de l'exercice 1 :

- On a, au voisinage de 0, le développement limité $\ln(1+x) = x + o(x)$ où la notation "o" de Landau signifie (voir page 14 du cours, Proposition 1.1.11, point 2.) que le reste du DL est négligeable devant x. On peut alors écrire $\ln(1+x) \sim x$.
- En posant y=1+x, on a, au voisinage de 1, le DL : $\ln y=y-1+o(y) \sim y-1$.
- Si x > 0, $x^a = \exp(\ln x^a) = \exp(a \ln x)$.

1.
$$u_n = \frac{n - (-1)^n}{n + (-1)^n} = \frac{1 - \frac{(-1)^n}{n}}{1 + \frac{(-1)^n}{n}} \xrightarrow[n \to +\infty]{} 1 \text{ donc } \lim_{n \to +\infty} u_n = 1.$$

2.
$$u_n = (-1)^n \frac{n+1}{n+2} \underset{+\infty}{\sim} (-1)^n \text{ donc } (u_n) \text{ diverge.}$$

3.
$$u_n = \frac{E\left(\left(n + \frac{1}{2}\right)^2\right)}{E\left(\left(n - \frac{1}{2}\right)^2\right)} = \frac{E\left(n^2 + n + \frac{1}{4}\right)}{E\left(n^2 - n + \frac{1}{4}\right)} = \frac{n^2 + n}{n^2 - n} \underset{n \to +\infty}{\longrightarrow} 1 \text{ donc } \lim_{n \to +\infty} u_n = 1.$$

$$4. \ u_n = \sqrt[3]{n^3 + 2} - \sqrt[3]{n^3 - 1} = n\left(1 + \frac{2}{n^3}\right)^{\frac{1}{3}} - n\left(1 - \frac{1}{n^3}\right)^{\frac{1}{3}} = n\left[\left(1 + \frac{2}{3n^3} + o\left(\frac{1}{n^3}\right)\right) - \left(1 - \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right)\right]$$

Donc $u_n \sim \frac{1}{n^2}$ et on obtient $\lim_{n \to +\infty} u_n = 0$.

5.
$$u_n = n^2 \ln \frac{n^2 + 1}{n^2 - 1}$$
. Comme $\frac{n^2 + 1}{n^2 - 1} \underset{+\infty}{\sim} 1$ on a $u_n \underset{+\infty}{\sim} n^2 \left(\frac{n^2 + 1}{n^2 - 1} - 1 \right) = n^2 \left(\frac{2}{n^2 - 1} \right) = \frac{2}{1 + \frac{1}{n^2}}$ donc $\lim_{n \to +\infty} u_n = 2$.

6.
$$u_n = \sin(\pi \sqrt{n^2 + 1}) = \sin\left(\pi n \left(1 + \frac{1}{n^2}\right)^{\frac{1}{2}}\right) = \sin\left(\pi n + \frac{\pi}{2n} + o\left(\frac{1}{n}\right)\right) = (-1)^n \sin\left(\frac{\pi}{2n} + o\left(\frac{1}{n}\right)\right)$$
 et on trouve finalement que $\lim_{n \to +\infty} u_n = 0$.

7.
$$u_n = n^2 \sin \frac{1}{n^\alpha} \ (\alpha \in \mathbb{R}_+)$$

7.
$$u_n = n^2 \sin \frac{1}{n^{\alpha}} \ (\alpha \in \mathbb{R}_+)$$

• Si $\alpha = 0, \ u_n = n^2 \sin 1 \underset{n \to +\infty}{\longrightarrow} +\infty.$

• Si
$$\alpha > 0$$
, $u_n \sim \frac{1}{n^{\alpha - 2}}$.
. si $\alpha > 2$, $u_n \xrightarrow[n \to +\infty]{} 0$.
. si $0 < \alpha < 2$, $u_n \xrightarrow[n \to +\infty]{} +\infty$.

. si
$$\alpha > 2$$
, $u_n \xrightarrow[n \to +\infty]{} 0$.

$$\sin 0 < \alpha < 2, u_n \xrightarrow[n \to +\infty]{} +\infty$$

. si
$$\alpha = 2$$
, $u_n \xrightarrow[n \to +\infty]{n \to +\infty} 1$.

8.
$$u_n = \frac{\sum_{k=0}^{n} (3k+1)}{\sum_{k=0}^{n} (2k+3)} = \frac{3\sum_{k=0}^{n} k + \sum_{k=0}^{n} 1}{2\sum_{k=0}^{n} k + 3\sum_{k=0}^{n} 1} = \frac{3\frac{n(n+1)}{2} + n}{2\frac{n(n+1)}{2} + 3n} = \frac{3n^2 + 5n + 2}{2n^2 + 8n + 6} \text{ donc } \lim_{n \to +\infty} u_n = \frac{3}{2}$$

9.
$$u_n = \frac{x^n - y^n}{x^n + y^n}, (x, y) \in \mathbb{R}^2.$$

- Si n est pair, $x^n + y^n = 0 \Leftrightarrow x = y = 0$.
- Si n est impair, $x^n + y^n = 0 \Leftrightarrow x + y = 0$.

 (u_n) est donc définie pour $(x,y) \in \mathbb{R}^2$ privé de la droite x+y=0. On suppose dorénavant que $x+y\neq 0$.

• Si
$$x = 0, u_n = -1$$

• Si
$$x \neq 0$$
, on pose $k = \frac{y}{x}$ et le terme général de la suite s'écrit $u_n = \frac{1 - k^n}{1 + k^n}$.

. Si
$$|k| < 1$$
, $u_n \underset{n \to +\infty}{\longrightarrow} 1$.

. Si
$$|k| > 1$$
, $u_n \xrightarrow[n \to +\infty]{} -1$.

. Si
$$k = 1, u_n = 0$$
.

10.
$$u_n = \sqrt[n]{n^2} = (n^2)^{\frac{1}{n}} = e^{\frac{1}{n} \ln n^2} = e^{\frac{2}{n} \ln n}$$
. Or, $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$ donc $\lim_{n \to +\infty} u_n = 1$.

11.
$$u_n = \sqrt[n]{a^n + b^n}, (a, b) \in \mathbb{R}^2_+.$$

• Si $a = b = 0, u_n = 0.$

• Si
$$a = b = 0$$
, $u_n = 0$.

• Si
$$(a,b) \neq (0,0)$$
, $\ln u_n = \frac{1}{n} \ln(a^n + b^n)$.

. Si
$$0 \le a < b$$
, $\ln u_n = \frac{1}{n} \ln \left(b^n \left(1 + \frac{a^n}{b^n} \right) \right) = \frac{1}{n} \left(n \ln b + \ln \left(1 + \frac{a^n}{b^n} \right) \right) \xrightarrow[n \to +\infty]{} \ln b$. Si $0 \le b < a$, on obtient de la même façon $\ln u_n \xrightarrow[n \to +\infty]{} \ln a$.

. Si
$$0 \le b < a$$
, on obtient de la même façon $\ln u_n \xrightarrow[n \to +\infty]{} \ln a$

Par conséquent, $\lim_{n \to +\infty} u_n = \max(a, b)$.

12.
$$u_n = n(\sqrt[n]{5} - 1) = n(e^{\frac{1}{n}\ln 5} - 1) \underset{+\infty}{\sim} n\left(\frac{1}{n}\ln 5\right) = \ln 5$$
. Donc $\lim_{n \to +\infty} u_n = \ln 5$.

13. On a
$$\ln u_n = n \ln \left(3e^{\frac{1}{n} \ln 2} - 2e^{\frac{1}{n} \ln 3} \right) \sim n \left(3e^{\frac{1}{n} \ln 2} - 2e^{\frac{1}{n} \ln 3} - 1 \right) \operatorname{car} 3e^{\frac{1}{n} \ln 2} - 2e^{\frac{1}{n} \ln 3} \sim 1.$$
 Or,

$$3e^{\frac{1}{n}\ln 2} - 2e^{\frac{1}{n}\ln 3} - 1 = 3\left(1 + \frac{1}{n}\ln 2 + o\left(\frac{1}{n}\right)\right) - 2\left(1 + \frac{1}{n}\ln 3 + o\left(\frac{1}{n}\right)\right) - 1 \underset{+\infty}{\sim} \frac{3}{n}\ln 2 - \frac{2}{n}\ln 3 = \frac{1}{n}\ln\frac{8}{9}$$

D'où,
$$\ln u_n \underset{+\infty}{\sim} \ln \frac{8}{9}$$
 et $\lim_{n \to +\infty} u_n = \frac{8}{9}$.

14.
$$u_n = (\operatorname{th} n)^n$$
. On a $\ln u_n = n \ln(\operatorname{th} n) = n \ln \frac{1 - e^{-2n}}{1 + e^{-2n}} \sim n \left(\frac{1 - e^{-2n}}{1 + e^{-2n}} - 1 \right) \sim -2ne^{-2n} \longrightarrow_{n \to +\infty} 0$ donc $\lim_{n \to +\infty} u_n = 1$.

15.
$$u_n = \frac{C_n^k}{n^k}$$
 (k entier fixé). Pour $n \ge k$, $u_n = \frac{n(n-1)\dots(n-k+1)}{k!n^k} \underset{+\infty}{\sim} \frac{n^k}{k!n^k}$ donc $\lim_{n \to +\infty} u_n = \frac{1}{k!}$.

Exercice 1.2 | Correction:

1. Le résultat se trouve aisément par mise au même dénominateur et identification. On obtient

$$\forall k \in \mathbb{N}^\star, \, u_k = \frac{1}{2}\frac{1}{k} - \frac{1}{k+1} + \frac{1}{2}\frac{1}{k+2}$$

2. On a
$$S_n = \sum_{k=1}^n u_k = \frac{1}{2} \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} + \frac{1}{2} \sum_{k=1}^n \frac{1}{k+2} = \frac{1}{2} \sum_{k=1}^n \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} + \frac{1}{2} \sum_{k=3}^{n+2} \frac{1}{k}.$$

$$\frac{1}{2}\sum_{k=3}^{n}\frac{1}{k} - \sum_{k=3}^{n}\frac{1}{k} + \frac{1}{2}\sum_{k=3}^{n}\frac{1}{k} = 0$$

On peut donc écrire que :

$$S_n = \frac{1}{2} \left(1 + \frac{1}{2} \right) - \left(\frac{1}{2} + \frac{1}{n+1} \right) + \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n+2} \right)$$

et conclure que $\lim_{n \to +\infty} S_n = \frac{1}{4}$.

Exercice 1.3 Correction:

1. On remarque dans un premier temps que $k^3 - 4k = k(k-2)(k+2)$ donc, pour $k \ge 3$,

$$u_k = \frac{2k-1}{k(k-2)(k+2)} = \frac{1}{4}\frac{1}{k} + \frac{3}{8}\frac{1}{k-2} - \frac{5}{8}\frac{1}{k+2}$$

Par conséquent,
$$S_n = \sum_{k=3}^n u_k = \frac{1}{4} \sum_{k=3}^n \frac{1}{k} + \frac{3}{8} \sum_{k=1}^{n-2} \frac{1}{k} - \frac{5}{8} \sum_{k=5}^{n+2} \frac{1}{k}$$
.

