MASTER 1 GSI - Mentions ACCIE et RIM- Dunkerque - 2012/2013

CORRECTION Exercices Chapitre 2 - La probabilité.

Exercice 23 Correction: Soit x le nombre de filles en seconde année. On a les événements et probabilités suivants:

- G = "être un garçon" et $p(G) = \frac{10}{16+x}$, F = "être une fille" et $p(F) = \frac{6+x}{16+x}$,
- A_1 = "être en première année" et $p(A_1) = \frac{10}{16 + x}$,
- A_2 = "être en seconde année" et $p(A_2) = \frac{10}{16 + x}$
- G/A_1 = "être un garçon sachant que l'élève est en première année" et $p(G/A_1) = \frac{4}{10}$
- F/A_1 ="être une fille sachant que l'élève est en première année" et $p(F/A_1) = \frac{\mathfrak{b}}{10}$,
- G/A_2 ="être un garçon sachant que l'élève est en seconde année" et $p(G/A_2) = \frac{\sigma}{6+x}$
- F/A_2 ="être une fille sachant que l'élève est en seconde année" et $p(F/A_2) = \frac{\omega}{6+x}$.

Il s'agit de trouver le nombre de filles de seconde année x tel que les égalités suivantes soient vérifiées :

$$\begin{cases} p(G \cap A_1) &= p(G) \times p(A_1) \ (1) \\ p(G \cap A_2) &= p(G) \times p(A_2) \ (2) \\ p(F \cap A_1) &= p(F) \times p(A_1) \ (3) \\ p(F \cap A_2) &= p(F) \times p(A_2) \ (4) \end{cases}$$

Intéressons-nous à la première équation. On a tout d'abord $p(G \cap A_1) = P(G/A_1)P(A_1) = \frac{4}{10} \times \frac{10}{16+x} = \frac{4}{16+x}$ et donc (1) $\Leftrightarrow \frac{4}{16+x} = \frac{10}{16+x} \times \frac{10}{16+x} \Leftrightarrow x = 9$. On vérifiera sans mal que x = 9 est bien solution de (2),(3) et (4). Conclusion, il faut 9 filles en seconde année pour que "sexe" et "année" soient des facteurs indépendants.

Exercice 24 Correction: Il faut déterminer p(M/T) et on utilise pour cela la formule de Bayes:

$$p(M/T) = \frac{p(M) \times p(T/M)}{p(M) \times p(T/M) + p(\overline{M}) \times p(T/\overline{M})}$$

On a les implications $p(M)=0,01\Rightarrow p(\overline{M})=0,99$ et $p(\overline{T}/\overline{M})=0,95\Rightarrow p(T/\overline{M})=0,05$, on en déduit alors que

$$p(M/T) = \frac{0,01 \times 0,95}{0,01 \times 0,95 + 0,99 \times 0,05} = \frac{95}{590} = \frac{19}{118} \simeq 0,161.$$

Explication: Supposons que l'enquête soit faite sur 10000 personnes dont 1% est malade, soit 100 personnes. Un malade a un test positif avec une probabilité de 0,95, par conséquent $100 \times 0,95 = 95$ personnes ont eu un test positif. Un non-malade a un test négatif avec une probabilité de 0.95 donc $9900 \times 0.95 = 9405$ personnes nonmalades ont eu un test négatif. Sur les 10000 personnes, 495+95=590 ont eu un test positif donc p(M/T)=

Correction: On tire un boulon au hasard dans une boîte en contenant 100 donc Ω , l'univers constitué des événements élémentaires représentant les résultats possibles de l'expérience aléatoire, est de cardinal 100. On suppose que les boulons sont indiscernables au toucher, il y a donc équiprobabilité des tirages. Soit X la variable aléatoire décrivant la longueur d'un boulon.

1. Si A est l'événement : "Le boulon mesure moins de 4, 2 cm"

$$p(A) = p(X < 4, 2) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)} = \frac{17}{100} = 0, 17.$$

2. Si B est l'événement : "Le boulon mesure plus de 4, 4 cm"

$$p(B) = p(X \ge 4, 4) = \frac{\operatorname{Card}(B)}{\operatorname{Card}(\Omega)} = \frac{59}{100} = 0, 59.$$

3. Si C est l'événement : "Le boulon est utilisable",

$$p(C) = p(4, 2 \le X < 4, 6) = \frac{\operatorname{Card}(C)}{\operatorname{Card}(\Omega)} = \frac{75}{100} = 0,75.$$

Exercice 26 Correction:

1. On obtient le tableau ci-dessous :

	Nombre de puces défectueuses	Nombre de puces non défectueuses	Total
Nombre de puces produites par l'atelier A	20	980	1000
Nombre de puces produites par l'atelier B	24	776	800
Total	44	1756	1800

2. On récupère à l'aide du tableau les données suivantes :

(a)
$$p(D) = \frac{44}{1800}$$
, $p(A \cap D) = \frac{20}{1800}$, $p(A/D) = \frac{20}{44}$.

