Master 1 Métiers de l'Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

ANALYSE 2

Fiche de Mathématiques 7 - Intégrales simples.

On considère dans ce chapitre des fonctions (numériques ou vectorielles) bornées sur un intervalle compact (c'est-à-dire fermé et borné) de \mathbb{R} .

1 Intégration des fonctions en escalier

Définition 1.1 Soit [a,b] un intervalle compact (c'est-à-dire fermé et borné) de \mathbb{R} . Une subdivision de [a,b] est une suite finie et strictement croissante de points de [a,b] dont le premier terme est a, et le dernier b.

À chaque subdivision σ de [a,b] on associe l'ensemble S constitué par les points de la suite σ . Inversement, à chaque ensemble fini S de points de [a,b], contenant a et b, on associera la subdivision σ obtenue en rangeant ces points dans l'ordre naturel de \mathbb{R} .

Définition 1.2 Soient σ et σ' deux subdivisions de [a,b]. On dit que la subdivision σ' est plus fine que σ , ou consécutive à σ , si les ensembles S et S' respectivement associés à σ et σ' vérifient l'inclusion $S \subset S'$. En d'autres termes, la subdivision σ' est plus fine si tous les points de σ appartiennent à σ' .

Définition 1.3 Étant donné deux subdivisions quelconques σ , σ' de [a,b] la réunion de σ et de σ' est la subdivision σ'' dont l'ensemble associé est la réunion des ensembles associés à σ et σ' .

Définition 1.4 Soient [a,b] un intervalle de \mathbb{R} et E un espace vectoriel normé. Une application $f:[a,b] \to E$ est dite en escalier s'il existe une subdivision $\sigma = (x_0 = a, x_1, \dots, x_{n-1}, x_n = b)$ de [a,b] telle que f soit constante sur chacun des intervalles ouverts $]x_{i-1}, x_i[$ $(1 \le i \le n)$.

Un telle fonction ne prend qu'un nombre fini de valeurs : ses valeurs $f(x_i)$ aux n+1 points de la subdivision, et les valeurs constantes qu'elle prend sur les n intervalles ouverts $]x_{i-1}, x_i[$. Il en résulte qu'une fonction en escalier sur un intervalle de \mathbb{R} est nécessairement bornée.

Proposition 1.1 Soit f une fonction vectorielle en escalier sur [a,b] et pour chaque subdivision $\sigma = (x_0 = a, x_1, \ldots, x_n, x_n = b)$ de [a,b] associée à f, posons :

$$I(f,\sigma) = \sum_{i=1}^{n} (x_i - x_{i-1}) f_i,$$

où f_i désigne la valeur constante de f sur l'intervalle ouvert $]x_{i-1}, x_i[$. Alors $I(f, \sigma)$ ne dépend que de f et non du choix de la subdivision σ associée à f.

Définition 1.5 Soit f une fonction en escalier de l'intervalle [a,b] à valeurs dans un e.v.n. E. L'intégrale de f sur [a,b] est l'élément de E, noté $\int_a^b f(x)dx$ défini par

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} (x_{i} - x_{i-1})f_{i}$$

où $(x_0 = a, x_1, \dots, x_{n-1}, x_n = b)$ désigne une subdivision associée à f, et f_i la valeur constante de f sur l'intervalle ouvert $]x_{i-1}, x_i[$.

On notera que l'intégrale de f ne dépend que des valeurs prises par f à l'intérieur des intervalles de la subdivision, et non des valeurs prises par f aux points de la subdivision.

Proposition 1.2 Additivité par rapport aux intervalles.

Soit f une fonction en escalier sur l'intervalle [a,b] et soit c un point quelconque de [a,b]. Alors f est en escalier sur chacun des intervalles [a,c] et [c,b] et on a:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Proposition 1.3 Linéarité par rapport aux fonctions.

Soient f, g deux fonctions en escalier sur le même intervalle [a,b] à valeurs dans le même e.v.n. E (sur \mathbb{R} ou \mathbb{C}). Alors, quels que soient les scalaires $\lambda, \mu \in \mathbb{R}$, la fonction $\lambda f + \mu g$ est en escalier sur [a,b] et on a:

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$

Proposition 1.4 Croissance.

L'intégrale d'une fonction numérique positive en escalier sur [a,b] est positive; en conséquence, si f,g sont deux fonctions numériques en escalier sur [a,b], vérifiant $f(x) \leq g(x)$ pour tout $x \in [a,b]$, on a:

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Proposition 1.5 Majoration.

Soit f une fonction en escalier sur [a,b] à valeurs dans un e.v.n. E. Alors la fonction $x \mapsto ||f(x)||$ est en escalier sur [a,b] et on a:

$$\left\| \int_a^b f(x) dx \right\| \le \int_a^b \|f(x)\| dx.$$

En conséquence, si f vérifie $\|f(x)\| \le k$ pour tout $x \in [a,b]$, on a:

$$\left\| \int_{a}^{b} f(x) dx \right\| \le k(b-a).$$

2 Intégrale de Riemann (fonctions numériques)

Définition 2.1 Une fonction numérique f définie sur un intervalle compact [a,b] de \mathbb{R} est dite intégrable au sens de Riemann sur [a,b] si quel que soit le nombre $\varepsilon > 0$, il existe un couple (g,h) de fonctions numériques en escalier sur [a,b], vérifiant $g(x) \leq f(x) \leq h(x)$ pour tout $x \in [a,b]$ et :

$$\int_{a}^{b} (h(x) - g(x)) dx \le \varepsilon.$$

De cette définition il résulte que toute fonction intégrable sur [a, b] est nécessairement bornée sur [a, b] puisque les fonctions en escalier sont elles-mêmes bornées.

À chaque fonction numérique f, définie sur l'intervalle [a,b] on associe les ensembles $\mathcal{E}_{-}(f)$ et $\mathcal{E}_{+}(f)$ ainsi définis :

- $\mathcal{E}_{-}(f)$ est l'ensemble des fonctions numériques g, en escalier sur [a,b] et minorant f, c'est-à-dire vérifiant $g(x) \leq f(x)$ pour tout $x \in [a,b]$,
- $\mathcal{E}_+(f)$ est l'ensemble des fonctions numériques h, en escalier sur [a,b] et majorant f, c'est-à-dire vérifiant $h(x) \ge f(x)$ pour tout $x \in [a,b]$.

Théorème 2.1 À chaque fonction numérique f, définie et bornée sur un intervalle [a,b] de \mathbb{R} , on associe l'ensemble $\mathcal{E}_+(f)$ (resp. $\mathcal{E}_-(f)$) constitué des fonctions numériques en escalier majorant (resp. minorant) f sur [a,b] et on pose :

$$I_{-}(f) = \sup_{g \in \mathcal{E}_{-}(f)} \int_{a}^{b} g(x)dx, \qquad I_{+}(f) = \inf_{h \in \mathcal{E}_{+}(f)} \int_{a}^{b} h(x)dx.$$

Pour que f soit intégrable sur [a,b], il faut et il suffit que l'on ait : $I_{-}(f) = I_{+}(f)$.

Définition 2.2 Les notations étant celles de du Théorème précédent, l'intégrale d'une fonction numérique intégrable f sur [a,b] est le nombre $I_+(f) = I_-(f)$. On le note :

$$\int_{a}^{b} f(x)dx.$$

Proposition 2.1 Si f est une fonction numérique positive et intégrable sur l'intervalle [a,b], son intégrale est positive (éventuellement nulle).

Proposition 2.2 Fonctions monotones.

Toute fonction numérique f, monotone sur un intervalle compact [a,b] de $\mathbb R$ est intégrable.

Proposition 2.3 Fonctions continues.

Toute fonction numérique f continue sur un intervalle compact [a,b] de \mathbb{R} est intégrable.

Définition 2.3 Interprétation géométrique de l'intégrale.

Soit D un ensemble plan défini par des inégalités de la forme $a \le x \le b$, $0 \le y \le f(x)$, où f désigne une fonction numérique positive intégrable sur l'intervalle [a,b]. L'aire de D est le nombre

$$\int_{a}^{b} f(x)dx.$$

Exercice 1 Les fonctions suivantes sont-elles intégrables au sens de Riemann?

1. f(x) = [x] sur [0, 2].

2.
$$g:[0,1] \to \mathbb{R}, g(x) = \begin{cases} \begin{bmatrix} \frac{1}{x} \end{bmatrix} & \text{si } 0 < x \le 1, \\ 1 & \text{si } x = 0 \end{cases}$$

3.
$$h: [0,1] \to \mathbb{R}, h(x) = \begin{cases} \frac{1}{x} \sin\left(\frac{1}{x}\right) & \text{si } 0 < x \le 1\\ 1 & \text{si } x = 0 \end{cases}$$

4.
$$k:[0,1] \to \mathbb{R}, k(x) = \begin{cases} 1 & \text{si } x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{si } x \in [0,1] \setminus \mathbb{Q} \end{cases}$$

$\underline{Correction}:$

- 1. Oui.
- 2. Non.
- 3. Non.
- 4. Non.

(On se référera à « http://exo7.emath.fr/ficpdf/fic00141.pdf » pour plus de détails.)

Exercice 2 Calculer $\int_{-R}^{R} \sqrt{R^2 - x^2} dx$ (on posera pour cela, $\theta = \arcsin\left(\frac{x}{R}\right)$) et en déduire l'aire d'un disque de rayon R.