On fait ensuite varier k de 5 à n-2: on remarque que $\frac{1}{4}\sum_{k=1}^{n-2}\frac{1}{k}+\frac{3}{8}\sum_{k=1}^{n-2}\frac{1}{k}-\frac{5}{8}\sum_{k=1}^{n-2}\frac{1}{k}=0$. On en déduit que

$$S_n = \frac{1}{4} \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{n-1} + \frac{1}{n} \right) + \frac{3}{8} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) - \frac{5}{8} \left(\frac{1}{n-1} + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right)$$

et ainsi, $\lim_{n \to +\infty} S_n = \frac{89}{66}$.

2.
$$P_n = \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right)$$
. On a donc $S_n := \ln P_n = \sum_{k=2}^n \ln \left(1 - \frac{1}{k^2}\right) = -2\sum_{k=2}^n \ln k + \sum_{k=2}^n \ln(k-1) + \sum_{k=2}^n \ln(k+1)$. car $1 - \frac{1}{k^2} = \frac{k^2 - 1}{k^2} = \frac{(k-1)(k+1)}{k^2}$. Par décalage des indices, il reste :

$$S_n = -2(\ln 2 + \ln(n-1)) + (\ln 1 + \ln 2) + (\ln n + \ln(n+1))$$

D'où : $\lim_{n \to +\infty} S_n = -\ln 2$. Finalement, $\lim_{n \to +\infty} P_n = \frac{1}{2}$.

Exercice 1.4 | Correction:

1.
$$u_n = \frac{\sin n}{n}, \forall n \in \mathbb{N}^*, |u_n| \le \frac{1}{n} \text{ et } \lim_{n \to +\infty} u_n = 0.$$

2.
$$u_n = \left(\frac{1}{3}\sin n\right)^n, \forall n \in \mathbb{N}, |u_n| \le \left(\frac{1}{3}\right)^n \Rightarrow \lim_{n \to +\infty} u_n = 0.$$

3.
$$u_n = \sqrt[3]{3 + \cos n}, \forall n \in \mathbb{N}, \sqrt[n]{2} \le u_n \le \sqrt[4]{n} \Rightarrow \lim_{n \to +\infty} u_n = 1$$

4.
$$u_n = \frac{n!}{n^n}, \forall n \in \mathbb{N}^*, 0 \le u_n \le \frac{n^{n-1}}{n^n} = \frac{1}{n} \Rightarrow \lim_{n \to +\infty} u_n = 0.$$

5.
$$u_n = \frac{1}{n^{\alpha}} \sqrt[n]{\frac{(2n)!}{n!}} (\alpha > 1)$$
. On note que $\ln(u_n) = -\alpha \ln n + \frac{1}{n} [\ln(n+1) + \ldots + \ln 2n]$. Comme

$$n\ln(n+1) \le \ln(n+1) + \ldots + \ln 2n \le n\ln 2n \Leftrightarrow \ln(n+1) \le \frac{1}{n}[\ln(n+1) + \ldots + \ln 2n] \le \ln 2n$$

on a

$$\ln(n+1) - \alpha \ln n \le \ln u_n \le \ln 2n - \alpha \ln n \Leftrightarrow \ln \left(\frac{n+1}{n^{\alpha}}\right) \le \ln u_n \le \ln \frac{2n}{n^{\alpha}}$$

Donc $\forall n \in \mathbb{N}^*, \frac{n+1}{n^{\alpha}} \leq u_n \leq \frac{2n}{n^{\alpha}}$. Comme $\alpha > 1$, $\lim_{n \to +\infty} u_n = 0$.

6.
$$u_n = \sum_{k=0}^n \frac{n}{n^2 + k}$$
. On a $\forall n \in \mathbb{N}^*$, $(n+1)\frac{n}{n^2 + n} \le u_n \le (n+1)\frac{n}{n^2}$. Donc, $\lim_{n \to +\infty} u_n = 1$.

7.
$$u_n = \sum_{k=1}^{2n+1} \frac{1}{\sqrt{n^2 + k}}$$
. On a $\forall n \in \mathbb{N}$, $\frac{2n+1}{\sqrt{n^2 + 2n + 1}} \le u_n \le \frac{2n+1}{\sqrt{n^2 + 1}}$. Par conséquent, $\lim_{n \to +\infty} u_n = 2$.

8.
$$u_n = \sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + 2k}}$$
. $\forall n \in \mathbb{N}, u_n \ge \frac{n^2}{\sqrt{n^2 + 2n^2}} = \frac{n}{\sqrt{3}}$. Donc $\lim_{n \to +\infty} u_n = +\infty$.

9.
$$u_n = \sum_{k=n}^{2n} e^{-\sqrt{k}}$$
. On a $\forall n \in \mathbb{N}$, $(n+1)e^{-\sqrt{2n}} \le u_n \le (n+1)e^{-\sqrt{n}}$. Ainsi, $\lim_{n \to +\infty} u_n = 0$.

10.
$$u_n = \frac{1}{n} \sum_{k=1}^n \cos \frac{1}{\sqrt{n+k}}$$
. On a $\forall n \in \mathbb{N}^*$, $0 \le \frac{1}{\sqrt{2n}} \le \frac{1}{\sqrt{n+k}} \le \frac{1}{\sqrt{n+1}} \le 1 \le \frac{\pi}{2}$. Or $x \mapsto \cos x$ est décroissante sur $[0, \frac{\pi}{2}]$ donc $\cos \frac{1}{\sqrt{n+1}} \le u_n \le \cos \frac{1}{\sqrt{2n}}$. On en déduit $\lim_{n \to +\infty} u_n = 1$.

11.
$$u_n = \frac{1}{n^2} \sum_{k=1}^n E(kx), x \in \mathbb{R}$$
. On a $kx - 1 < E(kx) \le kx \Rightarrow x \sum_{k=1}^n k - n < \sum_{k=1}^n E(kx) \le x \sum_{k=1}^n k$. D'où, $\forall n \in \mathbb{N}^*$, $x \frac{n(n+1)}{2n^2} - \frac{1}{n} < u_n \le x \frac{n(n+1)}{2n^2}$. Finalement, $\lim_{n \to +\infty} u_n = \frac{x}{2}$.

12.
$$u_n = \frac{1}{n^3} \sum_{k=1}^n kE(kx)$$
. Compte-tenu de l'inégalité $k^2x - k < kE(kx) \le k^2x$, il vient $\forall n \in \mathbb{N}^*$,

$$\frac{1}{n^3} \sum_{k=1}^{n} (k^2 x - k) < u_n \le \frac{1}{n^3} \sum_{k=1}^{n} k^2 x \Leftrightarrow \frac{(n+1)(2n+1)}{6n^2} x - \frac{n+1}{2n^2} \le u_n \le \frac{(n+1)(2n+1)}{6n^2} x$$

On en déduit que $\lim_{n\to+\infty} u_n = \frac{x}{3}$.

13.
$$u_n = \prod_{k=1}^{n-1} \left(2 - \frac{k}{n}\right) = 2\left(2 - \frac{1}{n}\right)\left(2 - \frac{2}{n}\right)\dots\left(2 - \frac{n-1}{n}\right)$$
. Donc
$$u_n = 2\left(1 + \frac{n-1}{n}\right)\left(1 + \frac{n-2}{n}\right)\dots\left(1 + \frac{1}{n}\right)$$

On établit par récurrence que $\forall n \in \mathbb{N}^*, \forall (a_1, a_2, \dots, a_n) \in \mathbb{R}^n_+, \prod_{i=1}^n (1 + a_k) \geq 1 + \sum_{i=1}^n a_i$. En effet,

$$\prod_{k=1}^{n+1} (1+a_k) = \left(\prod_{k=1}^n (1+a_k)\right) (1+a_{n+1}) \geq \left(1+\sum_{k=1}^n a_k\right) (1+a_{n+1}) = 1+\sum_{k=1}^{n+1} a_k + \left(\sum_{k=1}^n a_k\right) a_{n+1} \geq 1+\sum_{k=1}^{n+1} a_k$$

Donc

$$u_n \ge 2\left(1 + \frac{n-1}{n} + \frac{n-2}{n} + \dots + \frac{1}{n}\right) = 2\left(\frac{n}{n} + \frac{n-1}{n} + \frac{n-2}{n} + \dots + \frac{1}{n}\right)$$

Par conséquent, $\forall n \in \mathbb{N}^{\star}$, $u_n \geq 2 \frac{\frac{n(n+1)}{2}}{n} = n+1$. Conclusion, $\lim_{n \to +\infty} u_n = +\infty$.

14.
$$u_n = \prod_{k=1}^n \left(1 + \frac{k}{n}\right)$$
. À l'aide du résultat précédent, $\forall n \in \mathbb{N}^*$, $u_n = \prod_{k=1}^n \left(1 + \frac{k}{n}\right) \ge 1 + \sum_{k=1}^n \frac{k}{n} = 1 + \frac{n+2}{2}$. Donc, $\lim_{n \to +\infty} u_n = +\infty$.

Exercice 1.5 Correction :

 $\exists n_0 \in \mathbb{N}, \exists k \in [0, 1[, \forall n \in \mathbb{N}, (n \ge n_0 \Rightarrow |u_{n+1}| \le k|u_n|).$

On établit par récurrence que $\forall n \geq n_0, |u_n| \leq k^{n-n_0} |u_{n_0}|$. D'où $\lim_{n \to +\infty} u_n = 0$ car $0 \leq k < 1$.

Application : soit $u_n(x) = \frac{x^n}{n!}$.

- Si $x \in [-1, 1]$, $\lim_{n \to +\infty} u_n(x) = 0$.
- Si |x| > 1, $\left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \frac{|x|}{n+1} \le \frac{1}{2} \Leftrightarrow n \ge 2|x| 1$. Soit $n_0 = E(2|x| 1) + 1$. $\forall n \ge n_0, |u_{n+1}(x)| \le 1$ $\frac{1}{2}|u_n(x)| \Rightarrow \lim_{n \to +\infty} u_n(x) = 0$

Exercice 1.6 Correction:

- 1. Montrons que $\forall x \in [0, 1[, \ln(1+x) \le x \le -\ln(1-x)]$.
 - On pose $f(x) = x + \ln(1-x)$. $\forall x \in [0,1[, f'(x) = 1 \frac{1}{1-x} = \frac{-x}{1-x} \le 0$. Ainsi, f est continue et décroissante sur [0,1[. Comme f(0) = 0, on en déduit que, $\forall x \in [0,1[, f(x) \le 0 \Leftrightarrow x \le -\ln(1-x)$.

