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Abstract

In the context of quantaloid-enriched categories, we rely essentially on the classifying property of presheaf
categories to give a conceptual proof of a theorem due to Höhle: the double power monad and the composite
power monad, on the category of quantaloid-enriched categories, are the same. Via the theory of distributive
laws, we identify the algebras of this monad to be the completely codistributive complete categories, and
the homomorphisms between such algebras are the bicontinuous functors. With these results we hope to
contribute to the further development of a theory of Q-valued preorders (in the sense of Pu and Zhang).
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1. Introduction

If P = (P,≤) is an ordered set, then its downclosed subsets form a sup-lattice (Dwn(P ),⊆), and the order-
preserving inclusion P //Dwn(P ) : x 7→↓x has a left adjoint if and only if P has all suprema. Dually, taking
the upclosed subsets of P produces an inf-lattice (Up(P ),⊇) (note that upsets are ordered by containment,
whereas downsets are ordered by inclusion), and the order-preserving inclusion P //Up(P ) : x 7→↑x has a
right adjoint if and only if P has all infima. Of course, P is a sup-lattice if and only if it is an inf-lattice,
and then it is said to be a ‘complete lattice’.

These two object correspondences can be made functorial in several ways, and the resulting functors
interact in at least two ways. For starters, the inverse image of an order-preserving function f : P //Q is
a new order-preserving function f−1 : Dwn(Q) //Dwn(P ). This action on objects and morphisms defines
a 2-functor on the locally ordered category Ord of ordered sets which reverses arrows and local order; for
the sake of this introduction, let us write it as L : Ord //Ordcoop. It then so happens that this is a left
2-adjoint, and that the action of its right 2-adjoint R : Ordcoop //Ord on objects is Q 7→ Up(Q). As a result,
the induced 2-monad T := RL : Ord //Ord acts on objects as P 7→ Up(Dwn(P )): it is the double power
monad on Ord.

On the other hand it is well-known that the locally ordered category Sup of sup-lattices and sup-
morphisms is included in Ord by a forgetful 2-functor U : Sup //Ord, right 2-adjoint to an F : Ord // Sup
whose action on objects is P 7→ Dwn(P ); a 2-monad Dwn = UF : Ord //Ord results, and its action on
objects is P 7→ Dwn(P ). In a similar manner, because the forgetful 2-functor V : Inf //Ord admits a left
2-adjoint G : Ord // Inf, their composition produces a 2-monad Up = VG : Ord //Ord, whose action on ob-
jects is Q 7→ Up(Q). Now it turns out that the composition of these 2-monads, S := UpDwn : Ord //Ord, is
again a 2-monad, and its action on objects is thus P 7→ Up(Dwn(P )): it is the composite power monad
on Ord.

In this note we show how the double power monad and the composite power monad are the
same. We prove this in the generality of quantaloid-enriched categories, of which not only ordered
sets but also metric spaces [Lawvere, 1973], partial metric spaces [Höhle and Kubiak, 2011; Stubbe, 2014],
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sheaves [Walters, 1982], fuzzy preorders and sets [Stubbe, 2014; Tao, Lai and Zhang, 2014], and several
other structures, are instances. In doing so, the downsets/upsets of an orderd set must be replaced by con-
travariant/covariant presheaves on a quantaloid-enriched category. This result is due to U. Höhle [2014] (see
his Theorem 5.10), for whom it is a stepping stone towards a definition of ‘quantaloid-enriched topological
spaces’, but our (somewhat more conceptual) proof technique is different from his. Putting the classifying
property of enriched presheaf categories central, our treatment of the double power monad follows easily
from R. Street’s [2012] characterisation of the core of an adjunction; and the theory surrounding the com-
posite power monad is, quite naturally, that of J. Beck’s [1969] distributive laws. A simple description
(in fact, several equivalent descriptions, thanks to [Stubbe, 2007]) of the algebras of the double/composite
power monad follows from all this: they are precisely the completely codistributive complete categories; and
the homomorphisms between such algebras are precisely the bicontinuous functors.

The level of generality offered by quantaloid-enriched categories is, in our opinion, particularly appro-
priate in fuzzy logic and set theory. To make our point, let us recall Zadeh’s definition of fuzzy preorder
[1971]: it is a set X together with a map P : X × X // [0, 1] such that P (x, y) ∧ P (y, z) ≤ P (x, z) and
1 ≤ P (x, x) hold for any x, y, z ∈ X. This [0, 1]-valued interpretation of the axioms of a preorder is easily
generalised to obtain so-called quantale-enriched categories: replace [0, 1] by any quantale Q = (Q, ◦, 1)
(i.e. a complete residuated lattice), and replace ∧ by the multiplication ◦ in Q. However, as analysed by
[Höhle, 1995; Pu and Zhang, 2012], such fuzzy preorders in the sense of Zadeh are still defined on crisp
sets—which, besides bringing about certain technical deficiencies, also makes them not quite “fully fuzzy”.
To amend this, these authors propose the following definition, in the case where Q is a divisible and commu-
tative quantale (e.g. any continuous t-norm on [0, 1], or any complete Heyting algebra, or any BL-algebra):
a Q-valued preorder is a set X together with a map P : X×X //Q such that P (x, y) ≤ P (x, x)∧P (y, y)
and P (x, y) ◦ (P (y, y) ⇒ P (y, z)) ≤ P (x, z) hold for any x, y, z ∈ X (where ⇒ is the residuation for the
multiplication in Q). This new notion no longer fits in the theory of quantale-enriched categories, but it
is still an example of a quantaloid-enriched category! Indeed, from any quantale Q one can construct the
so-called quantaloid of diagonals D(Q), so that D(Q)-enriched categories are precisely the same thing as
Q-valued preorders [Höhle and Kubiak, 2011; Pu and Zhang, 2012]. Interestingly, such diverse mathematical
structures as partial metric spaces and localic sheaves both are examples of Q-preorders in this sense (see
[Stubbe, 2014] for an overview and [Hofmann and Stubbe, 2016] specifically for partial metrics); but also
for further theoretical developments of fuzzy preorders the quantaloidal point of view has proven beneficial
[Tao, Lai and Zhang, 2014; Pu and Zhang, 2014].