 $\underline{Correction}: \int_{-R}^{R} \sqrt{R^2 - x^2} dx = \frac{\pi}{2} R^2.$

Exercice 3 Calculer l'aire de la région délimitée par les courbes d'équation $y = \frac{x^2}{2}$ et $y = \frac{1}{1+x^2}$.

<u>Correction</u>: Aire de la région délimitée par les courbes d'équation $y = \frac{x^2}{2}$ et $y = \frac{1}{1+x^2} = \frac{\pi}{2} - \frac{1}{3}$ (résoudre $\frac{x^2}{2} = \frac{1}{x^2+1}$).

3 Intégrale de Riemann (fonctions vectorielles)

Définition 3.1 Soient E un e.v.n. complet sur \mathbb{R} ou \mathbb{C} et [a,b] un intervalle compact de \mathbb{R} . Une application $f:[a,b] \to E$ est dite intégrable sur [a,b] si quel que soit $\varepsilon > 0$, il existe une fonction vectorielle $\varphi:[a,b] \to E$, et une fonction numérique $\theta:[a,b] \to \mathbb{R}$, toutes deux en escalier, vérifiant:

- $\forall x \in [a, b], \|f(x) \varphi(x)\| \le \theta(x),$
- $\bullet \int_{a}^{b} \theta(x) dx \le \varepsilon.$

Proposition 3.1 Soient E un e.v.n. complet $sur \mathbb{R}$ ou \mathbb{C} et [a,b] un intervalle compact de \mathbb{R} . Pour qu'une application $f:[a,b] \to E$ soit intégrable, il faut et il suffit qu'il existe une suite (φ_n) d'applications en escalier de [a,b] dans E, et une suite (θ_n) de fonctions numériques en escalier sur[a,b] telles que :

- $\forall x \in [a, b], \forall n \in \mathbb{N}, ||f(x) \varphi_n(x)|| \le \theta_n(x),$
- la suite $\varepsilon_n = \int_a^b \theta_n(x) dx$ tende vers zéro.

Pour abréger, on appellera simplement fonction vectorielle toute fonction à valeurs dans un e.v.n. complet E (éventuellement $E = \mathbb{R}$ ou \mathbb{C}). Si f est une fonction vectorielle définie sur un intervalle compact [a,b] de \mathbb{R} , on

appellera suite associée à f toute suite (φ_n, θ_n) de couples de fonctions en escalier sur [a, b] énoncées dans la Proposition précédente : l'existence d'une telle suite est une condition nécessaire et suffisante pour que f soit intégrable. Enfin, on emploiera souvent les termes « fonction intégrable » au lieu de « fonction vectorielle intégrable », sans préciser dans quel e.v.n. complet cette fonction prend ses valeurs. Avec ces conventions, on a la

Proposition 3.2 Soit f une fonction intégrable sur l'intervalle [a,b] et soit (φ_n,θ_n) une suite associée à f. Alors la suite $\int_a^b \varphi_n(x) dx$ est de Cauchy, donc convergente et sa limite I ne dépend que de la fonction f.

Définition 3.2 Les notations étant celles de la Proposition précédente, le vecteur (ou nombre)

$$\lim_{n \to +\infty} \int_{a}^{b} \varphi_{n}(x) dx$$

est appelé intégrale de la fonction f sur l'intervalle [a,b] et noté $\int_a^b f(x)dx$.

Plaçons nous maintenant dans le cas d'un espace vectoriel E de dimension finie : soit $(e_i)_{1 \le i \le n}$ une base de E. Si $\varphi : [a,b] \to E$ est en escalier, il est évident que les composantes de l'intégrale de φ par rapport à la base (e_i) sont les intégrales des composantes de φ . Par passage à la limite, on voit que cette propriété reste vraie pour toute fonction intégrable à valeurs dans E. On a ainsi la

Proposition 3.3 Soit [a,b] un intervalle compact de \mathbb{R} et soit E un espace vectoriel de dimension finie n sur \mathbb{R} ou \mathbb{C} . Pour qu'une application $f:[a,b] \to E$ soit intégrable sur [a,b] il faut et il suffit que chacune de ses composantes f_1, f_2, \ldots, f_n par rapport à une base (e_i) de E le soit et on a alors :

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \left(\int_{a}^{b} f_{i}(x)dx \right) e_{i}.$$

En d'autres termes, les composantes de l'intégrale de f sont les intégrales de ses composantes.

Dans le cas où f est une fonction complexe, on a de même :

Proposition 3.4 Soient [a,b] un intervalle compact de \mathbb{R} et $f=u+iv:[a,b]\to\mathbb{C}$ une fonction complexe sur [a,b]. Pour que f soit intégrable sur [a,b], il faut et il suffit que sa partie réelle u et sa partie imaginaire v le soient et on a alors :

$$\int_a^b f(x)dx = \int_a^b u(x)dx + i \int_a^b v(x)dx.$$

4 Propriétés générales de l'intégrale de Riemann

Proposition 4.1 Additivité par rapport aux intervalles.

Soit f une fonction vectorielle définie sur un intervalle compact [a,b] de \mathbb{R} et soit c un point de]a,b[. Pour que f soit intégrable sur [a,b], il faut et il suffit que ses restrictions à chacun des intervalles [a,c] et [c,b] le soient. On a alors :

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Proposition 4.2 Linéarité.

Soient f,g deux fonctions intégrables sur l'intervalle compact [a,b], à valeurs dans le même e.v.n. complet E (sur \mathbb{R} ou \mathbb{C}). Quels que soient les scalaires (réels ou complexes) λ, μ , la fonction $\lambda f + \mu g$ est intégrable sur [a,b] et on a:

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$

On en déduit donc que les fonctions intégrables (au sens de Riemann) sur un intervalle [a, b], à valeurs dans un e.v.n. complet donné E, constituent un espace vectoriel \mathcal{R}_E sur le même corps (\mathbb{R} ou \mathbb{C}) que E et l'application :

$$I: \mathcal{R}_E \to E, \, f \mapsto \int_a^b f(x) dx$$

est linéaire. Lorsque $E = \mathbb{R}$, cette application I est une forme linéaire vérifiant $I(f) \geq 0$ pour toute fonction intégrable positive f: on dit que c'est une forme linéaire positive (ou croissante).

Proposition 4.3 Croissance.

Soient f, g deux fonctions numériques intégrables sur l'intervalle [a,b] vérifiant pour tout $x \in [a,b]$: $f(x) \leq g(x)$. On a alors :

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx. \tag{1}$$

Remarque 4.1 Si f,g sont deux fonctions numériques ou vectorielles intégrables sur [a,b] et si leurs valeurs ne diffèrent qu'en un nombre fini de points de [a,b], leurs intégrales sont égales : en effet, leur différence f-g est une fonction en escalier, nulle sauf en nombre fini de points, son intégrale est donc nulle. Cet exemple montre que l'inégalité (1) peut se réduire à une égalité sans que l'on ait f=g. Le Théorème fondamental suivant montre que ce n'est pas possible si f et g sont continues.

Théorème 4.1 L'intégrale d'une fonction numérique f, positive et continue sur un intervalle [a,b] de \mathbb{R} , ne peut être nulle que si cette fonction est partout nulle.

Théorème 4.2 Majoration.

Soit f une fonction vectorielle intégrable sur l'intervalle compact [a,b]. Alors, la fonction $F: x \mapsto ||f(x)||$ est intégrable sur [a,b] et on a

$$\left\| \int_a^b f(x) dx \right\| \le \int_a^b \|f(x)\| dx.$$

Corollaire 4.1 Soit f une fonction intégrable sur l'intervalle compact [a,b], vérifiant pour tout $x \in [a,b]$ l'inégalité $||f(x)|| \le k$ (k = cste). On a alors :

$$\left\| \int_{a}^{b} f(x)dx \right\| \le k(b-a). \tag{2}$$

Interprétation : On désigne par $\mathcal{R}(a,b,E)$ l'espace vectoriel constitué par les fonctions intégrables sur l'intervalle [a,b], à valeurs dans un e.v.n. complet donné E. Les fonctions intégrables étant bornées, on peut munir $\mathcal{R}(a,b,E)$ de la norme de la convergence uniforme définie par $\nu(f) = \sup_{a \le x \le b} \|f(x)\|$. L'inégalité (2) entraı̂ne alors l'inégalité

 $\left\| \int_a^b f(x) dx \right\| \leq (b-a)\nu(f) \text{ qui montre que l'application linéaire } \mathcal{R}(a,b,E) \to E, \ f \mapsto \int_a^b f(x) dx \text{ est continue, de norme au plus égale à } (b-a).$

Proposition 4.4 Si f est une fonction numérique (resp. complexe), intégrable sur [a,b], sa valeur absolue (resp. son module) $x \mapsto |f(x)|$ est une fonction numérique intégrable sur [a,b] et on a:

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

Corollaire 4.2 Si f, g sont deux fonctions numériques intégrables sur [a, b], les fonctions

$$\sup(f, g) : x \mapsto \sup(f(x), g(x)) \ et \inf(f, g) : x \mapsto \inf(f(x), g(x))$$

sont intégrables.

Exercice 4 Soit f la fonction définie sur [0,3] par

$$f(x) = \begin{cases} -1 & \text{si } x = 0\\ 1 & \text{si } 0 < x < 1\\ 3 & \text{si } x = 1\\ -2 & \text{si } 1 < x \le 2\\ 4 & \text{si } 2 < x \le 3 \end{cases}.$$

- 1. Calculer $\int_0^3 f(t)dt$.
- 2. Soit $x \in [0,3]$, calculer $F(x) = \int_0^x f(t)dt$.
- 3. Montrer que F est une fonction continue sur [0,3]. La fonction F est-elle dérivable sur [0,3]?