(b)
$$p(\overline{D}) = \frac{1756}{1800}$$
, $p(B \cap \overline{D}) = \frac{776}{1800}$, $p(B/\overline{D}) = \frac{776}{1756}$.

3. On a
$$p(A \cap D) = \frac{20}{1800}$$
 et $p(A/D) \times p(D) = \frac{20}{44} \times \frac{44}{1800} = \frac{20}{1800}$ donc

$$p(A \cap D) = p(A/D) \times p(D).$$

On vérifie de même que $p(B \cap \overline{D}) = p(B/\overline{D}) \times p(\overline{D})$.

Exercice 27 | Correction : On définit pour chaque pièce les événements suivants :

 \overline{D} : "la pièce est défectueuse",

B: "la pièce est non défectueuse",

A: "la pièce est acceptée",

R: "la pièce est refusée".

On a les probabilités suivantes : p(D) = 0.03, p(B) = 0.97, p(R/D) = 0.98, p(A/B) = 0.96, p(A/D) = 0.02 et p(R/B) = 0,04. On a par conséquent

$$p_0 = p(D \cap A) = p(A/D)p(D) = 0.02 \times 0.03 = 0.0006.$$

On a ensuite $p_1 = p(D \cap A) + p(B \cap R)$ où les événements $D \cap A$ et $B \cap R$ induisent une erreur de contrôle. Comme $p(D \cap A) = 0,0006$ et $p(B \cap R) = p(R/B)p(B) = 0,04 \times 0,97 = 0,0388$, on a

$$p_1 = 0,0006 + 0,0388 = 0,0394,$$

$$n_0 = n(A) - n(A \cap D) + n(A \cap B) = 0.0006 + n(A/B)n(B) = 0.0006 + 0.96 \times 0.97 = 0.9318$$

$$p_2 = p(A) = p(A \cap D) + p(A \cap B) = 0,0006 + p(A/B)p(B) = 0,0006 + 0,96 \times 0,97 = 0,9318,$$

$$p_3 = p(D/A) = \frac{p(A \cap D)}{p(A)} = \frac{0,0006}{0,9318} \approx 0,00064.$$

Exercice 28 Correction:

- 1. Ici le hasard intervient à deux niveaux, le choix de la machine et la conformité de la pièce. $\{M_A, M_B, M_C\}$ forme un système complet d'événements où M_A (respectivement M_B et M_C) est l'événement "la pièce est fabriquée par A (respectivement par B et C)". Si T est l'événement "la pièce est défectueuse", on a l'égalité $p(T) = p(T \cap M_A) + p(T \cap M_B) + p(T \cap M_C) = p(T/M_A)p(M_A) + p(T/M_B)p(M_B) + p(T/M_C)p(M_C) = p(T/M_A)p(M_A) + p(T/M_C)p(M_C) = p(T/M_A)p(M_A) + p(T/M_C)p(M_C) = p(T/M_C)p(M_C) + p(T/M_C)p(M_C) + p(T/M_C)p(M_C) = p(T/M_C)p(M_C) + p(T/M_C)p$ $0,02 \times 0,6 + 0,03 \times 0,3 + 0,04 \times 0,1 = 0,025.$
- 2. On cherche la probabilité de l'événement B/T. On connaît p(T/B) donc $p(B/T) = \frac{p(B \cap T)}{p(T)} = \frac{p(T/B)p(B)}{p(T)} = \frac{p(T/B)p(B)}{p(T)}$ $\frac{0,03\times0,3}{0,025}=0,36.$

Exercice 29 <u>Correction</u>: On peut assimiler l'expérience aléatoire à un tirage successif avec remise. $\Omega = \{(a, b, c, d), a, b, c, d \in \{G, F\}\}\$ et $Card(\Omega) = 2^4 = 16$. $p(A) = \frac{1}{16}$,

$$p(B) = C_4^1 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4},$$

$$p(C) = C_4^2 \times \frac{1}{16} = \frac{6}{16} = \frac{3}{8},$$

$$p(D) = \frac{1}{16},$$

 $p(E) = 1 - \frac{1}{16} = \frac{15}{16}$ (on a considéré l'événement complémentaire $\overline{E} = D$: "Monsieur et Madame A n'ont

 $p(F) = \frac{2}{16} = \frac{1}{8}$ (on a considéré l'événement complémentaire \overline{F} : "Monsieur et Madame A n'ont pas de fille ou pas de garçon - Formule de Morgan).