Acknowledgement. This work was first made public in September 2013 as a note in the preprint series
Cahiers du LMPA of the Université du Littoral. It was directly inspired by a preprint that U. Höhle had
sent me of [Höhle, 2014], following our participation in the 33rd Linz Seminar on Fuzzy Set Theory in 2012.
Further discussions with D. Zhang, especially during my stay at Sichuan University in 2014, convinced me
to submit this paper for publication in this journal for fuzzy logicians and set theorists. The referee reports
helped me to improve this paper.

2. Notations

Throughout this note we shall use the definitions and notations for quantaloid-enriched categories, dis-
tributors and functors, as in [Stubbe, 2005]. All preliminaries for this note can be found either in that paper
or in [Stubbe, 2007]; the reader may find [Stubbe, 2014] a useful introduction, with many examples from
fuzzy logic and set theory. For the sake of readability, we quickly recall a few notational conventions.

A quantaloid Q is a category – say with objects and arrows written as f : A //B, g : B //C, etc.,
composition as g ◦ f : A //C and identities as 1A : A //A – such that each set of arrows with the same
domain and codomain forms a complete lattice – with suprema written as

∨
i fi : A

//B – and for which
the composition distributes on both sides over these suprema: g ◦ (

∨
i fi) =

∨
i(g ◦ fi) and (

∨
i fi) ◦ h =∨

i(fi ◦h). The resulting right adjoints to composition with a fixed arrow f (the “residuations”) are denoted
by f ◦ − a f↘− and − ◦ f a −↙f . That is to say,

g ◦ f ≤ h ⇐⇒ f ≤ g↘h ⇐⇒ g ≤ h↙f
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holds for any three arrows f : A //B, g : B //C and h : A //C in Q. A quantaloid with a single object
is a quantale: it is precisely a monoidal complete lattice in which multiplication distributes over arbitrary
suprema.

In all that follows we fix a base quantaloid Q and assume it to be small, that is, the collection of all
arrows of Q is a set (so in particular the objects of Q form a set Q0).

A Q-category A is determined by a set A0, a so-called type-function t : A0
// Q0, and a (A0 × A0)-

indexed matrix of so-called hom-arrows A(a′, a) : ta // ta′ in Q; this data is subject to transitivity and
reflexivity axioms:

A(a′′, a′) ◦ A(a′, a) ≤ A(a′′, a) and 1ta ≤ A(a, a).

A distributor Φ: A c // B is an (B0×A0)-indexed matrix of arrows Φ(b, a) : ta // tb in Q, subject to action
axioms:

Φ(b, a) ◦ A(a, a′) ≤ Φ(b, a′) and B(b′, b) ◦ Φ(b, a) ≤ Φ(b′, a).

The composition of Φ: A c // B and Ψ: B c //C is written as Ψ⊗ Φ: A c //C and computed with a “matrix
multiplication formula”:

(Ψ⊗ Φ)(c, a) =
∨
b∈B0

Ψ(c, b) ◦ Φ(b, a).

Note that the identity distributor on a Q-category A is A : A c //A itself. As moreover parallel distributors
are ordered elementwise,

Φ ≤ Φ′ : A c // B def.⇐⇒ ∀(a, b) ∈ A0 × B0: Φ(b, a) ≤ Φ′(b, a),

the supremum of a family (Φi : A c // B)i∈I , written as
∨
i Φi : A c // B, is computed as:

(
∨
i

Φi)(b, a) =
∨
i

Φi(b, a).

A (large) quantaloid Dist(Q) of Q-enriched categories and distributors results; here too, adjoints to compo-
sition are written as Φ⊗− a Φ↘− and −⊗Φ a −↙Φ. The reader will have no difficulty in verifying that,
for distributors Φ: A c // B, Θ: C // B and Σ: C c //D, the elements of Φ↘Θ: A c //C and Σ↙Φ: C c //D
are exactly

(Φ↘Θ)(c, a) =
∧
b∈B0

Φ(b, c)↘Θ(b, a) and (Σ↙Φ)(d, b) =
∧
c∈C0

Σ(d, c)↙Φ(b, c).