$\underline{Correction}:$

- 1. On trouve $\int_0^3 f(t)dt = 3$. Il faut tout d'abord tracer le graphe de cette fonction. Ensuite la valeur d'une intégrale ne dépend pas de la valeur de la fonction en un point, c'est-à-dire ici les valeurs en x = 0, x = 1, x = 2 n'ont aucune influence sur l'intégrale. Ensuite on revient à la définition de $\int_0^3 f(t)dt$: pour la subdivision de [0,3] définie par $\{x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3\}$, on trouve la valeur de l'intégrale (ici le sup et l'inf sont atteints et égaux pour cette subdivision et toute subdivision plus fine).
- 2. C'est la même chose, mais au lieu d'aller jusqu'à 3 on s'arrête à x, on trouve

$$F(x) = \begin{cases} x & \text{si } 0 \le x \le 1\\ 3 - 2x & \text{si } 1 < x \le 2\\ -9 + 4x & \text{si } 2 < x \le 3. \end{cases}$$

3. Les seuls points à discuter pour la continuité sont les points x = 1 et x = 2, mais les limites à droite et à gauche de F sont égales en ces points donc F est continue. Par contre F n'est pas dérivable en x = 1 ni en x = 2.

Exercice 5 Montrer que les fonctions définies sur \mathbb{R} , f(x) = x, $g(x) = x^2$ et $h(x) = \exp(x)$, sont intégrables sur tout intervalle fermé borné de \mathbb{R} . En utilisant les sommes de Riemann, calculer les intégrales

$$\int_0^1 f(x)dx, \int_1^2 g(x)dx \text{ et } \int_0^x h(t)dt.$$

Correction:

- 1. En utilisant les sommes de Riemann, on sait que $\int_0^1 f(x)dx$ est la limite (quand $n \to +\infty$) de $\sum_{k=0}^{n-1} \frac{1}{n} f\left(\frac{k}{n}\right)$. Notons $S_n = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$. Alors $S_n = \frac{1}{n} \sum_{k=0}^{n-1} k = \frac{1}{n^2} \frac{n(n-1)}{2}$. On a utilisé que la somme des entiers de 0 à n-1 vaut $\frac{n(n-1)}{2}$. Donc S_n tend vers $\frac{1}{2}$ et $\int_0^1 f(x)dx = \frac{1}{2}$.
- 2. Même travail : $\int_{1}^{2} g(x)dx$ est la limite de

$$S'_n = \frac{2-1}{n} \sum_{k=0}^{n-1} g\left(1 + k \frac{2-1}{n}\right) = \frac{1}{n} \sum_{k=0}^{n-1} \left(1 + \frac{k}{n}\right)^2 = \frac{1}{n} \sum_{k=0}^{n-1} \left(1 + 2\frac{k}{n} + \frac{k^2}{n^2}\right).$$

En séparant la somme en trois nous obtenons :

$$S'_n = \frac{1}{n} \left(n + \frac{2}{n} \sum_{k=0}^{n-1} k + \frac{1}{n^2} \sum_{k=0}^{n-1} k^2 \right) = 1 + \frac{2}{n^2} \frac{n(n-1)}{2} + \frac{1}{n^3} \frac{(n-1)n(2n-1)}{6}.$$

Donc, à la limite, on trouve $S'_n \underset{n \to +\infty}{\rightarrow} 1 + 1 + \frac{1}{3} = \frac{7}{3}$ et $\int_1^2 g(x) dx = \frac{7}{3}$.

Remarque 4.2 On a utilisé que la somme des carrés des entiers de 0 à n-1 est $\frac{(n-1)n(2n-1)}{6}$.

3. Même chose pour $\int_0^x h(t)dt$ qui est la limite quand n tend vers l'infini de

$$S_n'' = \frac{x}{n} \sum_{k=0}^{n-1} h\left(\frac{kx}{n}\right) = \frac{x}{n} \sum_{k=0}^{n-1} \exp\left(\frac{kx}{n}\right) = \frac{x}{n} \sum_{k=0}^{n-1} \left(\exp\left(\frac{x}{n}\right)\right)^k.$$

Cette dernière somme est la somme d'une suite géométrique, donc $S_n'' = \frac{x}{n} \frac{1 - (\exp \frac{x}{n})^n}{1 - \exp(\frac{x}{n})} = \frac{x}{n} \frac{1 - \exp(x)}{1 - \exp(\frac{x}{n})}$ qui tend vers $\exp(x) - 1$. Pour obtenir cette dernière limite on remarque qu'en posant $u = \frac{x}{n}$ on a $\frac{\frac{x}{n}}{1 - \exp(\frac{x}{n})} = \frac{1 - \exp(u)}{u}$ qui tend vers -1 lorsque $u \to 0$ (ce qui est équivalent à $n \to +\infty$).

Exercice 6 Calculer l'intégrale de $f:[a,b]\to\mathbb{R}$ comme limite de sommes de Riemann-Darboux dans les cas suivants :

1.
$$f(x) = \sin(x)$$
 et $f(x) = \cos(x)$ sur $\left[0, \frac{\pi}{2}\right]$ et $x_k = \frac{k\pi}{2n}, k = 0, 1, \dots, n$.

- 2. $g(x) = \frac{1}{x} \operatorname{sur} [a, b] \subset \mathbb{R}_+^* \text{ et } x_k = aq^k, \ k = 0, 1, \dots, n \ (q \text{ étant à déterminer}),$
- 3. $h(x) = \alpha^x \text{ sur } [a, b], \ \alpha > 0, \text{ et } x_k = a + (b a) \frac{k}{n}, \ k = 0, 1, \dots, n.$

$\underline{Correction}:$

1. On calcule d'abord $\int_0^{\frac{\pi}{2}} \exp(it)dt$. Par le théorème de Riemann-Darboux, c'est la limite quand n tend vers l'infini de $S_n = \sum_{k=0}^{n-1} (x_{k+1} - x_k) f(x_k)$. Pour $x_k = \frac{k}{\pi} 2n$ (on obtient en fait une somme de Riemann) :

$$S_n = \frac{\pi}{2n} \sum_{k=0}^{n-1} \exp\left(i\frac{k\pi}{2n}\right) = \frac{\pi}{2n} \sum_{k=0}^{n-1} (\exp\left(i\frac{\pi}{2n}\right)^k,$$

ce qui est une somme géométrique de somme $S_n=(1-i)\frac{\frac{\pi}{2n}}{1-\exp(\frac{\pi}{2n})}$. La limite de ce taux d'accroissement est 1+i (en posant $u=\frac{\pi}{2n}$ et en remarquant que $\frac{\exp(iu)-1}{u}\to i$ quand $u\to 0$). Donc $\int_0^{\frac{\pi}{2}}\exp(it)dt=1+i$. Mais $\exp(it)=\cos(t)+i\sin(t)$ donc $\int_0^{\frac{\pi}{2}}\cos(t)dt+\int_0^{\frac{\pi}{2}}i\sin(t)dt=1+i$. Par identification des parties réelles et imaginaires on trouve : $\int_0^{\frac{\pi}{2}}\cos(t)dt=1$ et $\int_0^{\frac{\pi}{2}}\sin(t)dt=1$.

- 2. On veut $x_k = aq^k$ ce qui donne bien $x_0 = a$, mais il faut aussi $x_n = b$ donc $aq^n = b$ et $q^n = \frac{b}{a}$ soit $q = \left(\frac{b}{a}\right)^{\frac{1}{n}}$. Nous cherchons la limite de $S'_n = \sum_{k=0}^{n-1} (x_{k+1} x_k)g(x_k)$. Il n'est pas trop dur de montrer que $S'_n = n(q-1)$. Pour trouver la limite quand $n \to +\infty$, c'est plus délicat car q dépend de $n: S'_n = n(q-1) = n\left(\left(\frac{b}{a}\right)^{\frac{1}{n}} 1\right) = n\left(\exp\left(\frac{1}{n}\ln\left(\frac{b}{a}\right)\right) 1\right)$. En posant $u = \frac{1}{n}$ et en remarquant que l'on obtient un taux d'accroissement on calcule $: S'_n = \frac{1}{u}(\exp(u\ln\left(\frac{b}{a}\right) 1) \to \ln\left(\frac{b}{a}\right) = \ln(b) \ln(a)$. Donc $\int_a^b \frac{dt}{t} = \ln(b) \ln(a)$.
- 3. À l'aide des sommes géométriques et des taux d'accroissement, on trouve

$$\int_{a}^{b} \alpha^{t} dt = \frac{\exp(\alpha b) - \exp(\alpha a)}{\alpha}.$$

Exercice 7 Soit $f : [a, b] \to \mathbb{R}$ une fonction intégrable sur [a, b] (a < b).

- 1. On suppose que f est positive ou nulle sur [a,b]. On suppose que f est également continue en un point $x_0 \in [a,b]$ et que $f(x_0) > 0$. Montrer que $\int_a^b f(x)dx > 0$. En déduire que si f est une fonction continue positive sur [a,b] telle que $\int_a^b f(x) = 0$ alors f est identiquement nulle.
- 2. On suppose que f est continue sur [a, b], et que $\int_a^b f(x)dx = 0$. Montrer qu'il existe $c \in [a, b]$ tel que f(c) = 0.
- 3. Application : on suppose que f est une fonction continue sur [0,1] telle que $\int_0^1 f(t)dt = \frac{1}{2}$. Montrer qu'il existe $d \in [0,1]$ tel que f(d) = d.