 On pose $g(x) = x \ln(1+x)$. $\forall x \in [0,1[, g'(x) = 1 \frac{1}{1+x} = \frac{x}{1-x} \ge 0$. Ainsi, g est continue et croissante sur [0,1[. Comme g(0) = 0, on en déduit que, $\forall x \in [0,1[, g(x) \ge 0 \Leftrightarrow x \ge \ln(1+x)$.
- 2. Soit $u_n = \sum_{k=0}^n v_k$, avec $v_k = \frac{1}{n+k} \in [0,1[$ pour tout $n \ge 2$ et $k \in \mathbb{N}$. D'après 1.,

$$\ln\left(1 + \frac{1}{n+k}\right) \le v_k \le \ln\left(1 - \frac{1}{n+k}\right)$$

On en déduit que $\forall n \geq 2$, $\sum_{k=0}^{n} \ln \left(1 + \frac{1}{n+k}\right) \leq u_n \leq \sum_{k=0}^{n} \ln \left(1 - 1 \frac{1}{n+k}\right)$.

$$S_n = \sum_{k=0}^n \ln\left(1 + \frac{1}{n+k}\right) = \sum_{k=0}^n \ln(n+k+1) - \sum_{k=0}^n \ln(n+k) = \sum_{k=1}^{n+1} \ln(n+k) - \sum_{k=0}^n \ln(n+k) = \ln\frac{2n+1}{n}$$

De même,

$$T_n = \sum_{k=0}^{n} \ln\left(1 - \frac{1}{n+k}\right) = \ln\frac{2n}{n+1}.$$

En résumé, $\forall n \geq 2$, $\ln \frac{2n+1}{n} \leq u_n \leq \ln \frac{2n}{n-1}$ et $\lim_{n \to +\infty} u_n = \ln 2$.

Exercice 1.7 <u>Correction</u>:

- 1. Montrons que $\forall x \in [0,1], \ x \frac{x^3}{6} \le \sin x \le x$. La formule de Taylor-Lagrange à l'ordre 2 sur [0,x] (voir poly sur les développements limités) prouve l'existence de $c \in]0,x[$ tel que : $\sin x = x \frac{x^3}{6}\cos c$. Comme $c \in]0,x[\subset [0,1] \subset [0,\frac{\pi}{2}[,\ 0<\cos c \le 1,\ \text{on en déduit la double inégalité souhaitée}.$
- 2. $\forall k \in \{1, ..., n\}, \frac{k}{n^2} \frac{1}{6} \frac{k^3}{n^6} \le \sin \frac{k}{n^2} \le \frac{k}{n^2}$. D'où $\forall n \in \mathbb{N}^*$,

$$\frac{1}{n^2} \sum_{k=1}^{n} k - \frac{1}{6n^6} \sum_{k=1}^{n} k^3 \le u_n = \sum_{k=1}^{n} \sin \frac{k}{n^2} \le \frac{1}{n^2} \sum_{k=1}^{n} k$$

soit

$$\frac{n(n+1)}{2n^2} - \frac{n^2(n+1)^2}{24n^6} \le u_n \le \frac{n(n+1)}{2n^2}$$

ce qui implique que $\lim_{n\to+\infty} u_n = \frac{1}{2}$.

• On vérifie que $u_n - \frac{1}{2} = \sum_{k=1}^n \sin \frac{k}{n^2} - \frac{1}{2} \underset{k=1}{\sim} \sum_{k=1}^n \frac{k}{n^2} - \frac{1}{2} = \frac{n(n+1)}{2n^2} - \frac{1}{2} = \frac{n(n+1)-n^2}{2n^2} = \frac{1}{2n}$.

Exercice 1.8 Correction:

- 1. Établissons que $\forall x \in \mathbb{R}_+, x \frac{x^2}{2} \le \ln(1+x) \le x$. On procède comme dans l'exercice précédent : d'après la formule de Taylor-Lagrange à l'ordre 2 sur $[0,x], \exists c \in]0, x[, \ln(1+x) = x \frac{x^2}{2c^2}]$. On en déduit l'inégalité de droite. Pour l'inégalité de gauche, il suffit d'étudier les variations de la fonction $x \mapsto \ln(1+x) x + \frac{1}{2}x^2$ et de montrer qu'elle est croissante sur \mathbb{R}_+ . Comme la fonction s'annule en 0, on peut conclure.
- 2. Comme $P_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$, $\ln P_n = \sum_{k=1}^n u_k$ avec $u_k = \ln\left(1 + \frac{k}{n^2}\right)$. On a $\forall k \in \{1, \dots, n\}$,

$$\frac{k}{n^2} - \frac{1}{2} \frac{k^2}{n^4} \le u_k \le \frac{k}{n^2}$$

et on en déduit que

$$\frac{1}{n^2} \sum_{k=1}^n k - \frac{1}{2n^4} \sum_{k=1}^n k^2 \le \ln P_n \le \frac{n(n+1)}{2n^2}$$

Finalement, $\ln P_n \xrightarrow[n \to +\infty]{} \frac{1}{2}$, et donc $\lim_{n \to +\infty} P_n = e^{\frac{1}{2}} = \sqrt{e}$.

Exercice 1.9 Correction: On pose $u_n = \frac{3n-1}{2n+3}$. Soit $\varepsilon > 0$ fixé. On a

$$\left|u_n - \frac{3}{2}\right| = \frac{11}{2(2n+3)} \le \varepsilon \Leftrightarrow n \ge \frac{1}{2} \left(\frac{11}{2\varepsilon} - 3\right)$$

On pose $N = E\left(\frac{1}{2}\left(\frac{11}{2\varepsilon} - 3\right)\right) + 1$. Alors,

$$\forall n \in \mathbb{N}, \ (n \ge N \Rightarrow \left| u_n - \frac{3}{2} \right| \le \varepsilon)$$

Exercice 1.10 (u_n) converge alors $(v_n) = (u_n + v_n)$ converge alors $(v_n) = (u_n + v_n) - (u_n)$ converge.

Exercice 1.11 $\underline{Correction}$: Soit (u_n) une suite de temes dans \mathbb{Z} . On suppose que (u_n) converge vers un réel ℓ . Alors:

$$\exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2, (p \ge N, q \ge N \Rightarrow |u_p - u_q| = |(u_p - \ell) + (\ell - u_q)| \le |u_p - \ell| + |\ell - u_q| \le \frac{1}{2})$$

Comme $u_p \in \mathbb{Z}$ et $u_q \in \mathbb{Z}$, on en déduit que $u_p = u_q$. Donc (u_n) est stationnaire (c'est-à-dire constante à partir d'un certain rang).

La réciproque est évidente.

 $\underline{Correction}: \forall n \in \mathbb{N}, \ 0 \leq u_n \leq 1, \ 0 \leq v_n \leq 1.$ On suppose que $u_n v_n \xrightarrow[]{} 1.$ Alors, $\forall n \in \mathbb{N}, v_n \in \mathbb{N}$

$$u_n v_n \le u_n \le 1 \Rightarrow \lim_{n \to +\infty} u_n = 1$$

On montre le résultat pour (v_n) de la même manière.

Exercice 1.13 | Correction :

- Si $u_n^2 \xrightarrow[n \to +\infty]{} 0$ alors $u_n \xrightarrow[n \to +\infty]{} 0$ et donc, (u_n) converge. Si $u_n^2 \xrightarrow[n \to +\infty]{} \ell > 0$, alors, à partir d'un certain rang, $u_n^2 > 0$.

Comme $u_n = \frac{u_n^3}{u_n^2}$, on a $u_n \xrightarrow[n \to +\infty]{\ell} \frac{\ell}{\ell'}$.

Exercice 1.14 | Correction :

 $u_n \geq u_N + \frac{1}{2} \left(\frac{1}{N} + \frac{1}{N+1} + \ldots + \frac{1}{n-1} \right). \text{ Or, d'après le rappel de l'exercice, } \frac{1}{N} + \frac{1}{N+1} + \ldots + \frac{1}{n-1} \xrightarrow[n \to +\infty]{} + \infty.$ Finalement, $\lim_{n \to +\infty} u_n = +\infty$.

Exercice 1.15 Correction:

1. D'après les hypothèses, $\forall n \in \mathbb{N}, u_n > 0$ et $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell < 1$. Donc, $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \forall$

$$n \ge n_0 \Rightarrow 0 < \frac{u_{n+1}}{u_n} \le \ell + \frac{1-\ell}{2} = \frac{1+\ell}{2}$$

On note $k = \frac{1+\ell}{2} \in]0,1[$. Alors,

$$\exists n_0 \in \mathbb{N}, \exists k \in]0, 1[, \forall n \in \mathbb{N}, (n \ge n_0 \Rightarrow 0 < u_{n+1} \le ku_n)$$

ce qui implique (d'après l'exercice 1.5) que $\lim_{n\to +\infty} u_n = 0$.

- 2. On applique 1. à $v_n = \frac{1}{u_n}$. (On remarquera que si $\ell = 1$, on ne peut rien dire.)
- 3. D'après les hypothèses, $\forall n \in \mathbb{N}, u_n > 0$ et $\lim_{n \to +\infty} \sqrt[n]{u_n} = \lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = \ell < 1$. Donc, $\lim_{n \to +\infty} u_n = \ell^n$. On en déduit immédiatement les deux résultats attendus.

Exercice 1.16 $\underline{Correction}$: On suppose que $u_n \underset{n \to +\infty}{\longrightarrow} u \in \mathbb{R}$. On a

$$\cos(n+1) = \cos n \cos 1 - \sin n \sin 1 \Rightarrow v_n = \sin n \xrightarrow[n \to +\infty]{} \frac{u \cos 1 - u}{\sin 1} = v$$

D'autre part,

$$u_{n+1} + u_{n-1} = \cos(n+1) + \cos(n-1) = 2\cos n \cos 1 \quad (1)$$

$$v_{n+1} + v_{n-1} = \sin(n+1) + \sin(n-1) = 2\sin n \cos 1 \quad (2)$$

Par passage à la limite dans (1) et (2), on obtient $\begin{cases} 2u = 2u \cos 1 \\ 2v = 2v \cos 1 \end{cases}$. Nécessairement, u = v = 0. Or,

$$\cos^2 n + \sin^2 n = 1 \Rightarrow u^2 + v^2 = 1$$

On obtient donc une contradiction.

On montre de même que l'assertion $v_n \to v$ est fausse.

Exercice 1.17 $\underline{Correction}: \forall (m,n) \in \mathbb{N}^{*2}, \ 0 \leq u_{m+n} \leq \frac{m+n}{mn}.$

- $\forall n \in \mathbb{N}^*, \ 0 \le u_{2n} \le \frac{2n}{n^2} \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } u_{2n} \underset{n \to +\infty}{\longrightarrow} 0$
- $\forall n \in \mathbb{N}^*, \ 0 \le u_{2n+1} \le \frac{n + (n+1)}{n(n+1)} \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } u_{2n+1} \underset{n \to +\infty}{\longrightarrow} 0$

En résumé, $u_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 1.18 $\underline{Correction}: \forall n \in \mathbb{N}, u_{n+1} = u_n^2 + (-1)^n n.$

- $u_{2n+1} = u_{2n}^2 + 2n \ge 2n \xrightarrow[n \to +\infty]{} +\infty \text{ donc } u_{2n+1} \xrightarrow[n \to +\infty]{} +\infty.$ $u_{2n+2} = u_{2n+1}^2 (2n+1) \ge (2n)^2 (2n+1) \xrightarrow[n \to +\infty]{} +\infty \text{ donc } u_{2n} \xrightarrow[n \to +\infty]{} +\infty.$

En résumé, $u_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 1.19 <u>Correction</u>:

- 1. $u_{2n+1} \xrightarrow[n \to +\infty]{} \ell_1, u_{2n} \xrightarrow[n \to +\infty]{} \ell_2, u_{3n} \xrightarrow[n \to +\infty]{} \ell_3.$ (u_{6n}) est extraite de (u_{2n}) et de (u_{3n}) donc $\ell_2 = \ell_3$,

 - (u_{6n+3}) est extraite de (u_{2n+1}) et de (u_{3n}) donc $\ell_1 = \ell_3$

Ces deux résultats impliquent que $\ell_1 = \ell_3$.