Because Dist(Q) is a particular 2-category (there is a 2-cell between two parallel morphisms Φ and Φ′ precisely
when Φ ≤ Φ′), we can apply all available notions from general 2-category theory. In particular, an adjoint
pair of distributors

A
cΦ

$$

⊥ Bc
Ψ

dd

means by definition that A ≤ Ψ ⊗ Φ and Φ ⊗ Ψ ≤ B; here Φ is the left adjoint to Ψ (and Ψ is the right
adjoint to Φ).

A functor F : A //B is a function F : A0
//B0 : a 7→ Fa preserving types and satisfying a functoriality

axiom:
ta = t(Fa) and A(a′, a) ≤ B(Fa′, Fa).

Functors compose in the obvious manner, so a category Cat(Q) results. Every functor F : A // B between
Q-categories determines an adjunction in Dist(Q):

A
cB(−, F−)

$$

⊥ Bc
B(F−,−)

dd .
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The assignment F 7→ B(−, F−) (resp. F 7→ B(F−,−)) extends to a covariant (contravariant) inclusion of
Cat(Q) in Dist(Q). In doing so, Cat(Q) inherits the 2-cells of Dist(Q): explicitly, for F, F ′ : A //B we put

F ≤ F ′ def.⇐⇒ B(−, F−) ≤ B(−, F ′−) ⇐⇒ ∀a ∈ A0 : 1ta ≤ B(Fa, F ′a).

Note, however, that this order relation on functors is not anti-symmetric: it may very well be that F ≤ F ′

and F ′ ≤ F (a situation that we shall write as F ∼= F ′), but still F 6= F ′. In particular, a diagram of
Q-categories and functors, e.g.

A H ′ //

H

��

B

K ′

��

C
K

// D

may not commute strictly (so K ◦ H 6= K ′ ◦ H ′) even though it does commute up to isomorphism (so
K ◦H ∼= K ′ ◦H ′). Henceforth we use the term “commutative diagram” whenever we have commutativity
up to isomorphism.

In the 2-category Cat(Q), an adjoint pair of functors

A

F
$$

⊥ B

G

dd ,

is defined to mean that 1A ≤ G ◦ F and F ◦G ≤ 1B. It is however easily verified that

F a G ⇐⇒ ∀(a, b) ∈ A0 × B0: B(Fa, b) = A(a,Gb),

and the latter expression explains why F is said to be the “left” adjoint, and G the “right” adjoint.
For any object X ∈ Q0, we write 1X for the one-element Q-category whose single hom-arrow is 1X .

Clearly, a functor 1X //A into any Q-category A determines, and is determined by, an element a ∈ A0

of type ta = X. From the order relation on parallel functors, we now infer the underlying order of a
Q-category A:

a′ ≤ a def.⇐⇒ 1ta ≤ A(a′, a).

This order relation is indeed transitive and reflexive, but need not be anti-symmetric1. With this natural
definition we then find (with notations as above) that

F ≤ F ′ ⇐⇒ ∀a ∈ A0 : Fa ≤ Fa′

and also these familiar-looking characterisations of adjoint functors:

F a G ⇐⇒ ∀a ∈ A0, b ∈ B0 : a ≤ GFa and FGb ≤ b ⇐⇒ ∀a ∈ A0, b ∈ B0 :
[
Fa ≤ b ⇐⇒ a ≤ Gb

]
.

Furthermore, a functor F : A // B is fully faithful whenever A(a′, a) = B(Fa′, Fa) for all a, a′ ∈ A0; it
is then necessarily essentially injective in the sense that Fa ∼= Fa′ implies a ∼= a′. And F : A // B is

1A Q-category A is said to be skeletal if its underlying order is anti-symmetric. Some authors prefer all their quantaloid-
enriched categories to be skeletal, thus making all commutative diagrams of functors in fact strictly commutative. Even though
this is not our choice here, if one so wishes, one can restrict all that follows to skeletal Q-categories; indeed, our main tool
– the formation of Q-categories PA and P†A of presheaves on a given Q-category A, see Section 3 – always produces skeletal
Q-categories.
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essentially surjective when for every b ∈ B0 there exists an a ∈ A0 such that Fa ∼= b; it is then necessarily
dense in the sense that B(b′, F−)⊗ B(F−, b) = B(b′, b) for all b, b′ ∈ B0.

Finally, a word on duality. When Q is a quantaloid, then so is its opposite Qop obtained by formally
reversing the direction of the arrows. Whenever C is a Q-category, define Cop to have the same objects and
types as C, but put Cop(y, x) := C(x, y); this produces a Qop-category Cop. Extended to distributors and
functors in the obvious way, we obtain isomorphic 2-categories

Dist(Q) ∼= Dist(Qop)op and Cat(Q) ∼= Cat(Qop)co,

where the “co” means that we formally reverse the order between the arrows (but keep the direction of the
arrows). This now gives a duality principle: when a notion, say a widget, is defined for general quantaloid-
enriched categories, it has an incarnation in Q-categories and an incarnation in Qop-categories; translating
the latter back in terms of Q-categories via the above isomorphisms, produces the dual notion to the original
widget, usually (but not always) called cowidget. We shall encounter several such situations further on.