Correction

1. Écrivons la continuité de f en x_0 avec $\varepsilon = \frac{f(x_0)}{2} > 0$: il existe $\delta > 0$ tel que pour tout $t \in [x_0 - \delta, x_0 + \delta]$ on ait $|f(t) - f(x_0)| \le \varepsilon$. Avec notre choix de ε cela donne pour $t \in [x_0 - \delta, x_0 + \delta]$ l'inégalité $f(t) \ge \frac{f(x_0)}{2}$. Pour évaluer $\int_{-\delta}^{\delta} f(t)dt$, nous scindons cette intégrale en trois morceaux, par linéarité de l'intégrale :

$$\int_a^b f(t)dt = \int_a^{x_0 - \delta} f(t)dt + \int_{x_0 - \delta}^{x_0 + \delta} f(t)dt + \int_{x_0 + \delta}^b f(t)dt.$$

Comme f est positive alors par positivité de l'intégrale, on a $\int_a^{x_0-\delta} f(t)dt \ge 0$ et $\int_{x_0+\delta}^b f(t)dt \ge 0$. Pour le terme du milieu, on a $f(t) \ge \frac{f(x_0)}{2}$ donc $\int_{x_0-\delta}^{x_0+\delta} f(t)dt \ge \int_{x_0-\delta}^{x_0+\delta} \frac{f(x_0)}{2}dt = 2\delta \frac{f(x_0)}{2}$ (pour la dernière équation on calcule juste l'intégrale d'une fonction constante!). Le bilan de tout cela est que $\int_a^b f(t)dt \ge 2\delta \frac{f(x_0)}{2} > 0$. Donc pour une fonction continue et positive f, si elle est strictement positive en un point alors $\int_a^b f(t)dt > 0$. Par contraposition, pour une fonction continue et positive, si $\int_a^b f(t)dt = 0$ alors f est identiquement nulle.

- 2. Soit f est positive, soit elle est négative, soit elle change (au moins une fois) de signe. Dans le premier cas f est identiquement nulle par la première question, dans le second cas c'est pareil (en appliquant la première question à -f). Pour le troisième cas c'est le théorème des valeurs intermédiaires qui affirme qu'il existe c tel que f(c) = 0.
- 3. Posons g(t)=f(t)-t. Alors $\int_0^1 g(t)dt=\int_0^1 f(t)dt-\frac{1}{2}=0$. Donc, par la question précédente, g étant continue, il existe $d\in[0,1]$ tel que g(d)=0, ce qui est équivalent à f(d)=d.

Exercice 8 Soit $f:[a,b] \to \mathbb{R}$ continue, positive; on pose $m = \sup\{f(x), x \in [a,b]\}$. Montrer que

$$\lim_{n\to +\infty} \left(\int_a^b (f(x))^n dx \right)^{\frac{1}{n}} = m.$$

Correction

Notons $I = \int_a^b \frac{f(t)^n}{m^n} dt$. Comme $f(t) \leq m$ pour tout $t \in [a,b]$ alors $I \leq 1$. Ceci implique que $\lim_{n \to +\infty} I^{\frac{1}{n}} \leq 1$. Fixons $\alpha > 0$ (aussi petit que l'on veut). Comme f est continue et m est sa borne supérieure sur [a,b] alors il existe un intervalle [x,y], (x < y), sur lequel $f(t) \geq m - \alpha$. Comme f est positive alors

$$I \ge \int_x^y \frac{f(t)^n}{m^n} dt \ge \int_x^y \frac{(m-\alpha)^n}{m^n} dt = (y-x) \left(\frac{m-\alpha}{m}\right)^n.$$

Donc $I^{\frac{1}{n}} > (y-x)^{\frac{1}{n}} \cdot \frac{m-\alpha}{m}$. Quand $n \to +\infty$ on a $(y-x)^{\frac{1}{n}} \to 1$, donc à la limite nous obtenons $\lim_{n \to +\infty} I^{\frac{1}{n}} \ge \frac{m-\alpha}{m}$. Comme α est quelconque, nous pouvons le choisir aussi proche de 0 de sorte que $\frac{m-\alpha}{m}$ soit aussi proche de 1 que désiré. Donc $\lim_{n \to +\infty} I^{\frac{1}{n}} \ge 1$. En conclusion nous trouvons que $\lim_{n \to +\infty} I^{\frac{1}{n}} = 1$ ce qui était l'égalité recherchée.

Exercice 9 Soit $f:[0,1] \to \mathbb{R}$ une application strictment croissante telle que f(0)=0, f(1)=1. Calculer:

$$\lim_{n \to +\infty} \int_0^1 f^n(t) dt.$$

 $\underline{Correction}:$

Soit $\alpha > 0$ fixé. Soit $0 < x_0 < 1$ tel que pour tout $x \in [0, x_0]$, $f(x) \le 1 - \alpha$. Ce x_0 existe bien car f est strictement croissante et f(0) = 0, f(1) = 1. Séparons l'intégrale en deux :

$$\int_{0}^{1} f^{n}(t)dt = \int_{0}^{x_{0}} f^{n}(t)dt + \int_{x_{0}}^{1} f^{n}(t)dt$$

$$\leq \int_{0}^{x_{0}} (1 - \alpha)^{n} dt + \int_{x_{0}}^{1} 1^{n} dt$$

$$\leq x_{0}(1 - \alpha)^{n} + (1 - x_{0})$$

$$\leq (1 - \alpha)^{n} + (1 - x_{0}) \operatorname{car} x_{0} \leq 1.$$

Soit maintenant donné un $\varepsilon > 0$, on choisit $\alpha > 0$ tel que $1 - x_0 \le \frac{\varepsilon}{2}$ (en remarquant que si $\alpha \to 0$ alors $x_0(\alpha) \to 1$), puis il existe n assez grand tel que $(1 - \alpha)^n \le \frac{\varepsilon}{2}$. Donc pour tout $\varepsilon > 0$, il existe n assez grand tel que $\int_0^1 f^n(t) dt \underset{n \to +\infty}{\to} 0$.

5 Produit de fonctions intégrables, inégalités de Schwarz et de Minkowski

Proposition 5.1 Si f, g sont deux fonctions numériques ou complexes intégrables sur l'intervalle compact [a, b], leur produit fg est intégrable sur [a, b].

Proposition 5.2 Si f,g sont deux fonctions numériques ou complexes intégrables sur l'intervalle [a,b], elles vérifient l'inégalité de Schwarz :

$$\left| \int_{a}^{b} f(x)g(x)dx \right|^{2} \le \left(\int_{a}^{b} |f(x)|^{2}dx \right) \left(\int_{a}^{b} |g(x)|^{2}dx \right) \tag{3}$$

et l'inégalité de Minkowski :

$$\left(\int_{a}^{b} |f(x) + g(x)|^{2} dx\right)^{1/2} \le \left(\int_{a}^{b} |f(x)|^{2} dx\right)^{1/2} + \left(\int_{a}^{b} |g(x)|^{2} dx\right)^{1/2}.$$
 (4)

De plus, si f et g sont continues, l'inégalité (3) <u>ne se</u> transforme en égalité que si on a f=0 ou s'il existe une constante complexe k telle que l'on ait $g(x)=k\overline{f(x)}$ pour tout $x\in [a,b]$ et l'inégalité (4) ne se transforme en égalité que si on a f=0 ou s'il existe une constante positive k vérifiant g(x)=kf(x) pour tout $x\in [a,b]$.

6 Exemples de fonctions intégrables : fonctions réglées, fonctions continues

Définition 6.1 Fonctions réglées.

Soient [a,b] un intervalle compact de $\mathbb R$ et E un e.v.n.. Une application $f:[a,b] \to E$ est dite réglée si quel que soit le nombre $\varepsilon > 0$, il existe une application en escalier $\varphi:[a,b] \to E$ vérifiant pour tout $x \in [a,b]$:

$$\|\varphi(x) - f(x)\| \le \varepsilon.$$

Proposition 6.1 Une application $f:[a,b] \to E$ est réglée si et seulement si il existe une suite (φ_n) d'applications en escalier de [a,b] dans E, convergeant uniformément vers f sur [a,b].

Théorème 6.1 Toute application réglée d'un intervalle compact [a, b] dans un e.v.n. complet E est intégrable.

Théorème 6.2 Cas particulier : fonctions continues.

Soient [a,b] un intervalle compact de \mathbb{R} et E un e.v.n.. Toute application continue $f:[a,b] \to E$ est dite réglée. En conséquence, si E est complet, toute application continue de [a,b] dans E est intégrable.

Proposition 6.2 Soient [a,b] un intervalle compact de \mathbb{R} et $f:[a,b] \to E$ une application de [a,b] dans un e.v.n. complet. Si f est bornée sur [a,b] et intégrable sur tout intervalle compact $[\alpha,\beta]$ contenu dans l'intervalle ouvert [a,b[, alors f est intégrable sur [a,b].

Corollaire 6.1 Soient [a,b] un intervalle compact de \mathbb{R} et $f:[a,b] \to E$ une application de [a,b] dans un e.v.n. complet E. Si f est bornée sur [a,b] et continue sur l'intervalle ouvert [a,b] alors f est intégrable.