Exercice 30 | Correction:

•
$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = \frac{1}{3} + \frac{1}{2} - \frac{1}{5} = \frac{19}{30}$$

•
$$p(\overline{A}) = 1 - p(A) = 1 - \frac{1}{3} = \frac{2}{3}$$
,
• $p(\overline{B}) = 1 - p(B) = 1 - \frac{1}{2} = \frac{1}{2}$,

•
$$p(\overline{B}) = 1 - p(B) = 1 - \frac{1}{2} = \frac{1}{2}$$

• $p(\overline{A} \cap B) = p(\overline{A})p(B)$ si \overline{A} et B sont deux événements indépendants. Dans ce cas, $p(\overline{A} \cap B) = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$. Si les deux événements ne sont pas indépendants, on n'a pas de résultat.

• $p(\overline{A} \cup B) = p(\overline{A}) + p(B) - p(\overline{A} \cap B)$. Si les deux événements \overline{A} et B sont indépendants, $p(\overline{A} \cup B) = \frac{2}{3} + \frac{1}{9} - \frac{1}{3} = \frac{5}{6}$

Si les deux événements ne sont pas indépendants, on n'a pas de résultat.
•
$$p(\overline{A} \cap \overline{B}) = 1 - p(\overline{\overline{A} \cap \overline{B}}) = 1 - p(A \cup B) = 1 - \frac{19}{30} = \frac{11}{30}$$
.

Exercice 31 Correction: Soit Ω l'univers constitué des tirages simultanés de 2 boules dans l'urne qui en contient 5. On a $Card(\Omega) = C_5^2 = 10$. On suppose que les boules sont indiscernables au toucher, le tirage est donc équiprobable.

1. L'événement A peut se réaliser de deux manières différentes : les deux boules tirées sont rouges (événement A_1) ou elles sont noires (événement A_2). Les deux événements étant incompatibles, $p(A) = p(A_1 \cup A_2) = p(A_1) + p(A_2)$. Comme $p(A_1) = \frac{\operatorname{Card}(A_1)}{\operatorname{Card}(\Omega)} = \frac{C_3^2}{C_5^2} = \frac{3}{10}$ et $p(A_2) = \frac{\operatorname{Card}(A_2)}{\operatorname{Card}(\Omega)} = \frac{C_2^2}{C_5^2} = \frac{1}{10}$, on en déduit $p(A) = \frac{4}{10}$.

2. L'événement B peut se réaliser de 4 manières différentes et élémentaires (chacune ayant la probabilité $\frac{1}{10}$ de se produire) : on en déduit $p(B) = \frac{4}{10}$.

(3.
$$p(B/A) = \frac{p(B \cap A)}{p(A)}$$
 or $B \cap A = \{\{R_1, R_2\}, \{N_1, N_2\}\}\ donc, p(B/A) = \frac{2/10}{4/10} = \frac{1}{2}$.)

Exercice 32 Correction: Soient les événements suivants :

A: "obtenir un résultat impair ou tirer une boule de A",

B: "obtenir le '2' ou le '4' ou tirer une boule de B",

C: "obtenir le '6' ou tirer une boule de C",

Bl: "la boule tirée est bleue".

On a les probabilités $p(A) = \frac{1}{2}$, $p(B) = \frac{1}{3}$ et $p(C) = \frac{1}{6}$. On ne peut pas déterminer p(Bl) immédiatement car il n'y a pas équiprobabilité pour chacune des urnes. On fait donc intervenir la notion d'urne. On cherche p(C/Bl). On a $p(C/Bl) = \frac{p(C \cap Bl)}{p(Bl)}$ et on sait que $Bl = (Bl \cap A) \cup (Bl \cap B) \cup (Bl \cap C)$. En effet, A, B et C forment un système complet d'événements (c'est-à-dire une partition). Ainsi $p(Bl) = p(Bl \cap A) + p(Bl \cap B) + p(Bl \cap C)$ P(Bl/A)p(B) + p(Bl/B)p(B) + p(Bl/C)p(C). On connaît de plus $P(Bl/A) = \frac{2}{6} = \frac{1}{3}$, $P(Bl/B) = \frac{6}{11}$ et $p(Bl/C) = \frac{9}{10}$. Par conséquent,

$$p(Bl) = \left(\frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{6}{11} \times \frac{1}{3}\right) + \left(\frac{9}{10} \times \frac{1}{6}\right) = \frac{329}{660} \text{ et finalement}, \ p(Bl/C) = \frac{\frac{99}{660}}{\frac{329}{660}} = \frac{99}{329} \approx 0,30.$$