Example 2.1 To relate the above definitions to the introductory section of this paper, we shall work out
the simplest of examples. Let 2 be the quantaloid with a single object, two arrows 0 and 1, one 2-cell 0 ≤ 1,
and composition given by infimum (making 1 the identity arrow). In other words, 2 is (the “suspension” of)
the two-element boolean algebra {0 ≤ 1}. Writing out the definition of a 2-category A, the type function is
obsolete (because its codomain is a singleton), and we are left with a binary predicate

A : A0 × A0
// {0, 1}

which encodes a transitive and reflexive relation; in other words, we may regard A = (A,≤) as an ordered
set. (Requiring A to be skeletal would make it an anti-symmetric order.)

A distributor Φ: (A,≤) c // (B,≤) is, in the same vein, a relation Φ ⊆ B × A which is downclosed in B
(b ∈ Φ and b′ ≤ b implies b′ ∈ Φ) and upclosed in A (a′ ∈ Φ and a′ ≤ a implies a ∈ Φ); its composite with
another distributor Ψ: (B,≤) c // (C,≤) is

Ψ⊗ Φ = {(c, a) ∈ C ×A | ∃b ∈ B : (c, b) ∈ Ψ and (b, a) ∈ Φ},

whereas the identity distributor on (A,≤) is

A = {(a′, a) ∈ A×A | a′ ≤ a}.

The order-relation between parallel distributors is given by inclusion, the supremum of parallel distributors
is thus their union.

A functor F : (A,≤) // (B,≤) is an order-preserving function from A to B. Written as relations, the
adjoint pair of distributors determined by F is

B(−, F−) = {(b, a) ∈ B ×A | b ≤ Fa} and B(F−,−) = {(a, b) ∈ A×B | Fa ≤ b}.

The order on functors is pointwise, and an adjoint pair of functors is a (monotone) Galois connection.

As we develop, in the course of this paper, some very general quantaloid-enriched category theory, we shall
always come back to ordered sets as our running example. Whereas several other examples – including
sheaves, fuzzy sets and fuzzy relations, fuzzy orders, and partial metric spaces – are worked out in the papers
mentioned at the end of the Introduction, we want to indicate the expressive power of quantaloid-enriched
categories by briefly describing the case of fuzzy orders.

Example 2.2 A left-continuous t-norm is a binary operator

[0, 1]× [0, 1] // [0, 1] : (x, y) 7→ x ∗ y

which provides the multiplication for a commutative (x ∗ y = y ∗x) and integral (1 ∗x = x = x ∗ 1) quantale
structure on the sup-lattice ([0, 1],

∨
). Examples include the product t-norm (x ∗ y = xy), the Lukasiewicz
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t-norm (x∗y = max{x+y−1, 0}), and the minimum t-norm (x∗y = min{x, y}); these are in fact continuous
t-norms, and it is well-known that any continuous t-norm is – in a precise manner – an amalgamation of
these three. An example of a left-continuous non-right-continuous t-norm is obtained by setting x ∗ y to
min(x, y) if x + y > 1 and to 0 otherwise. Such t-norms are important structures in fuzzy logic: taking
the real unit interval as a model of possibly vague statements, conjunction is interpreted by a t-norm. A
standard reference on this (and much more) is [Gottwald, 2001].

Let us now fix a continuous t-norm ([0, 1], ∗). Regarding it as a one-object quantaloid, it makes perfect
sense to consider a [0, 1]-enriched category A: it consists of a set A0 (with obsolete type function, since its
codomain is a singleton) together with a predicate

A : A0 × A0
// [0, 1]

which satisfies A(z, y) ∗ A(y, x) ≤ A(z, x) and 1 ≤ A(x, x). Reading A(y, x) as “the extent to which y
precedes x”, the “fuzzy transitivity” seems to indicate that we can think of the predicate A as a “fuzzy
order relation”. However, the reflexivity axiom requires that 1 ≤ A(x, x), that is, the extent to which any
x ∈ A0 exists, is necessarily equal to 1. In still other words, a [0, 1]-enriched A is a crisp set endowed with
a reflexive and fuzzy transitive relation.

An elegant manner to completely “fuzzify” the notion of ordered set, goes as follows. Let D[0, 1] be the
quantaloid with

- objects: the elements of [0, 1],

- arrows: an arrow a : u // v is an a ≤ u∧v in [0, 1], the composite with b : v //w is b∗(v ⇒ a) : u //w,
and the identity arrow on u ∈ [0, 1] is u : u // u itself,

- local suprema:
∨
i∈I(ai : u

// v) = (
∨
i ai : u

// v) is computed as in [0, 1].

(We wrote ⇒ for the residuation in [0, 1] wrt. the given t-norm.) Taken literally, a D[0, 1]-category A is a
set A0 together with functions

t : A0
// [0, 1] and A : A0 × A0

// [0, 1]

which satisfy

A(y, x) : tx // ty in D[0, 1], 1tx ≤ A(x, x) and A(z, y) ∗ (A(y, y)⇒ A(y, x)) ≤ A(z, x).

Translating this back into inequations in the quantale [0, 1], and using that ta ∈ [0, 1] is the identity arrow
on the object ta of D[0, 1], this means that

A(y, x) ≤ tx ∧ ty, tx ≤ A(x, x) and A(z, y) ∗ (A(y, y)⇒ A(y, x)) ≤ A(z, x).

Clearly now, the unary predicate is implicit in the binary predicate, and the reflexivity axiom is obsolete,
so we are actually left with

A(y, x) ≤ A(x, x) ∧ A(y, y) and A(z, y) ∗ (A(y, y))⇒ A(y, x)) ≤ A(z, x).