Plus généralement on a :

Proposition 6.3 Soient [a,b] un intervalle compact de \mathbb{R} et $f:[a,b] \to E$ une application de [a,b] dans un e.v.n. complet E. Pour que f soit intégrable sur [a,b], il suffit que f soit bornée et que l'ensemble de ses points de discontinuité soit fini.

Proposition 6.4 Approximation des fonctions intégrables par des fonctions continues.

Soit $f:[a,b]\to E$ une fonction intégrable. Quel que soit le nombre $\varepsilon>0$ donné, il existe une fonction continue $g:[a,b]\to E$ vérifiant

$$\int_{a}^{b} \|f(x) - g(x)\| dx \le \varepsilon.$$

Cette approximation permet souvent de ramener la démonstration de propriétés des fonctions intégrables à celles des propriétés des fonctions continues.

7 Intégrale indéfinie. Dérivation

Proposition 7.1 On a $\int_a^b f(x)dx = -\int_b^a f(x)dx$ et $\int_a^a f(x)dx = 0$.

Proposition 7.2 Formule de Chasles.

 $On \ a$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

pourvu que f soit intégrable sur l'intervalle $[\alpha, \beta]$ d'extrémités $\alpha = \inf(a, b, c)$ et $\beta = \sup(a, b, c)$.

Définition 7.1 Soit f une fonction intégrable sur l'intervalle compact [a,b]. Pour tout $t \in [a,b]$, f est intégrable sur l'intervalle [a,t] et la fonction $\int_a^t f(x)dx$ est appelée intégrale indéfinie de la fonction f.

Proposition 7.3 Continuité.

Soient [a,b] un intervalle compact de \mathbb{R} et $f:[a,b]\to E$ une application intégrable de [a,b] dans un e.v.n. complet E. Alors la fonction

$$F:[a,b]\to E,\ t\mapsto \int_a^t f(x)dx$$

est lipschitzienne, de rapport $k = \sup_{a \le x \le b} \|f(x)\|$, donc continue sur [a, b].

Proposition 7.4 Dérivabilité.

Si f est une fonction intégrable sur [a, b], la fonction

$$F: t \to \int_a^t f(x)dx$$

 $admet\ f(t+0)\ pour\ dérivée\ à\ droite\ (resp.\ f(t-0)\ pour\ dérivée\ à\ gauche)\ en\ tout\ point\ où\ cette\ limite\ existe.$

Corollaire 7.1 Si f est une fonction intégrable sur l'intervalle compact [a,b], l'intégrale indéfinie $F:t\to\int_a^t f(x)dx$ admet f(t) pour dérivée en tout point t de [a,b] où f est continue.

Définition 7.2 Soit f une application d'un intervalle I de \mathbb{R} dans un e.v.n. quelconque E. On appelle primitive de f toute application $F: I \to E$ vérifiant pour tout $t \in I: F'(t) = f(t)$.

Théorème 7.1 Soit $f:[a,b] \to E$ une application continue de l'intervalle [a,b] dans un e.v.n. complet E. Alors l'intégrale indéfinie

$$F: t \to \int_{a}^{t} f(x)dx$$

est une primitive de f sur [a,b] et si G est une primitive quelconque de f sur [a,b], on a:

$$\int_{a}^{b} f(x)dx = G(b) - G(a).$$

Théorème 7.2 Toute fonction continue définie sur un intervalle quelconque I de \mathbb{R} et à valeurs dans un e.v.n. complet admet une primitive.

Exercice 10 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} et $F(x) = \int_0^x f(t)dt$. Répondre par vrai ou faux affirmations suivantes :

- 1. F est continue sur \mathbb{R} .
- 2. F est dérivable sur \mathbb{R} de dérivée f.
- 3. Si f est croissante sur $\mathbb R$ alors F est croissante sur $\mathbb R$.
- 4. Si f est positive sur \mathbb{R} alors F est positive sur \mathbb{R} .
- 5. Si f est positive sur \mathbb{R} alors F est croissante sur \mathbb{R} .
- 6. Si f est T-périodique sur \mathbb{R} alors F est T-périodique sur \mathbb{R} .

7. Si f est paire alors F est impaire.

Correction:

- 1. Vrai.
- 2. Vrai.
- 3. Faux! Attention aux valeurs négatives par exemple pour f(x) = x alors F est décroissante sur $]-\infty,0]$ et croissante sur $[0,+\infty[$.
- 4. Vrai.
- 5. Vrai.
- 6. Faux. Faire la calcul avec la fonction $f(x) = 1 + \sin(x)$ par exemple.
- 7. Vrai.

Exercice 11 Soient u et v deux fonctions dérivables sur \mathbb{R} et f une fonction continue sur \mathbb{R} .

- 1. On pose $F(x) = \int_{u(x)}^{v(x)} f(t)dt$. Montrer que F est dérivable sur \mathbb{R} et calculer sa dérivée.
- 2. Calculer la dérivée de $G(x) = \int_x^{2x} \frac{dt}{1 + t^2 + t^4}$.

$\underline{Correction}:$

1. Commençons plus simplement avec la fonction $H(x) = \int_a^{v(x)} f(t)dt$. En fait H est la composée de la fonction $x \mapsto v(x)$ avec la fonction $G: x \mapsto \int_a^x f(t)dt: H = G \circ v$. La fonction v est dérivable et la fonction G aussi (c'est une primitive) donc la composée $H = G \circ v$ est dérivable, de plus H'(x) = v'(x)G'(v(x)). En pratique comme G'(x) = f(x) cela donne H'(x) = v'(x)f(v(x)).

On montrerait de même que la fonction $x\mapsto \int_{u(x)}^{v(x)}f(t)dt$ est dérivable de dérivée -u'(x)f(u(x)).

Revenons à notre fonction $F(x) = \int_{u(x)}^{v(x)} f(t)dt = \int_{u(x)}^{a} f(t)dt + \int_{a}^{v(x)} f(t)dt$, c'est la somme de deux fonctions dérivables donc elle est dérivable de dérivée : F'(x) = v(x)f(v(x)) - u'(x)f(u(x)).

2. On applique ceci à u(x) = x et v(x) = 2x nous obtenons :

$$G'(x) = \frac{2}{1 + (2x)^2 + (2x)^4} - \frac{1}{1 + x^2 + x^4}.$$

Exercice 12 Soit $F(x) = \int_{x}^{x^2} \frac{1}{\ln(t)} dt$.

- 1. Quel est l'ensemble de définition de F? F est-elle continue, dérivable sur son ensemble de définition?
- 2. Déterminer $\lim_{x\to 1^+} F(x)$ en comparant F à $H(x) = \int_x^{x^2} \frac{1}{t \ln(t)} dt$.

Correction:

- 1. F est définie sur $]0,1[\cup]1,+\infty[$. F est continue et dérivable sur]0,1[et sur $]1,+\infty[$. Pour voir cela il suffit d'écrire $F(x)=\int_x^a \frac{dt}{\ln(t)}+\int_a^{x^2} \frac{dt}{\ln(t)}$. La première de ces fonctions est continue et dérivable (c'est une primitive), la seconde est la composée de $x\mapsto x^2$ avec $x\mapsto \int_a^x \frac{dt}{\ln(t)}$ et est donc aussi continue et dérivable. On pourrait même calculer la dérivée.
- 2. Notons $f(t) = \frac{1}{\ln(t)}$ et $g(t) = \frac{1}{t \ln(t)}$. On se place sur]1, $+\infty$ [. Bien évidemment $g(t) \le f(t)$, mais nous avons aussi que pour $\varepsilon > 0$ fixé il existe x > 1 tel que pour tout $t \in [1, x^2]$ on ait $\frac{1}{t} \le 1 + \varepsilon$ donc sur]1, x^2] nous avons $f(t) \le (1+\varepsilon)g(t)$. Par intégration de l'inégalité $g(t) \le f(t) \le (1+\varepsilon)g(t)$ sur $[x, x^2]$ nous obtenons pour x assez proche de 1:

$$H(x) \le F(x) \le (1+\varepsilon)H(x).$$

Il ne reste plus qu'à calculer H(x). En fait $g(t) = \frac{1}{t \ln(t)}$ est la dérivée de la fonction $h(t) = \ln(\ln(t))$. Donc

$$H(x) = \int_{x}^{x^{2}} \frac{dt}{t \ln(t)} = [\ln(\ln(t))]_{x}^{x^{2}} = \ln(\ln(x^{2})) - \ln(\ln(x))$$
$$= \ln(2\ln(x)) - \ln(\ln(x)) = \ln\left(\frac{2\ln(x)}{\ln(x)}\right)$$
$$= \ln(2).$$

Nous obtenons alors, pour $\varepsilon > 0$ fixé et x > 1 assez proche de 1, l'encadrement

$$ln(2) \le F(x) \le (1 + \varepsilon) \ln(2).$$

Donc la limite de F(x) quand $x \to +\infty$ est $\ln(2)$.

8 Changement de variable

Théorème 8.1 Soit φ une fonction numérique définie sur un intervalle compact I = [a,b] de \mathbb{R} , et pourvue d'une dérivée continue. Pour toute fonction f (numérique, complexe ou à valeurs dans un e.v.n. complet) définie et continue sur l'intervalle compact $\varphi(I)$, on a la formule dite de « changement de variable » :

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f[\varphi(x)]\varphi'(x)dx.$$

Proposition 8.1 Cas où l'intervalle d'intégration est symétrique par rapport à l'origine. Soit f une fonction intégrable sur un intervalle compact [-a,a] de centre O, alors

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} (f(x) + f(-x))dx.$$

Proposition 8.2 Invariance par translation. Application aux fonctions périodiques.