2. Il suffit de considérer $u_{(2n)^2}$ et $u_{(2n+1)^2}$.

Exercice 1.20 | Correction:

1.
$$u_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}, n \in \mathbb{N}^*$$
. Comme

$$u_{n+1} - u_n = \left(\frac{1}{n+2} + \dots + \frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2}\right) - \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right)$$
$$= \frac{1}{2n+1} + \frac{1}{2(n+1)} - \frac{1}{n+1} = \frac{1}{(2n+1)(2n+2)} > 0,$$

ceci permet de dire que (u_n) est croissante. Or, $\forall n \in \mathbb{N}^*, u_n \leq \frac{n}{n+1} < 1$, on peut donc affirmer que (u_n)

2.
$$u_n = \prod_{k=1}^n \frac{2k-1}{2k} = \left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\dots\left(1-\frac{1}{2n}\right), n \in \mathbb{N}^*$$
. On a $\forall n \in \mathbb{N}^*$, $u_n > 0$. De plus, $\frac{u_{n+1}}{u_n} = 1 - \frac{1}{2n+2} < 1$ donc (u_n) est décroissante. Conclusion, (u_n) converge.

3.
$$u_n = \sum_{k=1}^n \frac{1}{k^k} = \frac{1}{1^1} + \frac{1}{2^2} + \ldots + \frac{1}{n^n}$$
, $n \in \mathbb{N}^*$. On voit donc que (u_n) est croissante. Pour $k \ge 2$, $\frac{1}{k^k} \le \frac{1}{2^k} \Rightarrow u_n \le 1 + \sum_{k=2}^n \frac{1}{2^k}$. A fortiori, $u_n \le \sum_{k=0}^n \frac{1}{2^k} = 2 - \frac{1}{2^n} < 2$ et (u_n) est majorée. On en déduit que (u_n) converge.

4.
$$u_n = \sum_{k=1}^n \frac{1}{k!} = \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$
, $n \in \mathbb{N}$. On en déduit que (u_n) est croissante. On peut ensuite montrer par récurrence que $\forall n \in \mathbb{N}^*$, $n! \geq 2^{n-1}$ et procéder comme au point 3.

5.
$$u_n = \sum_{k=1}^n \frac{1}{kn} = \frac{1}{n} + \frac{1}{2n} + \ldots + \frac{1}{n^2}, n \in \mathbb{N}^*$$
. On a

$$u_{n+1} - u_n = \frac{1}{n+1} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n+1} \right) - \frac{1}{n} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} \right)$$

En notant $a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$, on obtient

$$u_{n+1} - u_n = \frac{1}{n+1} \left(a_n + \frac{1}{n+1} \right) - \frac{1}{n} a_n = \frac{1}{(n+1)^2} - \frac{1}{n(n+1)} a_n \le \frac{1}{(n+1)^2} - \frac{1}{n(n+1)} < 0$$

 (u_n) est donc décroissante et comme $\forall n \in \mathbb{N}^*, u_n > 0$, on en déduit que (u_n) converge.

6.
$$u_n = \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}, n \in \mathbb{N}^*. (u_n)$$
 est évidemment croissante. Pour $k \ge 2, \frac{1}{k^2} < \frac{1}{k(k-1)} \Rightarrow \sum_{k=2}^n \frac{1}{k^2} < \sum_{k=2}^n \frac{1}{k(k-1)} = \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 1 - \frac{1}{n} < 1$. Ainsi, on peut affirmer que (u_n) converge.

Exercice 1.21 $\underline{Correction}:$

1. La formule des accroissements finis appliquée à ln entre n et n+1 implique que $\forall n \in \mathbb{N}^*$,

$$\frac{1}{n+1} < \ln(n+1) - \ln n < \frac{1}{n}$$

2. D'après 1., $\forall k \in \mathbb{N}^{\star}, \ 0 < u_k = \frac{1}{k} - \ln \frac{k+1}{k} < \frac{1}{k} - \frac{1}{k \perp 1}$. D'où,

$$S_n = \sum_{k=1}^n u_k < \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} = 1 - \frac{1}{n+1} < 1$$

Donc (S_n) est croissante et $\forall n \in \mathbb{N}^*, S_n \leq 1$, ce qui permet d'affirmer que (S_n) converge et $C = \lim_{n \to +\infty} S_n \in \mathbb{N}$

3.
$$x_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \text{ donc}$$

$$x_n - S_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n\right) - \left(1 - \ln \frac{2}{1} + \frac{1}{2} - \ln \frac{3}{2} + \dots + \frac{1}{n} - \ln \frac{n+1}{n}\right)$$

$$= \sum_{k=1}^n \ln(k+1) - \sum_{k=1}^n \ln k - \ln n = \ln \frac{n+1}{n} \xrightarrow[n \to +\infty]{} 0$$

d'où $\lim_{n\to+\infty} x_n = C \in [0,1].$

<u>Correction</u>: Soit $u_n = \left(1 + \frac{1}{n}\right)^n$, $(n \in \mathbb{N}^*)$

- 1. Pour tout entier $n \ge 2$, $(1-\alpha)^n > 1-n\alpha$, $\alpha \in]0,1[$. On fixe α et on fait une récurrence sur n:

 $n=2:(1-\alpha)^2=1-2\alpha+\alpha^2>1-2\alpha$.

 On suppose la relation vraie à l'ordre $n:(1-\alpha)^n>1-n\alpha$.

 Alors, $(1-\alpha)^{n+1}>(1-n\alpha)(1-\alpha)=1-(n+1)\alpha+n\alpha^2>1-(n+1)\alpha$.

2. On choisit
$$\alpha=\frac{1}{n^2}.$$
 D'après 1., pour $n\geq 2,$ $\left(1-\frac{1}{n^2}\right)^n>1-\frac{1}{n}.$ D'où :

$$\left(1 - \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right)^n > 1 - \frac{1}{n} \text{ et } \left(1 + \frac{1}{n}\right)^n > \left(1 - \frac{1}{n}\right)^{-n+1} = \frac{1}{\left(1 - \frac{1}{n}\right)^{n-1}}$$

Or,
$$\frac{1}{1-\frac{1}{n}} = 1 + \frac{1}{n-1}$$
 et donc, pour $n \ge 2$, $u_n = \left(1 + \frac{1}{n}\right)^n \ge u_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1}$.

3. On choisit
$$\alpha=\frac{1}{6n+1}$$
. D'après 1., pour $n\geq 2$, $\left(1-\frac{1}{6n+1}\right)^n>1-\frac{n}{6n+1}$. Donc

$$\left(1 - \frac{1}{6n - 1}\right)^n > \frac{5n + 1}{6n + 1} > \frac{5}{6} \Rightarrow \left(1 + \frac{1}{6n}\right)^{6n} < \left(\frac{6}{5}\right)^6 \text{ pour } n \ge 2$$

Comme (u_n) est croissante, pour $n \ge 2$, $u_n \le u_{6n} < \left(\frac{6}{5}\right)^6$.

4. (u_n) est une suite croissante majorée et est donc convergente. On a $\lim_{n\to+\infty}u_n=e$.

<u>Correction</u>: Soit $I_n = \int_{1}^{\frac{\pi}{2}} \sin^n x dx \ (n \in \mathbb{N}).$

- On a $\forall x \in [0, \frac{\pi}{2}]$, $\sin^{n+1} x \leq \sin^n x$. Il suffit pour s'en convaincre de noter que pour tout entier naturel n et tout réel x de $[0, \frac{\pi}{2}]$, on a $0 < \sin x < 1$, et qu'il suffit de multiplier les trois membres de cet encadrement par le réel strictement positif $\sin^n x$ pour obtenir le résultat voulu. Puisque les trois membres de cet encadrement sont des fonctions continues sur [0, 1], les inégalités strictes sont préservées par intégration et on obtient $\forall n \in \mathbb{N}, I_{n+1} \leq I_n$. Donc, (I_n) est décroissante. Comme $\forall n \in \mathbb{N}, I_n \geq 0$, on en conclut que
 - Soit $\lambda \in [0, \frac{\pi}{2}[$, on a: $I_n = \int_0^{\lambda} \sin^n x dx + \int_0^{\frac{\pi}{2}} \sin^n x dx \le \frac{\pi}{2} \sin^n \lambda + (\frac{\pi}{2} \lambda)$. En effet, comme $x \mapsto \sin^n x$ est croissante sur $[0, \frac{\pi}{2}]$, on a pour $x \in [0, \lambda] \subset [0, \frac{\pi}{2}[, \sin^n x \le \sin^n \lambda]$. Donc $\int_0^{\lambda} \sin^n x dx \le \int_0^{\lambda} \sin^n \lambda dx = \int_0^{\lambda} \sin^n x dx$ $\sin^n \lambda \int_0^\lambda dx = \lambda \sin^n \lambda \le \frac{\pi}{2} \sin^n \lambda. \text{ De plus, comme } \sin^n x \le 1, \int_\lambda^{\frac{\pi}{2}} \sin^n x dx \le \int_\lambda^{\frac{\pi}{2}} dx = \frac{\pi}{2} - \lambda.$ • On fixe λ et on fait tendre n vers $+\infty$. Comme $\lambda < \frac{\pi}{2}$, $\sin \lambda < 1$ et $\lim_{n \to +\infty} \sin^n \lambda = 0$. Cela implique que
 - $0 \le \ell = \lim_{n \to +\infty} I_n \le \frac{\pi}{2} \lambda$. On fait ensuite tendre λ vers $\frac{\pi}{2}$ et on obtient $\ell = 0$.
- 2. On intègre par parties $I_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+2}x dx$. On pose pour cela $u(x) = \sin^{n+1}x$ et $v'(x) = \sin x$. On

$$I_{n+2} = -\left[\cos x \sin^{n+1} x\right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \sin^n x (1 - \sin^2 x) dx$$

D'où, $I_{n+2} = \frac{n+1}{n+2}I_n$. On remarquera que $\forall n \in \mathbb{N}, I_n > 0$.