If we now read A(y, x) as “the extent to which y precedes x”, and in particular A(x, x) as “the extent to
which x exists”, then we find here a fuzzy order relation on a set of fuzzy elements. We happily follow
(amongst others) [Höhle and Kubiak, 2011; Pu and Zhang, 2012] in promoting this notion to be taken as the
definition of a fuzzy order. With a little more care this procedure carries over to left-continuous t-norms
too, in fact even to general quantales and quantaloids—see [Stubbe, 2013, 2.14].
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3. Presheaves

A contravariant presheaf of type X ∈ Q0 on a Q-category A is defined to be a distributor φ : 1X c //A.
We shall write the elements of such a distributor as φ(a) : X // ta in Q (one for each a ∈ A0), thus avoiding
the more cumbersome notation φ(a, ∗) : t∗ // ta where the ∗ would denote the single object of 1X . To
support the idea that such a φ : 1X c //A indeed merits to be called a “contravariant presheaf” on A, it is
useful think of it as a function

φ : A0
// {arrows in Q with domain X} : a 7→ φ(a)

satisfying
∀a, a′ ∈ A0 : A(a′, a) ≤ φ(a′)↙φ(a).

This function taking values in the set of arrows in Q (the “truth values” in the world of Q-categories), makes
it a presheaf on A; and the “backward residuation” in the right hand side of the above inequation accounts
for its contravariance.

The collection of all contravariant presheaves on A quite naturally forms a (skeletal) Q-category PA, as
follows. For two presheaves, say φ : 1X c //A and ψ : 1Y c //A, we may compute the lifting in the following
diagram:

A

1X

cφ DD

c
ψ↘φ

// 1Y

cψZZ

The distributor ψ↘ φ : 1X c // 1Y is completely determined by a single arrow X // Y in Q; only slightly
abusing notation2 we shall use ψ↘ φ : X // Y as notation for that Q-arrow too, which we can compute
explicitly as

ψ↘φ =
∧
a∈A0

ψ(a)↘φ(a).

This suggests the construction of a new Q-category PA as follows:

- (PA)0 is the collection of all contravariant presheaves on A,

- the type of an element φ : 1X c //A of (PA)0 is X,

- for any two elements φ : 1X c //A and ψ : 1Y c //A of (PA)0, the hom-arrow PA(ψ, φ) : tφ // tψ is
ψ↘φ : X // Y .

Remark that, for any two φ, ψ ∈ PA, their order qua elements of PA coincides with their order qua distrib-
utors; that is to say,

ψ ≤ φ wrt. the underlying order of PA ⇐⇒ ∀a ∈ A0 : ψ(a) ≤ φ(a).

It follows in particular that PA is a skeletal Q-category (even when A is not). The Yoneda embedding
is the functor YA : A // PA : a 7→ A(−, a). The well-known Yoneda lemma says that, for any a ∈ A and
φ ∈ PA, PA(YAa, φ) = φ(a) (from which it follows in particular that YA is indeed an essentially injective,
fully faithful functor.)

Dual to the above, a covariant presheaf of type X on A is a distributor φ : A c // ∗X ; as before, we
shall write its elements as φ(a) : ta //X. When thought of as a function

φ : A0
// {arrows in Q with codomain X} : a 7→ φ(a)

2There is a full embedding of Q in Dist(Q) by sending any f : X // Y in Q to the distributor (f) : 1X
c // 1Y whose single

element is f . We may thus identify Q with a full subquantaloid of Dist(Q), which is precisely what we do here.
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it satisfies the inequality
∀a, a′ ∈ A0 : A(a′, a) ≤ φ(a′)↘φ(a),

which clearly exhibits the covariance of φ. The (skeletal) Q-category P†A of covariant presheaves on A is:

- (P†A)0 is the collection of all covariant presheaves on A,

- the type of an element φ : A c // 1X of (P†A)0 is X,

- for any two elements φ : A c // 1X and ψ : A c // 1Y of (P†A)0, the hom-arrow P†A(ψ, φ) : tφ // tψ is
ψ↙φ : X // Y .

Note that the underlying order of P†A is “odd”:

ψ ≤ φ wrt. the underlying order of P†A ⇐⇒ ∀a ∈ A0 : φ(a) ≤ ψ(a);

it is best thought of as an ordering-by-containment. The Yoneda embedding is Y †A : A // P†A : a 7→ A(a,−),

and the Yoneda lemma now says that P†A(φ, Y †Aa) = φ(a) (which implies fully faithfulness of Y †A ).