Soit f une fonction intégrable quelconque sur l'intervalle compact [a,b], alors la fonction translatée $f_u: x \mapsto f(x+u)$ est intégrable sur l'intervalle [a-u,b-u] et qu'elle vérifie la relation :

$$\int_{a-u}^{b-u} f_u(x) dx = \int_{a-u}^{b-u} f(x+u) dx = \int_a^b f(x) dx.$$

En particulier, si f est une fonction périodique, de période T sur \mathbb{R} , on a quels que soient $a,b \in \mathbb{R}$:

$$\int_{a+T}^{b+T} f(x)dx = \int_{a}^{b} f(x)dx.$$

9 Intégration par parties

Proposition 9.1 Soient u, v deux fonctions numériques ou complexes définies sur un intervalle compact [a, b] de \mathbb{R} et pourvues de dérivées continues. On a la formule d'intégration par parties :

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

soit, sous forme condensée:

$$\int_{a}^{b} u dv = [uv]_{a}^{b} - \int_{a}^{b} v du.$$

Proposition 9.2 Soient [a,b] un intervalle compact de \mathbb{R} et E un e.v.n. complet sur le corps $K = \mathbb{R}$ ou \mathbb{C} . Si les applications $u : [a,b] \to K$ et $v : [a,b] \to E$ sont de classe C^n sur [a,b], on a :

$$\int_{a}^{b} u(x)v^{(n)}(x)dx = [u(x)v^{(n-1)}(x) - u'(x)v^{(n-2)}(x) + \dots + (-1)^{p}u^{(p)}(x)v^{(n-p-1)}(x) + \dots + (-1)^{n-1}u^{(n-1)}(x)v(x)]_{a}^{b} + (-1)^{n}\int_{a}^{b} u^{(n)}(x)v(x)dx.$$

Proposition 9.3 Cas particulier des polynômes de degré n-1 au plus. Si u est un polynôme de degré n-1 au plus, on a $u^{(n)}=0$ d'où :

$$\int_a^b u(x)v^{(n)}(x)dx = \sum_{n=0}^{n-1} [u^{(p)}(x)v^{(n-p-1)}(x)]_a^b = \sum_{k=0}^{n-1} (-1)^{n-k-1} [u^{(n-k-1)}(x)v^{(k)}(x)]_a^b.$$

En changeant les notations et en prenant pour u le polynôme $t \to \frac{(t-x)^{n-1}}{(n-1)!}$, on obtient la

Proposition 9.4 Application. Formule de Taylor avec reste intégral.

Soient [a,b] un intervalle compact de \mathbb{R} et $f:[a,b]\to E$ une fonction de classe \mathcal{C}^m sur [a,b], à valeurs dans un e.v.n. complet E. Pour tout $t \in [a, b]$ on a alors:

$$f(t) = f(a) + \sum_{k=1}^{n-1} \frac{(t-a)^k}{k!} f^{(k)}(a) + \int_a^t \frac{(t-x)^{n-1}}{(n-1)!} f^{(n)}(x) dx.$$

10 Calcul des primitives

Calculer les primitives suivantes, en précisant si nécessaire les intervalles de validité des calculs :

a)
$$\int \arctan(x)dx$$
b)
$$\int \tan^{2}(x)dx$$
c)
$$\int \frac{1}{x \ln(x)}dx$$
d)
$$\int \frac{x}{\sqrt{x+1}}dx$$
e)
$$\int \arcsin(x)dx$$
f)
$$\int \frac{1}{3 + \exp(-x)}dx$$
g)
$$\int \frac{-1}{\sqrt{4x - x^{2}}}dx$$
h)
$$\int \frac{1}{x\sqrt{1 - \ln^{2}x}}dx$$
i)
$$\int \frac{1}{\sqrt{1 + \exp(x)}}dx$$
j)
$$\int \frac{x - 1}{x^{2} + x + 1}dx$$
k)
$$\int \frac{x + 2}{x^{2} - 3x - 4}dx$$
l)
$$\int \cos(x) \exp(x)dx$$

Correction :

a)
$$\int \arctan(x) dx = x \arctan(x) - \frac{1}{2} \ln(1+x^2) + c \text{ sur } \mathbb{R} \text{ (intégration par parties)}.$$

b)
$$\int \tan^2(x)dx = \tan(x) - x + c \text{ sur } \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right].$$

c)
$$\int \frac{1}{x \ln(x)} dx = \ln|\ln(x)| + c \text{ sur }]0, 1[\cup]1, +\infty[\text{ (changement de variable : } u = \ln(x)).$$

d)
$$\int \frac{x}{\sqrt{x+1}} dx = \frac{2}{3}(x-2)(x+1)^{\frac{1}{2}} + c \text{ sur }]-1, +\infty[$$
 (changement de variable : $u = \sqrt{x+1}$ ou intégration par parties).

e)
$$\int \arcsin(x)dx = x\arcsin(x) + \sqrt{1-x^2} + c \sin \left[-1,1\right]$$
 (intégration par parties).

f)
$$\int \frac{1}{3 + \exp(-x)} dx = \frac{1}{3} \ln(3 \exp(x) + 1) + c \text{ sur } \mathbb{R} \text{ (changement de variable : } u = \exp(x)).$$

g)
$$\int \frac{-1}{\sqrt{4x-x^2}} dx = \arccos\left(\frac{1}{2}x-1\right) + c \text{ sur }]0,4[\text{ (changement de variable : } u = \frac{1}{2}x-1).$$

$$\mathrm{h)} \ \int \frac{1}{x\sqrt{1-\ln^2 x}} dx = \arcsin(\ln(x)) + c \ \mathrm{sur} \ \bigg] \frac{1}{e}, e \bigg[\ \ (\mathrm{changement} \ \mathrm{de} \ \mathrm{variable} : u = \ln(x)).$$

i)
$$\int \frac{1}{\sqrt{1 + \exp(x)}} dx = x - 2\ln(1 + \sqrt{\exp(x) + 1}) + c \text{ sur } \mathbb{R} \text{ (changement de variable : } u = \sqrt{\exp(x) + 1}).$$

j)
$$\int \frac{x-1}{x^2+x+1} dx = \frac{1}{2} \ln(x^2+x+1) - \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}} \left(x+\frac{1}{2}\right)\right) + c \operatorname{sur} \mathbb{R}.$$

k)
$$\int \frac{x+2}{x^2-3x-4} dx = -\frac{1}{5} \ln|x+1| + \frac{6}{5} \ln|x-4| + c \text{ sur } \mathbb{R} \backslash -1, 4 \text{ (décomposition en éléments simples)}.$$

l)
$$\int \cos(x) \exp(x) dx = \frac{1}{2} (\cos(x) + \sin(x)) \exp(x) + c \text{ sur } \mathbb{R} \text{ (deux intégrations par parties)}$$

Exercice 14 | Calculer les primitives suivantes :

$$\int \frac{\sin(x)}{\sin(x) + \cos(x)} dx \text{ et } \int \frac{\cos(x)}{\sin(x) + \cos(x)} dx.$$

$$\bullet \int \frac{\sin(x)}{\sin(x) + \cos(x)dx} = \frac{1}{2}(x - \ln|\cos(x) + \sin(x)|) + c \operatorname{sur} \mathbb{R},$$

$$\bullet \int \frac{\cos(x)}{\sin(x) + \cos(x)dx} = \frac{1}{2}(x + \ln|\cos(x) + \sin(x)|) + c \operatorname{sur} \mathbb{R},$$

•
$$\int \frac{\cos(x)}{\sin(x) + \cos(x)dx} = \frac{1}{2}(x + \ln|\cos(x) + \sin(x)|) + c \operatorname{sur} \mathbb{R}$$

(en calculant la somme et la différence).

Exercice 15 Calculer les primitives suivantes, en précisant si nécessaire les intervalles de validité des calculs :

a)
$$\int \sin^8(x) \cos^3(x) dx$$
 | b) $\int \cos^4(x) dx$ | c) $\int \cos^{2003}(x) \sin(x) dx$ | d) $\int \frac{1}{2 + \sin(x) + \cos(x)} dx$ | e) $\int \frac{1}{\sin(x)} dx$ | f) $\int \frac{1}{\cos(x)} dx$ | g) $\int \frac{3 - \sin(x)}{2 \cos(x) + 3 \tan(x)} dx$ | h) $\int \frac{1}{7 + \tan(x)} dx$

Correction:

a)
$$\int \sin^8(x) \cos^3(x) dx = \frac{1}{9} \sin^9(x) - \frac{1}{11} \sin^{11}(x) + c \text{ sur } \mathbb{R}$$
.

b)
$$\int \cos^4(x)dx = \frac{1}{32}\sin(4x) + \frac{1}{4}\sin(2x) + \frac{3}{8}x + c \text{ sur } \mathbb{R}.$$

c)
$$\int \cos^{2003}(x)\sin(x)dx = -\frac{1}{2004}\cos^{2004}(x) + c \text{ sur } \mathbb{R}.$$

d)
$$\int \frac{1}{2 + \sin(x) + \cos(x)} dx = \sqrt{2} \arctan\left(\frac{1 + \tan(x/2)}{\sqrt{2}}\right) + c \operatorname{sur} \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\} \text{ (changement de variable } u = \tan(x/2)).$$

e)
$$\int \frac{1}{\sin(x)} dx = \frac{1}{2} \ln \left| \frac{1 - \cos(x)}{1 + \cos(x)} \right| + c = \ln \left| \tan \frac{x}{2} \right| + c \text{ sur }]k\pi, (k+1)\pi[\text{ (changement de variable } u = \cos(x) \text{ ou } u = \tan \left(\frac{x}{2} \right).$$

f)
$$\int \frac{1}{\cos(x)} dx = \frac{1}{2} \ln \left| \frac{1 + \sin(x)}{1 - \sin(x)} \right| + c = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + c \text{ sur } \left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} \pi \right[\text{ (changement de variable } u = \sin(x) \text{ ou } u = \tan \left(\frac{x}{2} \right).$$

g)
$$\int \frac{3 - \sin(x)}{2\cos(x) + 3\tan(x)} dx = -\frac{1}{5}\ln(2 - \sin(x)) + \frac{7}{10}\ln|1 + 2\sin(x)| + c \operatorname{sur} \mathbb{R} \setminus \left\{\frac{2\pi}{3}[2\pi], -\frac{2\pi}{3}[2\pi]\right\} \text{ (changement de variable } u = \sin(x)).$$

h)
$$\int \frac{1}{7 + \tan(x)} dx = \frac{7}{50}x + \frac{1}{50} \ln|\tan(x) + 7| + \frac{1}{50} \ln|\cos(x)| + c \text{ sur } \mathbb{R} \setminus \{\arctan(-7) + k\pi, \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$$
 (changement de variable $u = \tan(x)$).