3. (a) On multiplie la relation de récurrence par I_{n+1} (> 0). On obtient :

$$(n+2)I_{n+2}I_{n+1} = (n+1)I_{n+1}I_n = \dots = I_1I_0 = \frac{\pi}{2} (*)$$

- (b) (I_n) décroissante implique que $I_{n+2} = \frac{n+1}{n+2}I_n \le I_{n+1}$. Donc, $\forall n \in \mathbb{N}, \frac{n+1}{n+2} \le \frac{I_{n+1}}{I_n} \le 1 \Rightarrow I_{n+1} \underset{+\infty}{\sim} I_n$.
- (c) Compte-tenu de (*), il vient :

$$(n+1)I_n^2 = \frac{\pi}{2} \frac{I_n}{I_{n+1}} \text{ et } I_n = \sqrt{\frac{\pi}{2(n+1)}} \sqrt{\frac{I_n}{I_{n+1}}} \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$$

Exercice 1.24 Correction: On peut toujours supposer (u_n) croissante (sinon on considère la suite de terme général $-u_n$). Soit $\ell \in \mathbb{R}$, $\sigma : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $u_{\sigma(n)} \xrightarrow[n \to +\infty]{} \ell$. Comme $(u_{\sigma(n)})$ est croissante,

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow \ell - \varepsilon \le u_{\sigma(n)} \le \ell)$$

On peut montrer par l'absurde que $\forall n \in \mathbb{N}, u_n \leq \ell$. Supposons qu'il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} > \ell$. Alors :

$$\sigma(n_0) \ge n_0 \Longrightarrow_{(u_n) \text{ croissante}} u_{\sigma(n_0)} \ge u_{n_0} > \ell$$

ce qui est impossible. Donc (u_n) est croissante et $\forall n \in \mathbb{N}, u_n \leq \ell$, ce qui implique que (u_n) converge. Nécessairement, $u_n \xrightarrow[n \to +\infty]{} \ell \operatorname{car} u_{\sigma(n)} \xrightarrow[n \to +\infty]{} \ell.$

Exercice 1.25 | Correction:

- Puisque $(u_n)_{n>0}$ est bornée, pour tout $n \in \mathbb{N}$, $A_n = \{u_{n+p}, p \in \mathbb{N}\}$ est borné, et donc, $v_n = \inf A_n$ et $w_n = \sup A_n$ existent.
 - Pour tout $n \in \mathbb{N}$,

$$A_{n+1} = \{u_k, k \ge n+1\} \subset A_n = \{u_k, k \ge n\} \subset A_0 = \{u_k, k \ge 0\}$$

On en déduit
$$\begin{cases} w_n \le v_{n+1} \le w_0 \\ w_n \ge w_{n+1} \ge v_0 \end{cases}$$

On en déduit $\begin{cases} w_n \leq v_{n+1} \leq w_0 \\ w_n \geq w_{n+1} \geq v_0 \end{cases}$ (v_n) croissante majorée \Rightarrow (v_n) converge. On a $v = \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \inf u_n$. (w_n) décroissante minorée \Rightarrow (w_n) converge. On a $w = \lim_{n \to +\infty} w_n = \lim_{n \to +\infty} \inf u_n$.

(a)
$$u_n = \frac{1}{n+1}$$
, $A_n = \left\{ \frac{1}{k+1}, k \ge n \right\} = \left\{ \frac{1}{n+1}, \frac{1}{n+2}, \dots \right\}$.
 $v_n = \inf A_n = 0$, $w_n = \sup A_n = \frac{1}{n+1}$, $v = w = 0$.

(b)
$$u_n = (-1)^n + \frac{1}{n+1} (u_{2n} = 1 + \frac{1}{2n+1} > 0, u_{2n+1} = -1 + \frac{1}{2n+2} < 0).$$

 $A_{2n} = \{u_k, k \ge 2n\} = \{1 + \frac{1}{2n+1}, -1 + \frac{1}{2n+2}, 1 + \frac{1}{2n+3}, -1 + \frac{1}{2n+4}, \dots\}.$
 $A_{2n+1} = \{u_k, k \ge 2n+1\} = \{-1 + \frac{1}{2n+2}, 1 + \frac{1}{2n+3}, -1 + \frac{1}{2n+4}, 1 + \frac{1}{2n+5}, \dots\}.$
 $v_{2n} = \inf A_{2n} = \inf\{-1 + \frac{1}{2n+2}, 1 + \frac{1}{2n+3}, \dots\} = -1.$ De même, $v_{2n+1} = -1$ et donc $v = -1$.
 $v_{2n} = \sup A_{2n} = \inf\{1 + \frac{1}{2n+1}\}.$ De même, $v_{2n+1} = 1 + \frac{1}{2n+3}$ et donc $v = 1$.

(c)
$$u_n = \cos \frac{n\pi}{4}$$
, $u_n \in \{-1, -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 1\}$, $v = -1$, $w = 1$.

- 2. (u_n) est bornée donc (u_n) converge ssi $\lim_{n \to +\infty} \inf u_n = \lim_{n \to +\infty} \sup u_n$.

 . On suppose $\lim_{n \to +\infty} \inf u_n = \lim_{n \to +\infty} \sup u_n$. Comme $\forall n \in \mathbb{N}, \ v_n \le u_n \le w_n$, le théorème d'encadrement permet de conclure que (u_n) converge et $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \inf u_n = \lim_{n \to +\infty} \sup u_n$.

 . Réciproquement, on suppose que $\lim_{n \to +\infty} u_n = \ell \in \mathbb{R}$. Soit $\varepsilon > 0$ fixé. Il existe $N \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}$,
 - $n \geq N \Rightarrow |u_n \ell| \leq \frac{\varepsilon}{2}.$ Soit $n \in \mathbb{N}$ tel que $n \geq N.$ On a

$$\forall p \in \mathbb{N}, p \ge n \Rightarrow p \ge N \Rightarrow |u_p - \ell| \le \frac{\varepsilon}{2} \Rightarrow \ell - \frac{\varepsilon}{2} \le u_p \le \ell + \frac{\varepsilon}{2}$$

D'où, en passant aux bornes supérieure et inférieure, $\ell - \frac{\varepsilon}{2} \le v_n \le w_n \le \ell + \frac{\varepsilon}{2}$. Finalement,

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow \left\{ \begin{array}{l} v_n - \ell \leq \varepsilon \\ w_n - \ell \leq \varepsilon \end{array} \right.$$

Donc $v_n \xrightarrow[n \to +\infty]{} \ell$ et $v_n \xrightarrow[n \to +\infty]{} \ell$.

Exercice 1.26 | <u>Correction</u>: Soit $v_n = u_{n+1} - u_n$. D'après les hypothèses, (v_n) est croissante. Comme (v_n) est bornée, si $\ell > 0$, alors à partir d'un certain rang, $v_n = u_{n+1} - u_n \ge 0$. Donc (u_n) serait croissante à partir d'un certain rang. Comme (u_n) est bornée, elle converge vers un réel λ et donc $v_n \xrightarrow[n \to +\infty]{} 0$. On obtient le même résultat si $\ell < 0$. Finalement, nécessairement, $\ell = 0$

Exercice 1.27 Correction: On vérifie aisément que (u_n) et (v_n) sont adjacentes. Soit ℓ leur limite commune. On sait que $\forall n \in \mathbb{N}$, $u_n \leq \ell \leq v_n$. Avec n = 3, on obtient l'encadrement précisé dans l'énoncé.

Exercice 1.28 | Correction :

- 1. (u_n) est croissante car $u_{n+1} u_n = \frac{1}{(n+1)!} > 0$.
 - $v_{n+1} v_n = (u_{n+1} u_n) + \frac{1}{(n+1)(n+1)!} \frac{1}{nn!} = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} \frac{1}{nn!}$ $= \frac{n(n+1) + n (n+1)^2}{n(n+1)(n+1)!} = \frac{-1}{n(n+1)(n+1)!} < 0$

donc (v_n) est décroissante.

 $\bullet \lim_{n \to +\infty} (v_n - u_n) = 0$

Donc (u_n) et (v_n) convergent. Soit $e = \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} u_n$. $\forall n \in \mathbb{N}^*, u_n < e < v_n$ (car (u_n) et (v_n) sont strictement monotones).

2. Supposons que $e = \frac{P}{N}$ où P et N sont des entiers positifs. On aurait $u_N < \frac{P}{N} < v_N = u_N + \frac{1}{NN!}$. On multiplie les deux membres par NN! et on obtient :

$$NN!\left(1 + \frac{1}{1!} + \ldots + \frac{1}{N!}\right) < P < NN!\left(1 + \ldots + \frac{1}{N!}\right) + 1$$

P, qui est un entier, serait compris entre 2 entiers consécutifs ce qui est impossible.

3. $\forall n \in \mathbb{N}^*, u_n \le u_{n+1} \le e \le v_n$. Ceci implique $u_{n+1} - u_n \le e - u_n \le v_n - u_n \Leftrightarrow \frac{1}{(n+1)!} \le e - u_n \le \frac{1}{nn!}$.

D'où,
$$\lim_{n \to +\infty} (nn!)(e - u_n) = 1$$
 et donc, $e - u_n \sim \frac{1}{+\infty} \frac{1}{nn!}$.

4. $\forall n \in \mathbb{N}^*, u_{n+3} \le e \le v_{n+1} \Leftrightarrow -v_{n+1} \le -e \le -u_{n+3} \Rightarrow v_n - v_{n+1} \le v_n - e \le v_n - u_{n+3}$. Donc,

$$\frac{1}{n(n+1)(n+1)!} \le v_n - e \le \left(u_n + \frac{1}{nn!}\right) - \left(u_n + \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{n+3)!}\right)$$

Alors, $\forall n \in \mathbb{N}^*$, $\frac{1}{n(n+1)(n+1)!} \le v_n - e \le \frac{n+6}{n(n+3)!}$. Donc $\lim_{n \to +\infty} (n^3 n!)(v_n - e) = 1$ et $v_n - e \underset{+\infty}{\sim} \frac{1}{n^3 n!}$.

5. D'après 4., $\frac{1}{n(n+1)(n+1)!} \le v_n - e \le \frac{n+6}{n(n+3)!}$. Or, $\frac{n+6}{n(n+3)!} \le 10^{-3} \Rightarrow n \ge 4$. Ainsi,

$$v_4 = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{4!} + \frac{1}{4!} = \frac{261}{96} \approx 2,71875$$

On a $4.10^{-4} \le v_4 - e \le 5.10^{-4}$ soit $2,71825 \le e \le 2,71835$ ou ausi $2,718 \le e \le 2,719$.

Exercice 1.29 Correction:

1.
$$\forall n \in \mathbb{N}^*, S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \ge \frac{n}{\sqrt{n}} = \sqrt{n} \text{ et donc } S_n \xrightarrow[n \to +\infty]{} +\infty.$$

2.
$$u_n = 2\sqrt{n} - S_n$$
, $v_n = 2\sqrt{n+1} - S_n$.
• $u_{n+1} - u_n = 2\frac{1}{\sqrt{n+1} + \sqrt{n}} - \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n+1} - \sqrt{n}}{(\sqrt{n+1} - \sqrt{n})\sqrt{n+1}} \ge 0$. Donc (u_n) est croissante.
• De même, (v_n) est décroissante.
• $\lim_{n \to \infty} (v_n - u_n) = 0$.