Proposition 3.1 Every functor F : A // B determines adjunctions

PA

PlF

""

P∗F

==

⊥

⊥
PBPrFoo and P†A

P
†
∗F

##

P†rF

==

⊥

⊥
P†BP

†
lF

oo (1)

in Cat(Q), where

PlF (φ) := B(−, F−)⊗ φ P
†
∗F (φ) := φ↙B(−, F−)

PrF (ψ) := B(F−,−)⊗ ψ P
†
lF (ψ) := ψ ⊗ B(−, F−)

P∗F (φ) := B(F−,−)↘φ P†rF (φ) := φ⊗ B(F−,−)

These actions on arrows in Cat(Q) determine 2-functors

Pl : Cat(Q) // Cat(Q) P
†
∗ : Cat(Q) // Cat(Q)

Pr : Cat(Q) // Cat(Q)coop P
†
l : Cat(Q) // Cat(Q)coop

P∗ : Cat(Q) // Cat(Q) P†r : Cat(Q) // Cat(Q)

(where “coop” means taking formally opposite arrows and 2-cells) that satisfy the following equalities:

PlPr = PrPl PlP∗ = PrPr = P∗Pl PrP∗ = P∗Pr
PlP

†
l = PrP

†
∗ PlP

†
r = P∗P

†
∗ = PrP

†
l PrP

†
r = P∗P

†
l

P
†
lPl = P

†
∗Pr P†rPl = P

†
∗P∗ = P

†
lPr P†rPr = P

†
lP∗

P
†
lP
†
r = P†rP

†
l P

†
∗P
†
r = P

†
lP
†
l = P†rP

†
∗ P

†
∗P
†
l = P

†
lP
†
∗

The Yoneda embeddings provide for natural transformations Y : 1Cat(Q)
+3 Pl and Y † : 1Cat(Q)

+3 P†r, that
is, for any functor F : A //B the following diagrams commute:

A F //

YA
��

B

YB
��

PA
PlF

// PB

A F //

Y †A
��

B

Y †B
��

P†A
P†rF

// P†B

(2)
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Proof : First we perform some generally valid computations with liftings/extensions through left/right
adjoints, in the quantaloid Dist(Q). Given φ ∈ PA and ψ ∈ PB, we have that

PlF (φ) = B(−, F−)⊗ φ ≤ ψ ⇐⇒ φ ≤ B(−, F−)↘ψ.

Because B(−, F−) a B(F−,−) in Dist(Q), it furthermore follows that

B(−, F−)↘ψ = B(F−,−)⊗ ψ = PrF (ψ),

and also
PrF (ψ) = B(F−,−)⊗ ψ ≤ φ ⇐⇒ ψ ≤ B(F−,−)↘φ = P∗F (φ).

This proves exactly that PlF a PrF a P∗F . The results for the covariant presheaves are dual.
The 2-functoriality of Pl etc. is easy to see; one must only be a bit careful with the direction of 2-cells and

remember that P†A and P†B have an “odd” underlying order. Each of these 2-functors therefore preserves
adjunctions. Applying Pl to PlF a PrF a P∗F gives PlPlF a PlPrF a PlP∗F ; but on the other hand
we know that PlPlF a PrPlF a P∗PlF too; so uniqueness of adjoints implies that PlPrF = PrPlF and
PlP∗F = P∗PlF . Similar arguments work for the other equations.

The naturality of the Yoneda embeddings is easy to check, e.g.

PlF (YAa) = B(−, F−)⊗ A(−, a) = B(−, Fa) = YB(Fa),

and similar for the other commutative square. 2

Note how both Yoneda lemmas can be written in terms of the 2-functors from Proposition 3.1:

Lemma 3.2 For any Q-category A we have that PrYA ◦ YPA = 1PA and P
†
lY
†
A ◦ Y

†
P†A = 1P†A.

Example 3.3 To pick up with Example 2.1, we apply the above generalities to the particular case of 2-
enriched categories, i.e. ordered sets. A contravariant presheaf φ on an order A = (A,≤) is a subset φ ⊆ A
which is downclosed: a ≤ a′ and a′ ∈ φ implies a ∈ φ. The 2-category PA corresponds with the set of all
downclosed subsets of (A,≤) ordered by inclusion, usually written as (Dwn(A),⊆). The Yoneda embedding
YA : (A,≤) // (Dwn(A),⊆) sends a ∈ A to the principal downset ↓ a = {a′ ∈ A | a′ ≤ a}, and the Yoneda
lemma says that

∀a ∈ A, φ ∈ Dwn(A) : a ∈ φ ⇐⇒ ↓a ⊆ φ.

Dually, P†A is the set of all upclosed subsets of (A,≤) ordered by containment, usually written as (Up(A),⊇),

the Yoneda embedding is Y †A : (A,≤) // (Up(A),⊇) : a 7→ ↑a and satisfies

∀a ∈ A, φ ∈ Up(A) : a ∈ φ ⇐⇒ ↑a ⊇ φ.

Given an order-preserving function F : (A,≤) // (B,≤) it is not difficult to compute explicitly the order-
preserving functions of Proposition 3.1—to find in particular the familiar notions of direct and inverse
image:

- for φ ∈ Dwn(A), PlF (φ) = {b ∈ B | ∃a ∈ A : b ≤ Fa and a ∈ φ} = downclosure of F (φ),

- for ψ ∈ Dwn(B), PrF (ψ) = {a ∈ A | ∃b ∈ B : Fa ≤ b and b ∈ ψ} = F−1(ψ),

- for φ ∈ Up(A), P†rF (φ) = {b ∈ B | ∃a ∈ A : a ∈ φ and Fa ≤ b} = upclosure of F (φ),

- for ψ ∈ Up(B), P†lF (ψ) = {a ∈ A | ∃b ∈ B : b ∈ ψ and b ≤ Fa} = F−1(ψ).