Exercice 33 Correction:

1. Le nombre de groupes de 3 cartes parmi les 52 est $N = C_{52}^3 = \frac{52 \times 51 \times 50}{3!} = 22100$.

- 2. On suppose qu'il y a équiprobabilité des tirages.
 - Si le roi de coeur est tiré avec les 2 autres cartes, $p(A) = \frac{C_1^1 \times C_{51}^2}{22100} = \frac{1275}{22100}$.
 - Si un roi est tiré ainsi que 2 autres cartes qui ne sont pas des rois, $p(B) = \frac{C_1^1 \times C_{48}^2}{C_{52}^3} = \frac{4512}{22100}$.
 - Si un coeur est tiré ainsi que 2 autres cartes qui ne sont pas des coeurs, $p(C) = \frac{C_{13}^1 \times C_{39}^2}{C_{52}^3} = \frac{9633}{22100}$ • Si le roi de coeur est tiré ainsi qu'un autre coeur et une corte qui rècre
 - Si le roi de coeur est tiré ainsi qu'un autre coeur et une carte qui n'est pas un coeur, on obtient $p(D) = \frac{C_1^1 \times C_{12}^1 \times C_{39}^1}{C_{52}^3} = \frac{468}{22100}.$
 - On peut utiliser deux méthodes :
 - On a exactement un coeur, deux coeurs ou trois coeurs. Le nombre de tirages contenant exactement un coeur est $N_1 = C_{13}^1 \times C_{39}^2 = 9633$. Le nombre de tirages contenant exactement deux coeurs est $N_2 = C_{13}^2 \times C_{39}^1 = 3042$. Le nombre de tirages contenant exactement trois coeurs est $N_3 = C_{13}^3 = 286$. Ces événements sont disjoints donc le nombre total de tirages est la somme des cardinaux de chacun des événements soit N = 9633 + 3042 + 286 = 12961 ce qui donne finalement $p(E) = \frac{12961}{22100}$.
 - Utilisons l'événement complémentaire c'est-à-dire l'événement "n'obtenir aucun coeur parmi les trois cartes". Le cardinal de cet événement est $C_{39}^3=9139$ donc $p(E)=\frac{C_{52}^3-C_{39}^3}{22100}=\frac{22100-9139}{22100}=\frac{12961}{22100}$.
 - ullet Attention, dans le cas de l'événement F, on est en présence de deux cas disjoints pour une même formulation :
 - si le roi est le roi de coeur, on a alors le roi de coeur, un autre coeur et une autre carte qui n'est ni un roi ni un coeur d'où le nombre de cas $N_1 = C_1^1 \times C_{12}^1 \times C_{36}^1 = 432$.
 - si le roi n'est pas le roi de coeur, il y a alors un roi qui n'est pas de coeur et deux coeurs d'où le nombre de cas $N_2 = C_3^1 \times C_{12}^2 = 198$. Finalement, la probabilité recherchée est donnée par $p(F) = \frac{N_1 + N_2}{22100} = \frac{432 + 198}{22100} = \frac{630}{22100}$.

Exercice 34 Correction: On suppose que les tirages sont équiprobables.

- 1. Tirages successifs avec remise. Au total, il y a à chaque tirage 9 possibilités donc $N=9^3=729$.
 - Dans le sac, 4 boules sont vertes donc $p(A) = \frac{4^3}{9^3} = \frac{64}{729}$.
 - On a 6 boules qui ne sont pas rouges donc $p(B) = \frac{6^3}{729} = \frac{216}{729}$
 - On a 1 boule blanche donc $p(C) = \frac{1^3}{729} = \frac{1}{729}$.
 - Soit N le nombre de tirages favorables à l'événement considéré. $vvr \to N = 4 \times 4 \times 3 = 48 \text{ donc } p(D) = \frac{48}{729}.$
 - $1^{\grave{e}re}$ méthode : $\begin{cases} vvr \to 4 \times 4 \times 3 = 48 \\ vrv \to 4 \times 3 \times 4 = 48 \\ rvv \to 3 \times 4 \times 4 = 48 \end{cases}$ donc $p(E) = \frac{3 \times 48}{729} = \frac{144}{729}$.