• $\lim_{n \to +\infty} (v_n - u_n) = 0$. Soit $\ell = \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$. On a $\forall n \in \mathbb{N}^*$, $u_n \le \ell \le v_n$. Avec n = 1, $\ell \ge u_1 = 1$.

3.
$$\bullet \frac{S_n}{n} = \frac{2\sqrt{n} - u_n}{n} = \frac{2}{\sqrt{n}} - \frac{u_n}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

•
$$\frac{S_n}{\sqrt{n}} = \frac{2\sqrt{n} - u_n}{\sqrt{n}} = \frac{2}{\sqrt{n}} - \frac{u_n}{\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 2$$

4. •
$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{n+k}} = \frac{S_{2n} - S_n}{\sqrt{n}} = \sqrt{2} \frac{S_{2n}}{\sqrt{2n}} - \frac{S_n}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 2\sqrt{2} - 2$$

•
$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n-1} \frac{1}{\sqrt{np+k}} = \frac{S_{n(p+1)} - S_{np}}{\sqrt{n}} = \sqrt{p+1} \frac{S_{n(p+1)}}{\sqrt{n(p+1)}} - \sqrt{p} \frac{S_{np}}{\sqrt{np}} \underset{n \to +\infty}{\longrightarrow} 2\sqrt{p+1} - \sqrt{p}.$$

Exercice 1.30 Correction: $\forall n \in \mathbb{N}^*, S_n = -1 + \frac{1}{2} - \frac{1}{3} + \ldots + \frac{(-1)^n}{n}$.

•
$$\sigma_n = S_{2n} = -1 + \frac{1}{2} - \frac{1}{3} + \ldots + \frac{1}{2n}, \ \sigma_{n+1} = S_{2n+2} = S_{2n} - \frac{n}{2n+1} + \frac{1}{2n+2}.$$

Alors,
$$\forall n \in \mathbb{N}^{\star}$$
, $\sigma_{n+1} - \sigma_n = -\frac{1}{2n+1} + \frac{1}{2n+2} < 0$. Donc, (σ_n) est décroissante.
• $\sigma'_n = S_{2n+1} = -1 + \frac{1}{2} - \frac{1}{3} + \dots - \frac{1}{2n+3}$, $\sigma'_{n+1} = S_{2n+3} = S_{2n+1} - \frac{1}{2n+2} - \frac{1}{2n+3}$.

Alors, $\forall n \in \mathbb{N}^*$, $\sigma'_{n+1} - \sigma'_n = -\frac{1}{2n+2} - \frac{1}{2n+3} > 0$. Donc, (σ'_n) est croissante.

•
$$\sigma_n - \sigma'_n = \frac{1}{2n+1} \xrightarrow[n \to +\infty]{} 0.$$

• $\sigma_n - \sigma'_n = \frac{1}{2n+1} \underset{n \to +\infty}{\longrightarrow} 0.$ Conclusion, $(S_{2n} \underset{n \to +\infty}{\longrightarrow} S \text{ et } S_{2n+1} \underset{n \to +\infty}{\longrightarrow} S) \Leftrightarrow (S_n \underset{n \to +\infty}{\longrightarrow} S)$

Exercice 1.31 | Correction :

1.
$$u_0 > 0, v_0 > 0, u_{n+1} = \sqrt{u_n v_n}, v_{n+1} = \frac{u_n + v_n}{2}$$

1.
$$u_0 > 0$$
, $v_0 > 0$, $u_{n+1} = \sqrt{u_n v_n}$, $v_{n+1} = \frac{u_n + v_n}{2}$.
• On montre par récurrence que $\forall n \in \mathbb{N}, u_n > 0$ et $v_n > 0$.
• $v_{n+1}^2 - u_{n+1}^2 = \frac{1}{4}(v_n - u_n)^2 \ge 0$ d'où, $\forall n \in \mathbb{N}^*, v_n \ge u_n$.

•
$$u_{n+1} - u_n = \sqrt{u_n v_n} - u_n = \frac{u_n (v_n - u_n)}{\sqrt{u_n v_n} + v_n} \ge 0$$
. Donc (u_n) est croissante.
• $v_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2} \le 0$. Donc (v_n) est décroissante.

•
$$v_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2} \le 0$$
. Donc (v_n) est décroissante.

- (u_n) croissante et majorée (par v_1) converge. Soit $\ell = \lim_{n \to \infty} u_n$.
- (v_n) décroissante et minorée (par u_1) converge. Soit $\ell' = \lim_{n \to +\infty} v_n$.
- Par passage à la limite, on a $\ell = \sqrt{\ell \ell'}$ et $\ell' = \frac{\ell + \ell'}{2} \Rightarrow \ell = \ell'$.
- 2. $0 \le q \le p$, $u_0 > 0$, $v_0 > 0$, $u_{n+1} = \frac{pu_n + qv_n}{p+q}$, $v_{n+1} = \frac{pv_n + qu_n}{p+q}$.

 On montre par récurrence que $\forall n \in \mathbb{N}, u_n > 0$ et $v_n > 0$.

 - $\forall n \in \mathbb{N}$, on a $v_{n+1} + u_{n+1} = v_n + u_n$ et $v_{n+1} u_{n+1} = \frac{p-q}{p+q}(v_n u_n)$. On en déduit que $v_n + u_n = u_0 + v_0$ et $v_n - u_n = \left(\frac{p-q}{n+q}\right)^n (v_0 - u)$ puis,

$$\begin{cases} v_n = \frac{1}{2} \left[\left(\frac{p-q}{p+q} \right)^n (v_0 - u_0 + (u_0 + v_0)) \right] \\ u_n = \frac{1}{2} \left[(u_0 + v_0) - \left(\frac{p-q}{p+q} \right)^n (v_0 - u_0) \right] \end{cases}$$

Si p = q, $u_n = v_n = \frac{1}{2}(u_0 + v_0)$ pour tout $n \in \mathbb{N}^*$.

Si
$$p > q$$
, $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \frac{1}{2}(u_0 + v_0)$.

- 3. $(u_0, v_0) \neq (0, 0), \ u_{n+1} = \frac{u_n}{u_n^2 + v_n^2}, \ v_{n+1} = \frac{v_n}{u_n^2 + v_n^2}.$ On montre par récurrence que $\forall n \in \mathbb{N}, \ u_n > 0 \text{ et } v_n > 0.$

 - On note $z_n = u_n + iv_n$. Alors, $z_{n+2} = \frac{1}{\overline{z}_{n+1}} = z_n$ pour tout $n \in \mathbb{N}$. Si n = 2p, $z_{2p} = z_0 \Leftrightarrow u_{2p} = u_0$ et $v_{2p} = v_0$ Si n = 2p + 1, $z_{2p+1} = z_1 \Leftrightarrow u_{2p+1} = u_1$ et $v_{2p+1} = v_1$.
 - Si $u_0 = 0$ (et nécessairement $v_0 \neq 0$), $\forall n \in \mathbb{N}, u_n = 0, v_{2p} = v_0$ et $v_{2p+1} = \frac{1}{v_0}$ ((v_n) converge si et seulement si $v_0 = \pm 1$).

Si $v_0 = 0$ (et nécessairement $u_0 \neq 0$), $\forall n \in \mathbb{N}, v_n = 0, u_{2p} = u_0$ et $u_{2p+1} = \frac{1}{u_0}$ ((u_n) converge si et seulement si $u_0 = \pm 1$).

Si $u_0 \neq 0$ et $v_0 \neq 0$, (u_n) et (v_n) convergent si et seulement si $u_0^2 + v_0^2 = 1$. En résumé, (u_n) et (v_n) convergent si et seulement si $u_0^2 + v_0^2 = 1$.

Exercice 1.32 | Correction:

1. $u_0 = 0$, $u_{n+1} = \sqrt{1 + u_n}$.

Par récurrence, $\forall n \in \mathbb{N}, u_n \geq 0$.

Soit $f(x) = \sqrt{1+x}$, $x \in \mathbb{R}^+$. f est croissante sur \mathbb{R}_+ et $f(\mathbb{R}_+) \subset \mathbb{R}_+$ (on dit que \mathbb{R}_+ est stable par f).

$$\forall x \in \mathbb{R}_+, f(x) = x \Leftrightarrow x = \frac{1+\sqrt{5}}{2}$$
. Conclusion, si (u_n) converge, $\ell = \lim_{n \to +\infty} u_n = \frac{1+\sqrt{5}}{2}$.

À ce stade, la proposition 1.1.14 ne permet pas de conclure car elle impose de travailler sur un intervalle [a,b] borné, ce qui n'est pas le cas ici. On doit donc démontrer que (u_n) converge (ou pas).

- On montre par récurrence que $\forall n \in \mathbb{N}, u_n \leq \ell$: si $n = 0, u_0 = 0 \leq \ell$. On suppose la relation vraie au rang $n: u_n \leq \ell$. Comme f est croissante, $u_{n+1} = f(u_n) \leq f(\ell) = \ell$.
- Étudions la monotonie de (u_n) . Comme f est croissante sur \mathbb{R}_+ et que $f(\mathbb{R}_+) \subset \mathbb{R}_+$, $\operatorname{sgn}(u_{n+1} u_n) =$ $\operatorname{sgn}(u_1 - u_0)$. Ici, $u_1 - u_0 > 0$ donc (u_n) est croissante (*). La suite (u_n) étant majorée, elle converge et donc, $\lim_{n \to +\infty} u_n = \frac{1 + \sqrt{5}}{2}$.

On a utilisé la proposition suivante pour affirmer (*):

Proposition 0.1 Soient I un intervalle (non nécessairement borné) de \mathbb{R} , et $f:I\to\mathbb{R}$ une fonction continue. Supposons que l'intervalle I est stable par f. Notons (u_n) la suite définie par la donnée de $u_0 \in I$ et la relation de récurrence $u_{n+1} = f(u_n)$. Si la fonction f est strictement croissante sur I, alors la suite (u_n) est monotone. Si $u_1 - u_0 > 0$, elle est strictement croissante. Si $u_1 - u_0 < 0$, elle est strictement décroissante. Enfin, si $u_1 = u_0$, elle est constante égale à u_0 .

2. $u_0 = \frac{1}{2}$, $u_{n+1} = \sqrt[3]{3u_n + 1} - 1$. On utilise le même raisonnement que précédemment. On établit que (u_n) est décroissante et minorée et que $\lim_{n \to +\infty} u_n = 0$.

- 3. $u_0=1, u_{n+1}=\frac{u_n}{u_n^2+1}$. Par récurrence, $\forall n\in\mathbb{N}, u_n>0$. On a $f(x)=x\Leftrightarrow x=0$. $\forall n\in\mathbb{N}, \frac{u_{n+1}}{u_n}=\frac{1}{u_{n+1}^2}\leq 1$. Donc (u_n) est décroissante et minorée, elle converge. On a $\lim_{n \to \infty} u_n = 0$.
- 4. $u_0=1,\ u_{n+1}=1-\frac{2}{u_n}.$ Si $u_n\underset{n\to+\infty}{\longrightarrow}\ell,$ alors $\ell=1-\frac{2}{\ell}\Leftrightarrow\ell^2-\ell+2=0.$ C'est impossible puisque le discriminant est négatif. Donc (u_n) diverge.
- 5. $u_0 = \frac{\pi}{4}$, $u_{n+1} = 1 \cos u_n$. On établit que $\forall x \in [0, \frac{\pi}{4}]$, $1 \cos x \le x$ (1).