The naturality of the Yoneda embeddings now says that ↓Fa is the downclosure of F (↓a), and that ↑Fa is
the upclosure of F (↑a).
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4. Double power monad

Both PA and P†A enjoy a universal property: they classify distributors, but each in a different manner.
Precisely:

1. Dist(Q)(B,A) // Cat(Q)(B,PA) : (Φ: B c //A) 7→ (FΦ : B // PA : b 7→ Φ(−, b)) is an isomorphism of
ordered sets, with inverse (F : B // PA) 7→ (ΦF : B c //A,Φ(a, b) = F (b)(a)),

2. Dist(Q)(B,A) // Cat(Q)(A,P†B)op : (Ψ: B c //A) 7→ (GΨ : A // P†B : a 7→ Ψ(a,−)) is an isomorphism
of ordered sets, with inverse (G : A // P†B) 7→ (ΨG : B c //A,Ψ(a, b) = G(a)(b)).

Composing (and turning upside down) these isomorphisms of ordered sets, we get an isomorphism

πA,B : Cat(Q)coop(PA,B) = Cat(Q)(B,PA)op ∼= Dist(Q)(B,A)op ∼= Cat(Q)(A,P†B);

explicitly,
πA,B(F : B // PA) = (π(F ) : A // P†B : a 7→ F (−)(a))

π−1
A,B(G : A // P†B) = (π−1(G) : B // PA : b 7→ G(−)(b)).

Proposition 4.1 The object functions A 7→ PA and A 7→ P†A together with the family of order-isomor-
phisms πA,B : Cat(Q)coop(PA, B) // Cat(Q)(A,P†B) consitute the core of an adjunction in the sense of
[Street, 2012]. This means that these object functions uniquely extend to a pair of 2-functors, making the
family of order-isomorphisms natural (in A and B) so that it expresses the 2-adjunction of this pair of
2-functors. In fact, this 2-adjunction turns out to be precisely

Cat(Q) ⊥

Pr
**

Cat(Q)coop

P
†
l

jj
,

with units βA : A // P†PA : a 7→ 1PA(−)(a) and counits αA : A // PP†A : a 7→ 1P†A(−)(a).

Proof : We begin with some definitions (using the notations of [Street, 2012]):

1. βA ∈ Cat(Q)(A,P†PA) is πA,PA(1PA),

2. αA ∈ Cat(Q)coop(PP†A,A) is π−1
P†A,A(1P†A),

3. UA,B : Cat(Q)coop(A,B) // Cat(Q)(P†A,P†B) sends F : B //A to πP†A,B(αA ◦ F ),

4. FA,B : Cat(Q)(A,B) // Cat(Q)coop(PA,PB) sends F : A // B to π−1
A,PB(βB ◦ F ).

It is fairly easy to compute that, for any G : C //B and F : B // PA,

πA,C(F ◦G) = UC,B(G) ◦ πA,B(F ),

and (equivalently), for any F : A // B and G : B // P†C,

π−1
A,C(G ◦ F ) = FA,B(F ) ◦ π−1

B,B(G).

Street’s [2012] general theorem then implies that there is a 2-adjunction F a U with unit β and counit α.

Explicit computations furthermore show that, in the case at hand, F = Pr and U = P
†
l . 2

The unit and counit of the 2-adjunction in the above Proposition can be understood in terms of the Yoneda
embeddings:

Lemma 4.2 With notations as in the proof of Proposition 4.1 we have:

- βA = Y †PA ◦ YA = P†rYA ◦ Y
†
A ,

10



- αA = YP†A ◦ Y
†
A = PlY

†
A ◦ YA.

Proof : The composite functor Y †PA ◦YA : A // P†PA has the same domain and codomain as βA, and it maps

a ∈ A to the covariant presheaf Y †PA(YA(a)) = PA(−, YA(a)) on PA. In φ ∈ PA the latter takes the value

φ(a) (by the Yoneda Lemma), which is exactly what βA(a) does too. Therefore we find that βA = Y †PA ◦ YA
as functors; and the equality Y †PA ◦ YA = P†rYA ◦ Y

†
A follows from naturality of Y †. (Similar for αA.) 2

By “abstact nonsense”, the above 2-adjunction determines a 2-monad like so:

Theorem 4.3 (Double power monad) There is a 2-monad (T,m, u) on Cat(Q) as follows:

- the 2-functor is T := P
†
lPr,

- the multiplications are mA := P
†
lαPA,

- the units are uA := βA.

Example 4.4 We work out the above Theorem 4.3 for 2-categories, i.e. ordered sets, as begun in Examples
2.1 and 3.3. Writing Ord = Cat(2) for the 2-category of ordered sets, order-preserving functions, and
pointwise order on those functions, the 2-functor T : Ord //Ord sends F : (A,≤) // (B,≤) to

P
†
lPrF : Up(Dwn(A)) //Up(Dwn(B)) : Γ 7→ {ψ ∈ Dwn(B) | F−1(ψ) ∈ Γ}.

The multiplications and units that make T a monad are given by

- mA : Up(Dwn(Up(Dwn(A)))) //Up(Dwn(A)) : Ω 7→ {φ ∈ Dwn(A) | {Γ ∈ Up(Dwn(A)) | φ ∈ Γ} ∈ Ω},

- uA : A //Up(Dwn(A)) : a 7→ {φ ∈ Dwn(A) | a ∈ φ}.