Exercice 16 Intégrales de Wallis. Soit
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$
 si $n \in \mathbb{N}$.

- 1. Montrer que $(I_n)_n$ est positive décroissante.
- 2. Montrer que $I_{n+2} = \frac{n+1}{n+2}I_n$ et expliciter I_n , en déduire $\int_{-1}^{1} (1-x^2)^n dx$.
- 3. Montrer que $I_n \sim I_{n+1}$.
- 4. À l'aide de $(n+1)I_nI_{n+1}$ montrer que $I_n \sim \sqrt{\frac{\pi}{2n}}$.
- 5. En déduire $\frac{1.3...(2n+1)}{2.4} \sim 2\sqrt{\frac{n}{\pi}}$.

- 1. Sur $\left[0,\frac{\pi}{2}\right]$, la fonction sinus est positive donc I_n est positive. De plus $sin(x) \leq 1$ donc la suite $(\sin^n(x))_n$ est
- 2. $I_{n+2} = \int_0^{\frac{\pi}{2}} \sin(x) \sin^{n+1}(x) dx$. En posant $u'(x) = \sin(x)$ et $v(x) = \sin^{n+1}(x)$ et en intégrant par parties nous

$$I_{n+2} = (n+1) \int_0^{\frac{\pi}{2}} (1 - \sin^2(x)) \sin^n(x) dx = (n+1)I_n - (n+1)I_{n+2}.$$

Donc $(n+2)I_{n+2}=(n+1)I_n$. Un petit calcul donne $I_0=\frac{\pi}{2}$ et $I_1=1$. Donc par récurrence pour n pair nous obtenons que

$$I_n = \frac{1.3...(n-1)}{2.4...n} \frac{\pi}{2},$$

et pour n impair :

$$I_n = \frac{2.4 \dots (n-1)}{1.3 \dots n}.$$

Avec le changement de variable $x = \cos(u)$, on montre assez facilement que $\int_{-1}^{1} (1 - x^2)^n dx = 2 \int_{0}^{1} (1 - x^2)^n dx = 2 \int_{0}^{1} (1 - \cos^2(u))^n (-\sin(u)du) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2n+1}(u)du = 2I_{2n+1}.$

- 3. Comme (I_n) est décroissante alors $I_{n+2} \leq I_{n+1} \leq I_n$, en divisant le tout par $I_n > 0$ nous obtenons $\frac{I_{n+2}}{I_n} \leq \frac{I_{n+1}}{I_n} \leq 1$. Mais nous avons déjà calculé $\frac{I_{n+2}}{I_n} = \frac{n+1}{n+2}$ qui tend vers 1 quand n tend vers l'infini. Donc $\frac{I_{n+1}}{I_n}$ tend vers +1 et $I_n \sim I_{n+1}$.
- 4. Lorsque l'on calcule $(n+1)I_nI_{n+1}$ à l'aide des expressions explicitées à la deuxième question, nous obtenons une fraction qui se simplifie presque complètement : $(n+1)I_nI_{n+1} = \frac{\pi}{2}$. Maintenant

$$I_n^2 \sim I_n \times I_{n+1} = \frac{\pi}{2(n+1)} \sim \frac{\pi}{2n} \text{ donc } I_n \sim \sqrt{\frac{\pi}{2n}}.$$
5.
$$\frac{1 \cdot 3 \cdot \dots (2n+1)}{2 \cdot 4 \cdot \dots (2n)} = (2n+1)^2 \frac{2}{\pi} I_{2n} \sim (2n+1)^2 \frac{2}{\pi} \sqrt{\frac{\pi}{4n}} \sim 2\sqrt{\frac{n}{\pi}}.$$

Voici un tableau (non limitatif) de primitives utiles :

11 Valeur approchée d'une intégrale définie

Lorsqu'on ne connaît pas l'expression d'une intégrale définie au moyen de fonctions continues, on peut en chercher une valeur approchée en remplaçant la fonction à intégrer par une fonction voisine plus simple.

Proposition 11.1 Méthode des rectangles pour une fonction monotone.

Soit f une fonction monotone (supposée croissante) sur l'intervalle compact [a,b]. L'entier $n \in \mathbb{N}^*$ étant fixé arbitrairement, on pose h = (b-a)/n et on considère la subdivision

$$(a, a+h, \dots, a+kh, \dots, a+nh=b).$$

On obtient alors

$$h\sum_{k=0}^{n-1} f(a+kh) \le \int_{a}^{b} f(x)dx \le h\sum_{k=1}^{n} f(a+kh),$$

 $c\text{'est-\`a-dire la valeur de } \int_a^b f(x)dx \text{ avec une erreur au plus \'egale \`a } E(f) = \frac{b-a}{n}[f(b)-f(a)].$

Proposition 11.2 Méthode des trapèzes.

Soit $f: x \mapsto \lambda x + \mu$ une fonction affine sur l'intervalle [a,b] où λ,μ désignent des constantes. On a :

$$\int_{a}^{b} f(x)dx = \left[\lambda \frac{x^{2}}{2} + \mu x\right]_{a}^{b} = (b-a)\left[\lambda \frac{b+a}{2} + \mu\right] = (b-a)\frac{f(a) + f(b)}{2}.$$

Plus généralement, soit f une fonction intégrable quelconque sur l'intervalle [a,b] et soit $(x_0 = a, x_1, \ldots, x_n = b)$ une subdivision quelconque de cet intervalle. On désigne par g la fonction qui prend les mêmes valeurs que f aux points x_0, x_1, \ldots, x_n et qui se réduit à une fonction affine sur chaque intervalle $[x_i, x_{i+1}]$ $(1 \le i \le n)$. On obtient alors:

$$\int_{a}^{b} g(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} g(x)dx = \sum_{i=1}^{n} (x_i - x_{i-1}) \frac{f(x_i) + f(x_{i-1})}{2}.$$

Si f est pourvue d'une dérivée seconde vérifiant pour tout $x \in [a,b]$: $\alpha \le f'(x) \le \beta$ avec α,β des constantes, on a alors:

$$\frac{\alpha(b-a)^3}{12n^2} \le S - \int_a^b f(x)dx \le \beta \frac{(b-a)^3}{12n^2}$$

avec
$$S = \frac{b-a}{2n} \left[f(a) + f(b) + 2 \sum_{k=1}^{n-1} f\left(a + k \frac{b-a}{n}\right) \right].$$

Proposition 11.3 Autre méthode, applicable aux fonctions vectorielles.

Soit f une fonction vectorielle définie sur l'intervalle compact [a,b] et pourvue d'une dérivée seconde vérifiant pour tout $x \in [a,b] : ||f''(x)|| \le k$ avec k une constante. On a alors :

$$\left\| \int_{a}^{b} f(x)dx - (b-a)f\left(\frac{a+b}{2}\right) \right\| \le k\frac{(b-a)^{3}}{24}$$

et plus généralement pour tout entier n > 0.

$$\left\| \int_a^b f(x) dx - \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + (2k+1) \frac{b-a}{2n}\right) \right\| \leq \frac{k(b-a)^3}{24n^3}.$$

Proposition 11.4 Méthode de Simpson.

Soit f une fonction numérique ou vectorielle définie sur l'intervalle [a,b] de \mathbb{R} et pourvue d'une dérivée d'ordre 5 vérifiant pour tout $x \in [a,b]: ||f^{(5)}(x)|| \leq k$ avec k une constante. On a alors :

$$\left\| \int_{a}^{b} f(x)dx - \frac{(b-a)}{6} \left[f(a) + f(b) + 4f\left(\frac{a+b}{2}\right) \right] \right\| \le k \frac{(b-a)^{5}}{2880}$$

d'où pour tout entier n > 0:

$$\left\| \int_a^b f(x) dx - \frac{(b-a)}{6} \sum_{k=0}^n \left[f(a+kh) + f(a+kh-h) + 4f\left(a+kh-\frac{h}{2}\right) \right] \right\| \le k \frac{(b-a)^5}{2880n^4}.$$

12 Limite uniforme de fonctions intégrables. Intégration terme à terme d'une série

Théorème 12.1 Soit $(f_n)_{n\in\mathbb{N}}$ une suite uniformément convergente de fonctions intégrables sur [a,b] à valeurs dans le même e.v.n. complet E. Alors la fonction limite $f = \lim_{n \to +\infty} f_n$ est intégrable sur [a,b] et on a:

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} \int_{a}^{b} f_n(x)dx. \tag{5}$$

Il faut bien prendre garde que la convergence uniforme de la suite (f_n) est une condition suffisante mais non nécessaire pour entraı̂ner l'égalité (5) et la théorie de Lebesgue permet d'établir le résultat puissant que voici :

Proposition 12.1 Soit (f_n) une suite de fonctions numériques ou complexes intégrables sur l'intervalle [a,b] convergeant simplement vers une fonction f intégrable sur [a,b]. Si les fonctions f_n sont bornées par un même nombre, on a encore l'égalité (5).