 Montrons par récurrence que $\forall n \in \mathbb{N}$, $0 \le u_n \le \frac{\pi}{4}$. Soit n = 0, on a $u_0 = \frac{\pi}{4}$. On suppose que $0 \le u_n \le \frac{\pi}{4}$. Comme f est croissante sur $\left[0, \frac{\pi}{4}\right]$, $0 \le u_{n+1} = f(u_n) \le f(\frac{\pi}{4}) < \frac{\pi}{4}$. Ensuite, d'après (1), $u_{n+1} \le u_n$. Par conséquent, (u_n) est décroissante et minorée. La suite (u_n) converge. L'unique point fixe de f sur $\left[0,\frac{\pi}{4}\right]$ est 0. Conclusion, $\lim_{n \to +\infty} u_n = 0$.
- 6. $u_0 = 0$, $u_{n+1} = e^{au_n}$ (a > 0).

 - On montre par récurrence que $\forall n \in \mathbb{N}, u_n \geq 0$. Soit $f(x) = e^{ax}, x \in \mathbb{R}$. f est croissante sur \mathbb{R}_+ et $f(\mathbb{R}_+) \subset \mathbb{R}_+$. $\forall x \in]0, +\infty[$, $f(x) = x \Leftrightarrow e^{ax} = x \Leftrightarrow a = \frac{\ln x}{x}$. Soit (E): $\frac{\ln x}{x} = a$. On étudie: $g(x) = \frac{\ln x}{x}$, x > 0. On a $g'(x) = \frac{1 \ln x}{x^2}$.

x	0 e	$+\infty$
signe de $g'(x)$	+ 0	-
variations de g	$-\infty$	0

- Si $a > \frac{1}{a}$, (E) n'a pas de solution.
- Si $0 < a < \frac{1}{2}$, (E) admet 2 solutions positives.
- Si $a = \frac{1}{-}$, (E) admet 1 solution positive e.
- Monotonie de (u_n) . Comme f est croissante sur \mathbb{R}_+ , $\operatorname{sgn}(u_{n+1}-u_n)=\operatorname{sgn}(u_1-u_0)$. $u_1-u_0=e^0-0=e^0$
- Montrons par récurrence que si $0 < a \le \frac{1}{2}$, $\forall n \in \mathbb{N}$, $u_n \le e$. On a $u_0 = 0 \le e$. On suppose que $u_n \le e$. Comme f est croissante, $f(u_n) \le f(e)$ ce qui est équivalent à l'inégalité $u_{n+1} \le e^{ae} \le e$.
- Si $0 < a \le \frac{1}{e}$, (u_n) est croissante et $\forall n \in \mathbb{N}$, $u_n \le e$. Cela implique que (u_n) converge. Soit $\ell = \lim_{n \to +\infty} u_n$ la solution de (E) qui est inférieure à e.
- Si $a > \frac{1}{e}$, (E) n'admet pas de solution. Donc (u_n) diverge. Comme (u_n) est croissante, $u_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 1.33 | Correction: Attention, si f est strictement décroissante, la suite (u_n) n'est pas monotone. En effet, si la suite (u_n) était par exemple strictement croissante, on aurait pour tout entier naturel $n, u_n < u_{n+1}$. La stricte décroissance de f impliquerait alors $f(u_n) > f(u_{n-1})$, c'est-à-dire $u_{n+1} > u_{n+2}$, ce qui est absurde. On pourrait vérifier de même que (u_n) ne peut pas être décroissante. On dispose néanmoins du résultat suivant :

Proposition 0.2 Soient I un intervalle de \mathbb{R} , et $f:I\to R$ une fonction continue. Supposons que l'intervalle I est stable par f. Notons (u_n) la suite définie par la donnée de $u_0 \in I$ et la relation de récurrence $u_{n+1} = f(u_n)$. Si la fonction f est strictement décroissante sur I, alors les deux suites (v_n) et (w_n) définies respectivement par $v_n = u_{2n}$ et $w_n = u_{2n+1}$ sont monotones.

- . Si $u_2 u_0 > 0$, la suite (v_n) est strictement croissante.
- . Si $u_2 u_0 < 0$, elle est strictement décroissante.
- . Enfin, si $u_2 = u_0$, elle est constante égale à u_0 .
- . Si $u_3 u_1 > 0$, la suite (w_n) est strictement croissante.
- . $Si \ u_3 u_1 < 0$, elle est strictement décroissante.
- . Enfin, si $u_3 = u_1$, elle est constante égale à u_1 .

De plus si la suite (v_n) est croissante, alors la suite (w_n) est décroissante, et de même, si la suite (v_n) est décroissante, alors la suite (w_n) est croissante.

Le résultat se prouve aisément à l'aide la proposition 0.1 et du fait que

$$\begin{cases} u_{2n+3} = f(u_{2n+2}) = f(f(u_{2n+1})) = \underbrace{f \circ f}_{g}(u_{2n+1}) \\ u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = \underbrace{f \circ f}_{g}(u_{2n}) \end{cases} \Leftrightarrow \begin{cases} w_{n+1} = g(w_n) \\ v_{n+1} = g(v_n) \end{cases}$$

En effet, comme la composée d'une fonction avec elle-même est croissante, g est toujours croissante et on peut appliquer la proposition 0.1 aux suites (v_n) et (w_n) .

1.
$$u_0 = \frac{1}{2}$$
, $u_{n+1} = \frac{2}{1+u_n}$ Soit $f(x) = \frac{2}{1+x}$, $x \in]-1, +\infty[$. f est décroissante et $f(]-1, +\infty[) =]0; +\infty[\subset]-1, +\infty[$. On a $(f(x) = x, x > -1) \Leftrightarrow x = 1$. Soit $g(x) = (f \circ f)(x) = \frac{2(1+x)}{3+x}$, g est bien croissante sur \mathbb{R}_+ . On retrouve bien-sûr le fait que le point fixe de f est aussi le point fixe de $g: (g(x) = x, x \ge 0) \Leftrightarrow x = 1$. On étudie les sous-suites $(v_n = u_{2n})$ et $(w_n = u_{2n+1})$ définies par :

$$\begin{cases} v_{n+1} = g(v_n) \\ v_0 = u_0 = \frac{1}{2} \end{cases}, \begin{cases} w_{n+1} = g(w_n) \\ w_0 = u_1 = \frac{4}{3} \end{cases}$$

Comme g est croissante, on montre par récurrence que (v_n) est croissante et majorée par 1, et que (w_n) est décroissante et minorée par 1. Les deux suites (v_n) et (w_n) convergent vers le point fixe de g. Donc $\lim_{n\to +\infty} v_n = \lim_{n\to +\infty} w_n = 1, \, \text{et on a finalement } \lim_{n\to +\infty} u_n = 1.$

2.
$$u_0 = \frac{1}{2}$$
, $u_{n+1} = \sqrt{1 - u_n}$. Soit $f(x) = \sqrt{1 - x}$, $x \in [0, 1]$. On a le tableau de variations :

x	0 1
signe de $f'(x)$	_
variations de f	

Comme $u_0 = \frac{1}{2} \in [0,1]$ et f([0,1]) = [0,1], u_n est parfaitement définie.

On note que $(f(x) = x, x \in [0, 1]) \Leftrightarrow x = \frac{-1 + \sqrt{5}}{2} \simeq 0,512$. On notera $\ell = \frac{-1 + \sqrt{5}}{2}$. Soit $g = f \circ f$ (g est croissante sur [0, 1]). Soient $(v_n = u_{2n})$ et $(w_n = u_{2n+1})$ définies par :

$$\begin{cases} v_{n+1} = g(v_n) \\ v_0 = u_0 = \frac{1}{2} \end{cases}, \quad \begin{cases} w_{n+1} = g(w_n) \\ w_0 = u_1 = \frac{1}{\sqrt{2}} \end{cases}$$

Comme q est croissante,

Comme g est crossance, • (v_n) croissante et majorée $(v_n \leq \ell)$ impliquent que (v_n) converge, • (w_n) décroissante et minorée $(w_n \geq \ell)$ impliquent que (w_n) converge. Si on note $v = \lim_{n \to +\infty} v_n$ et $w = \lim_{n \to +\infty} w_n$, on a $\frac{1}{2} \leq v \leq \ell$ et $\ell \leq w \leq \frac{1}{\sqrt{2}}$, v = g(v) et (w = g(w)). Or, $v_{n+1} = f(w_n)$ et $w_{n+1} = f(v_n)$. Par passage à la limite, on obtient :

$$\left\{ \begin{array}{ll} v = f(w) \\ w = f(v) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} v = \sqrt{1-w} & (a) \\ w = \sqrt{1-v} & (b) \end{array} \right.$$

On en déduit $v^2 = 1 - w$ et $w^2 = 1 - v$ ce qui est équivalent à

$$v^{2} - w^{2} = v - w \Leftrightarrow (v - w)(v + w - 1) = 0 \Leftrightarrow \begin{cases} v = w \\ \text{ou } v + w - 1 = 0 \end{cases}$$

Si v+w-1=0, alors $v^2=1-w=v \Leftrightarrow v=0$ ou v=1 ce qui est impossible. Nécessairement, v=w et (a) et (b) impliquent que $v = w = \ell$. Conclusion,

$$(v_n \xrightarrow[n \to +\infty]{} \ell \text{ et } w_n \xrightarrow[n \to +\infty]{} \ell) \Leftrightarrow u_n \xrightarrow[n \to +\infty]{} \ell$$

3. $u_0=1, u_{n+1}=\frac{a}{u^2}$ (a>0). $\forall n\in\mathbb{N}, u_n>0.$ Soit $x_n=\ln u_n\Leftrightarrow u_n=e^{x_n}.$ On a donc $\ln u_{n+1}=\ln a-2\ln u_n.$

La suite (x_n) est définie par $\begin{cases} x_{n+1} = -2x_n + \ln a & (1) \\ x_0 = 0 \end{cases}$ On cherche une solution particulière \tilde{x}_n de (1)sous forme d'une constante k:

$$k = -2k + \ln a \Leftrightarrow k = \frac{1}{3} \ln a$$

 (x_n) est solution de (1) si et seulement si $x_n - \frac{1}{3} \ln a$ est solution de $v_{n+1} = -2v_n$ c'est-à-dire $v_n = (-2)^n C$, $(C \in \mathbb{R})$. En résumé, (x_n) est solution de (1) si et seulement si $\exists C \in \mathbb{R}, \forall n \in \mathbb{N}, x_n = C(-2)^n + \frac{1}{3} \ln a$. Avec $n = 0, x_0 = C + \frac{1}{3} \ln a \Rightarrow C = \frac{1}{3} \ln a$. Donc, $\forall n \in \mathbb{N}, x_n = \frac{1}{3} \ln a [(-2)^n + 1]$. D'où :

$$\forall n \in \mathbb{N}, \ u_n = e^{\frac{1}{3}((-2)^n + 1)\ln a}$$

Si a = 1, $u_n = 1$ pour tout $n \in \mathbb{N}$; si $a \neq 1$, (u_n) diverge.