 $2^{\grave{e}me}$ méthode : on choisit la place de la boule rouge puis les places des 2 boules vertes, alors $p(E)=\frac{C_3^1\times C_2^2\times 4\times 4\times 3}{729}=\frac{144}{729}$.

$$\bullet \ 1^{\grave{e}re} \ \textit{m\'ethode} : \left\{ \begin{array}{l} vrn \to 4 \times 3 \times 1 = 12 \\ vnr \to 4 \times 1 \times 3 = 12 \\ rvn \to 3 \times 4 \times 1 = 12 \\ rnv \to 3 \times 1 \times 4 = 12 \\ nvr \to 1 \times 4 \times 3 = 12 \\ nrv \to 1 \times 3 \times 4 = 12 \end{array} \right. \ \text{donc} \ p(F) = \frac{6 \times 12}{729} = \frac{72}{729}.$$

 $2^{\grave{e}me}$ $m\acute{e}thode$: on choisit la place de la boule verte, la place de la boule rouge puis la place de la boule noire, ainsi $p(F) = \frac{C_3^1 \times C_2^1 \times C_1^1 \times 4 \times 3 \times 1}{729} = \frac{72}{729}$.

- 2. Tirages successifs sans remise. Le nombre de tirages total est égal à $N = 9 \times 8 \times 7 = A_9^3 = 504$.
 - $p(A) = \frac{A_4^3}{504} = \frac{24}{504}.$

•
$$p(B) = \frac{A_6^3}{504} = \frac{120}{504}$$
.

• Le tirage étant sans remise, il n'y a pas de tirage favorable donc $p(C) = p(\emptyset) = 0$.

•
$$vvr \to 4 \times 3 \times 3 = 36 \text{ donc } p(D) = \frac{36}{504}.$$

• Let triage etant sans remise, if if y a pas de triage ravorable donc
$$p(C)$$
• $vvr \to 4 \times 3 \times 3 = 36$ donc $p(D) = \frac{36}{504}$.

• $1^{\grave{e}re}$ $m\acute{e}thode:$
$$\begin{cases} vvr \to 4 \times 3 \times 3 = 36 \\ vrv \to 4 \times 3 \times 3 = 36 \\ vrv \to 3 \times 4 \times 3 = 36 \end{cases}$$
 donc $p(E) = \frac{3 \times 36}{504} = \frac{108}{504}$.

 $\frac{2^{\grave{e}me}\ \textit{m\'ethode}: \text{On choisit la place de la boule rouge puis les places des 2 boules vertes, on a } p(E) = \frac{C_3^1 \times C_2^2 \times 4 \times 3 \times 3}{504} = \frac{108}{504}.$

•
$$1^{\grave{e}re}$$
 $m\acute{e}thode:$
$$\begin{cases} vrn \to 4 \times 3 \times 1 = 12 \\ vnr \to 4 \times 1 \times 3 = 12 \\ rvn \to 3 \times 4 \times 1 = 12 \\ rnv \to 3 \times 1 \times 4 = 12 \\ nvr \to 1 \times 4 \times 3 = 12 \\ nrv \to 1 \times 3 \times 4 = 12 \end{cases}$$
 donc $p(F) = \frac{6 \times 12}{504} = \frac{72}{504}$.

 $2^{\grave{e}me} \ \ \textit{m\'ethode} : \text{On choisit la place de la boule verte, la place de la boule rouge puis la place de la boule rouge,} \\ noire, \\ p(F) = \frac{C_3^1 \times C_2^1 \times C_1^1 \times 4 \times 3 \times 1}{504} = \frac{72}{504}.$

3. Tirage simultané. Le nombre de tirages total est égal à $N = C_9^3 = \frac{9 \times 8 \times 7}{3!} = 84$.

•
$$p(A) = \frac{C_4^3}{84} = \frac{4}{84}$$
.

•
$$p(B) = \frac{C_6^3}{84} = \frac{20}{84}$$
.

- Le tirage étant simultané, il n'y a pas de tirage favorable donc $p(C) = p(\emptyset) = 0$.
- La question n'a pas de sens dans ce cas car il n'y a pas d'ordre dans un tirage simultané.

•
$$p(E) = \frac{C_4^2 \times C_3^1}{84} = \frac{18}{84}.$$

•
$$p(F) = \frac{C_4^1 \times C_3^1 \times C_1^1}{84} = \frac{12}{84}.$$