Proposition 12.2 Soit (f_n) une suite de fonctions intégrables sur l'intervalle compact [a,b] convergeant simplement vers une fonction f sur [a,b]. Si les fonctions (f_n) snt bornées par un même nombre k, et si la convergence de f_n vers f est uniforme sur tout intervalle compact $[\alpha,\beta]$ contenu dans l'intervalle ouvert [a,b] alors f est intégrable sur [a,b] et on a encore l'égalité

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} \int_{a}^{b} f_n(x)dx.$$

Proposition 12.3 Application aux séries.

Sit (u_n) une suite de fonctions intégrables sur l'intervalle compact [a,b], à valeurs dans un e.v.n. complet E.

 $Si \ la \ s\'erie \sum_n u_n \ est \ uniform\'ement \ convergente \ sur \ [a,b], \ sa \ somme \ S: x \mapsto \sum_{n=0}^{+\infty} u_n(x) \ est \ une \ fonction \ int\'egrable$

 $sur\ [a,b].\ La\ série\ de\ terme\ général\ v_n=\int_a^bu_n(x)dx\ est\ convergente\ et\ on\ a\ :$

$$\int_{a}^{b} S(x)dx = \sum_{n=0}^{+\infty} v_n$$

soit

$$\Leftrightarrow \int_a^b \left[\sum_{n=0}^{+\infty} u_n(x) \right] dx = \sum_{n=0}^{+\infty} \int_a^b u_n(x) dx.$$

En pratique, on retiendra les deux faits suivants :

- en intégrant terme à terme une série uniformément convergente sur l'intervalle compact [a, b], on obtient une série convergente,
- la convergence uniforme d'une suite (resp. série) de fonctions définies sur un même intervalle compact est une condition suffisante pour pouvoir échanger les signes lim et \int (resp. les signes \sum et \int).

Exercice 17 Soit
$$I_n = \int_0^1 \frac{x^n}{1+x} dx$$
.

- 1. En majorant la fonction intégrée, montrer que $\lim_{n\to +\infty} I_n = 0$.
- 2. Calculer $I_n + I_{n+1}$
- 3. Déterminer $\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \right)$.

$\underline{Correction}:$

1. Pour x > 0 on a $\frac{x^n}{1+x} \le x^n$ donc

$$I_n \le \int_0^1 x^n dx = \left[\frac{1}{n+1}x^{n+1}\right]_0^1 = \frac{1}{n+1}.$$

Ainsi, $I_n \to 0$ lorsque $n \to +\infty$.

2.
$$I_n + I_{n+1} = \int_0^1 x^n \frac{1+x}{1+x} dx = \int_0^1 x^n dx = \frac{1}{n+1}$$
.

3. Soit $S_n=(I_0+I_1)-(I_1+I_2)+(I_2+I_3)-\ldots\pm(I_{n-1}+I_n)$. Par la question précédente nous avons $S_n=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots\pm\frac{1}{n}=\sum_{k=1}^n\frac{(-1)^{k+1}}{k}$. Mais d'autre part, cette somme étant télescopique, nous avons $S_n=I_0\pm I_n$. Alors la limite de S_n est égale à $\sum_{k=1}^n\frac{(-1)^{k+1}}{k}$ (quand $n\to+\infty$) soit I_0 car $I_n\to 0$. Un petit calcul montre que $I_0=\int_0^1\frac{dx}{1+x}=\ln(2)$. Donc la somme alternée des entiers converge vers $\ln(2)$.

Exercice 18 | Calculer la limite des suites suivantes :

1.
$$u_n = n \sum_{k=0}^{n-1} \frac{1}{k^2 + n^2}$$
;

2.
$$v_n = \prod_{k=1} \left(1 + \frac{k^2}{n^2}\right)^{\frac{1}{n}}$$
.

Correction:

- 1. Soit $u_n = \sum_{k=0}^{n-1} \frac{1}{k^2 + n^2} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1 + \left(\frac{k}{n}\right)^2}$. En posant $f(x) = \frac{1}{1 + x^2}$ nous venons d'écrire la somme de Riemann correspondant à $\int_0^1 f(x) dx$. Cette intégrale se calcule facilement : $\int_0^1 f(t) dt = \int_0^1 \frac{dt}{1 + t^2} = [\arctan(t)]_0^1 = \frac{\pi}{4}$. La somme de Riemann u_n convergeant vers $\int_0^1 f(x) dx$, nous venons de montrer que u_n converge vers $\frac{\pi}{4}$.
- 2. Soit $v_n = \prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)^{\frac{1}{n}}$, notons

$$w_n = \ln(v_n) = \frac{1}{n} \sum_{k=1} \ln\left(1 + \frac{k^2}{n^2}\right).$$

En posant $g(x) = \ln(1+x^2)$ nous reconnaissons la somme de Riemann correspondant à $I = \int_0^1 g(x)dx$. Calculons cette intégrale :

$$I = \int_0^1 g(s)dx = \int_0^1 \ln(1+x^2)dx$$

$$= [x \ln(1+x^2)]_0^1 - \int_0^1 x \frac{2x}{1+x^2} dx \text{ par intégration par parties}$$

$$= \ln(2) - 2 \int_0^1 \left(1 - \frac{1}{1+x^2}\right) dx$$

$$= \ln(2) - 2 + 2[\arctan(x)]_0^1$$

$$= \ln(2) - 2 + \frac{\pi}{2}.$$

Nous venons de prouver que $w_n = \ln(v_n)$ converge vers $I = \ln(2) - 2 + \frac{\pi}{2}$, donc $v_n = \exp(w_n)$ converge vers $\exp\left(\ln(2) - 2 + \frac{\pi}{2}\right) = 2\exp\left(\frac{\pi}{2} - 2\right)$. Bilan : (v_n) a pour limite $2\exp\left(\frac{\pi}{2} - 2\right)$.

13 Formules de la moyenne

Proposition 13.1 Soient f, g deux fonctions numériques intégrables sur l'intervalle [a, b]. Si la fonction g est positive et si m, M désignent respectivement la borne inférieure et la borne supérieure de f sur [a, b], on a:

$$m \int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M \int_{a}^{b} g(x)dx.$$

Si de plus la fonction f est continue, il existe au moins un point $c \in [a,b]$ tel que :

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx.$$

Proposition 13.2 Deuxième formule de la moyenne.

Soient f,g deux fonctions numériques intégrables sur l'intervalle [a,b], la fonction f étant supposée positive et décroissante. Il existe alors un point c de [a,b] tel que l'on ait :

$$\int_{a}^{b} f(x)g(x)dx = f(a+0)\int_{a}^{c} g(x)dx.$$

14 Sommes de Riemann

Théorème 14.1 Soit $f:[a,b] \to E$ une application intégrable d'un intervalle compact de \mathbb{R} dans un e.v.n. complet E. Quel que soit le nombre $\varepsilon > 0$, il existe un nombre h > 0 possédant la propriété suivante : pour toute subdivision $\sigma = (x_0 = a, x_1, \dots, x_{n-1}, x_n = b)$ de [a,b], de pas au plus égal à h et toute suite $(\zeta_1, \dots, \zeta_n)$ de points de [a,b] vérifiant $x_{i-1} \le \zeta_i \le x_i$ pour $i = 1, 2, \dots, n$, on a

$$\left\| S(f, \sigma, \zeta_1, \dots, \zeta_n) - \int_a^b f(x) dx \right\| \le \varepsilon.$$

Proposition 14.1 Soit f une fonction intégrable sur l'intervalle [a,b] et soit (σ_p) une suite de subdivisions de [a,b] dont le pas tend vers zéro. Si pour chaque subdivision $\sigma_p = (x_{p,0}, x_{p,1}, \ldots, x_{p,n_p})$ on choisit un point $\zeta_{p,i}$ dans chaque intervalle $[x_{p,i-1}, x_{p,i}]$, la somme de Riemann

$$S_p = \sum_{i=1}^{n_p} (x_{p,i} - x_{p,i-1}) f(\zeta_{p,i})$$

tend vers l'intégrale $\int_a^b f(x)dx$ quand p tend vers l'infini.

En particulier, si f est intégrable sur [a,b], la suite (S_n) définie par

$$S_n = \frac{(b-a)}{n} \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right)$$

tend vers $\int_a^b f(x)dx$ quand l'entier n tend vers $+\infty$.

Références

- [1] JACQUELINE LELONG-FERRAND, JEAN-MARIE ARNAUDIÈS. Cours de mathématiques. Tome 2, Analyse, 4ème édition.
- [2] EXERCICES COLLECTION EXO7. Calculs d'intégrales. http://exo7.emath.fr/ficpdf/fic00015.pdf