4. $u_0 = \frac{1}{2}$, $u_{n+1} = (1 - u_n)^2$. On montre par récurrence que $\forall n \in \mathbb{N}$, $0 \le u_n \le 1$. On pose $f(x) = (1 - x)^2$, $x \in [0, 1]$. Donc f est décroissante sur [0, 1]. Soit $g = f \circ f$ (g est croissante sur [0, 1]). Les suites ($v_n = u_{2n}$) et ($w_n = u_{2n+1}$) sont telles que

$$\begin{cases} v_{n+1} = g(v_n) \\ v_0 = u_0 = \frac{1}{2} \end{cases}, \quad \begin{cases} w_{n+1} = g(w_n) \\ w_0 = u_1 = \frac{1}{4} \end{cases}$$

Avec g croissante, on établit que (v_n) est croissante. Comme $v_n \leq 1$, (v_n) converge. Soit $v = \lim_{n \to +\infty} v_n$ alors on a $\frac{1}{2} \leq v \leq 1$. De même, (w_n) est décroissante. Comme $w_n \geq 0$, (w_n) converge. Soit $w = \lim_{n \to +\infty} w_n$ alors on a $0 \leq w \leq \frac{1}{4}$. Comme $v \neq w$, (u_n) diverge.

Remarque : on peut montrer que v = 1 et w = 0.

5. $u_0 = 1$, $u_{n+1} = \frac{1}{2+u_n}$. On montre par récurrence que $\forall n \in \mathbb{N}$, $u_n > 0$. Soit $f(x) = \frac{1}{2+x}$, $x \ge 0$. On note que f est décroissante et que $f([0, +\infty[) \subset [0, +\infty[$. $\forall x \in \mathbb{R}_+^*$, $f(x) = x \Leftrightarrow x = \sqrt{2} - 1$. f admet un seul point fixe $\ell = \sqrt{2} - 1 \simeq 0$, 414. Ensuite, $\forall n \in \mathbb{N}$,

$$|u_{n+1} - \ell| = \left| \frac{1}{2 + u_n} - \frac{1}{2 + \ell} \right| = \frac{|u_n - \ell|}{(2 + u_n)(2 + \ell)} \le \frac{1}{4} |u_n - \ell|$$

On en déduit par récurrence immédiate : $\forall n \in \mathbb{N}, \ |u_n - \ell| \le \frac{1}{4^n} |u_0 - \ell|$ et donc, $\lim_{n \to +\infty} u_n = \sqrt{2} - 1$.

6. $u_0 = 2$, $u_{n+1} = \frac{1}{3+u_n}$. On utilise le même raisonnement que dans le 5. et on obtient : $\lim_{n \to +\infty} u_n = \frac{\sqrt{13}-3}{2}$.

Exercice 1.34 $Correction : \forall n \in \mathbb{N}, \forall p \in \mathbb{N}^*,$

$$|u_{n+p} - u_n| = \left| \sum_{k=0}^{p-1} (u_{n+k+1} - u_{n+k}) \right| \le \sum_{k=0} p - 1|u_{n+k+1} - u_{n+k}|$$

soit

$$|u_{n+p} - u_n| \le \sum_{k=0}^{p-1} \frac{1}{2^{n+k}} = \frac{1}{2^n} \times \frac{1 - \left(\frac{1}{2}\right)}{1 - \frac{1}{2}} \le \varepsilon_n = \frac{1}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$$

Finalement, comme (u_n) est de Cauchy si et seulement si (u_n) converge, on a la conclusion attendue.

Exercice 1.35 Correction:

1. Soit $k \in \mathbb{N}^*$. $\forall x \in [k, k+1]$,

$$\frac{1}{k+1} \le \frac{1}{x} \le \frac{1}{k} \Rightarrow \frac{1}{k+1} \le \int_{k}^{k+1} \frac{dx}{x} \le \frac{1}{k}$$

On somme de k = n + 1 à k = n + p, puis de k = n à k = n + p - 1 et on obtient :

$$\int_{n+1}^{n+p+1} \frac{dx}{x} \le \sum_{k=n+1}^{n+p} \frac{1}{k} \le \int_{n}^{n+p} \frac{dx}{x}$$

soit $\forall (n, p) \in \mathbb{N}^{*2}$,

$$\ln \frac{n+p+1}{n+1} \le \sum_{k=n+1}^{n+p} \le \ln \frac{n+p}{n}$$
 (1)

2.
$$\forall n \in \mathbb{N}^*, u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln n$$
. Donc, $\forall (n,p) \in \mathbb{N}^{*2}, u_{n+p} - u_n = \sum_{k=n+1}^{n+p} \frac{1}{k} - \ln \frac{n+p}{n}$. D'après (1), $\ln \frac{(n+p+1)(n)}{(n+1)(n+p)} \le u_{n+p} - u_n \le 0$ soit

$$|u_{n+p} - u_n| \le \left| \ln \frac{(n+p+1)n}{(n+1)(n+p)} \right| \le \ln \frac{n+1}{n} \xrightarrow[n \to +\infty]{} 0$$

Finalement, comme (u_n) est de Cauchy si et seulement si (u_n) converge, on a la conclusion attendue.

Exercice 1.36 Correction:
$$u_n = \sum_{k=1}^n \frac{\varphi(k)}{k^2}, \ \varphi : \mathbb{N}^* \to \mathbb{N}^* \text{ est injective.}$$

$$u_{2n} - u_n = \frac{\varphi(n+1)}{(n+1)^2} + \ldots + \frac{\varphi(2n)}{(2n)^2} \ge \frac{1}{(2n)^2} \left(\varphi(n+1) + \ldots + \varphi(2n) \right)$$

 φ est injective : $p \neq p' \Rightarrow \varphi(p) \neq \varphi(p')$. On peut donc ordonner les termes $\varphi(n+1), \ldots, \varphi(2n)$. Comme, pour $p \geq n+1, \varphi(p) \geq 1$, on a :

$$\varphi(n+1) + \varphi(n+2) + \ldots + \varphi(2n) \ge 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

D'où : $u_{2n} - u_n \ge \frac{n(n+1)}{2(2n)^2} \ge \frac{1}{8}$, et donc $\lim_{n \to +\infty} (u_{2n} - u_n) \ne 0$. Donc (u_n) n'est pas de Cauchy $\Leftrightarrow (u_n)$ diverge. Comme (u_n) est croissante, $u_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercise 1.37 $\underline{Correction} : \forall n \in \mathbb{N}, \, \varepsilon_n = \pm 1, \, a_n = \frac{\varepsilon_0}{1} + \frac{\varepsilon_0 \varepsilon_1}{2} + \ldots + \frac{\varepsilon_0 \varepsilon_1 \ldots \varepsilon_n}{2^n}$

- 1. $|a_{n+p} a_n| = \left| \frac{\varepsilon_0 \varepsilon_1 \dots \varepsilon_n}{2^{n+1}} + \dots + \frac{\varepsilon_0 \varepsilon_1 \dots \varepsilon_{n+p}}{2^{n+p}} \right| \le \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+p}} \le \frac{1}{2^n} \underset{n \to +\infty}{\longrightarrow} 0.$ (a_n) est de Cauchy \Leftrightarrow (a_n) converge. Comme $|a_n| \le 1 + \frac{1}{2} + \dots + \frac{1}{2^n} \le 2, \ a = \lim_{n \to +\infty} a_n \in [-2, 2]$
- 2. (a) $k \in [-\frac{\pi}{4}, \frac{\pi}{4}], \underbrace{\sin(\frac{\pi}{4} + k)}_{\alpha} = \underbrace{\frac{1}{2}\sqrt{2 + 2\sin^2 k}}_{\beta}$
 - (b) α et β étant positifs ou nuls, $\alpha = \beta \Leftrightarrow \alpha = \beta^2$. Or, $\alpha = \sin\left(\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}\cos k + \frac{1}{\sqrt{2}}\sin\right) = \frac{1}{2}(1 + 2\sin k\cos k) = \beta^2$.
 - (c) $x_n = \varepsilon_0 \sqrt{2 + \varepsilon_1 \sqrt{2 + \ldots + \varepsilon_{n-1} \sqrt{2 + \varepsilon_n \sqrt{2}}}}$, $y_n = 2 \sin\left(\frac{\pi}{4}a_n\right)$. Montrons par récurrence que $\forall n \in \mathbb{N}$, $x_n = y_n$. Soit (P_n) : " $x_n = y_n$ ". P(0) est vraie : $y_0 = 2 \sin\left(\frac{\pi}{4}\varepsilon_0\right) = \varepsilon_0 \sqrt{2} = x_0$. Montrons que P(n) vraie $\Rightarrow P(n+1)$ est vraie.

$$y_n = 2\sin\frac{\pi}{4}\left(\varepsilon_0 + \frac{\varepsilon_0\varepsilon_1}{2} + \ldots + \frac{\varepsilon_0\varepsilon_1\ldots\varepsilon_{n+1}}{2^{n+1}}\right) = 2\varepsilon_0\sin\frac{\pi}{4}\left(1 + \frac{\varepsilon_1}{2} + \ldots + \frac{\varepsilon_1\ldots\varepsilon_{n+1}}{2^{n+1}}\right) = 2\varepsilon_0\sin\left[\frac{\pi}{4} + \frac{\pi}{4}\left(\frac{\varepsilon_1}{2} + \ldots + \frac{\varepsilon_1\ldots\varepsilon_{n+1}}{2^{n+1}}\right)\right] = \frac{2\cdot(a)}{\varepsilon_0}\sqrt{2 + 2\sin\frac{\pi}{4}\left(\varepsilon_1 + \frac{\varepsilon_1\varepsilon_2}{2} + \ldots + \frac{\varepsilon_1\ldots\varepsilon_{n+1}}{2^n}\right)} = \frac{2\cdot(a)}{\varepsilon_0\sqrt{2 + \varepsilon_1\sqrt{2 + \ldots + \varepsilon_{n-1}\sqrt{2 + \varepsilon_{n+1}\sqrt{2}}}} = x_{n+1}.$$

En résumé, $\forall n \in \mathbb{N}, y_n = x_n$. D'où, $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = 2\sin\left(\frac{\pi}{4}a\right)$.

(d) $\forall n \in \mathbb{N}, \ \varepsilon_n = 1$. Alors, $a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{2^n} = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} \underset{n \to +\infty}{\longrightarrow} a = 2 \ \text{donc} \ \lim_{n \to +\infty} x_n = 2$. On retrouve ce résultat en remarquant que $\left\{ \begin{array}{l} x_{n+1} = \sqrt{2 + x_n} \\ x_0 = \sqrt{2} \end{array} \right.$ On établit que puisque (x_n) est croissante et majorée par 2, (x_n) converge vers ℓ telle que $\ell = \sqrt{2 + \ell} \ (\ell \ge 0)$ soit $x_n \underset{n \to +\infty}{\longrightarrow} 2$.