This description of the double power monad will be simplified in the next half of this paper, where we
shall show it to be the composite of two simpler (“single power”) monads, from which a straightforward
characterisation of its algebras will be possible.

5. Composite of power monads

Suppose given a distributor Φ: A c //B and a functor D : B //C, all between Q-categories. Using the
adjoints to composition in Dist(Q) we may compute the distributor Φ↘C(D−,−) : C c //A. If there is a (nec-
essarily essentially unique) functor colim(Φ, D) : A //C such that Φ↘ C(D−,−) = C(colim(Φ, D)−,−),
then we call it the Φ-weighted colimit of D. A functor F : C //C′ is said to preserve colim(Φ, D) if
F ◦ colim(Φ, D) coincides (up to isomorphism) with colim(Φ, F ◦D). All this is illustrated in the diagrams
below:

B D // C

A

cΦ

OO B CcB(D−,−)
oo

c
Φ↘C(D−,−)

��

A

cΦ

OO B D // C F // C′

A

cΦ

OO

colim(Φ, D)

??

colim(Φ, F ◦D)

77

A Q-category C is cocomplete if it has all colimits (for all weights Φ and all diagrams D); and a functor
F : C //C′ is cocontinuous if it preserves all colimits that happen to exist in its domain. It is furthermore
well known [Stubbe, 2005, 6.8] that:
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Proposition 5.1 For a cocomplete Q-category A, a functor F : A //B is cocontinous if and only if it has
a right adjoint; and the right adjoint in case is exactly F ∗ : B //A : b 7→ colim(B(F−, b), 1A).

Writing Cocont(Q) for the 2-category of cocomplete Q-categories and cocontinuous functors, the forgetful
2-functor U : Cocont(Q) // Cat(Q) is monadic, with its left 2-adjoint given by Pl. The unit for this 2-
adjunction is the Yoneda embedding YA : A // PA. The counit is given by “supremum”: if B is a cocomplete
category, then supB : PB // B is the map that sends φ ∈ PB to the element of B picked out by the functor
colim(φ, 1B) : 1tφ //B. The 2-monad on Cat(Q) determined by this 2-adjunction is thus:

- the 2-functor Pl,

- with multiplications supPA : PPA // PA,

- and units YA : A // PA.

It is a so-called KZ-doctrine [Zöberlein, 1976; Kock, 1995]: the inequality PlYA ≤ YPA holds. This implies
in particular that:

Proposition 5.2 Concerning a Q-category B, the following statements are equivalent3:

1. B is cocomplete (in the sense recalled above),

2. B is injective wrt. fully faithful functors in Cat(Q),

3. YB has a left inverse in Cat(Q),

4. YB has a left adjoint in Cat(Q),

5. B is a Pl-algebra;

in particular is the left adjoint/left inverse to YB then exactly supB.

Proof : The equivalence (1⇔ 4) is in [Stubbe, 2005, 6.10], and the equivalence (4⇔ 5) is the whole point of
Pl being a KZ-doctrine (as [Kock, 1995] puts it, “structures are adjoint to units”), so here we shall only prove
that (1⇒ 2⇒ 3⇒ 4). First, assume B to be cocomplete, and consider functors F : A //C and G : A //B,
with F fully faithful; we must exhibit a (not necessarily unique) factorisation (up to isomorphism) of G
through F . The C(F−,−)-weighted colimit of G provides a functor H : C //B, and from the general rules
for computing a weighted colimit it follows – with the aid of F ’s fully faithfulness in the second equality –
that, for any a ∈ A, H(Fa) = colim(C(F−, Fa), G) = colim(A(−, a), G) ∼= Ga. So B is injective wrt. fully
faithful functors. Next, from the mere injectivity of B and YB’s fully faithfulness, the diagram

B
1B //

YB $$

B

PB

::

exhibits a left inverse to YB. Finally, suppose that L ◦ YB ∼= 1B. For any φ ∈ PB we then have that
φ = PB(YB−, φ) ≤ B(LYB−, Lφ) = B(−, Lφ) = YBLφ, hence YB ◦ L ≥ 1PB, which suffices to show that
L a YB. 2

The dual version of the above goes as follows. A Q-category C is complete if, for any Φ: B c //A and
any functor D : B //C, there exists a (necessarily essentially unique) functor lim(Φ, D) : A //C such that
C(−, lim(Φ, D)−) = C(−, D−)↙Φ. A functor F : C //C′ is said to preserve lim(Φ, D) if F ◦ lim(Φ, D)
coincides with lim(Φ, F ◦D); and a functor is continuous if preserves all limits that happen to exist in its
domain. Continuous functors into a complete category coincide with right adjoint functors.

3This is the content of a two-page note by the author, entitled “Cocomplete Q-categories are precisely the injectives wrt. fully
faithful functors”, distributed privately in June 2006; for completeness’ sake we repeat the argument here. For an extensive
study of the link between monads and injectives we refer to [Escardó, 1998].
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Writing Cont(Q) for the 2-category of complete Q-categories and continuous functors, the forgetful 2-
functor U† : Cont(Q) // Cat(Q) is monadic, with left 2-adjoint P†r: the unit is given by Yoneda embeddings

Y †A : A // P†A and the counit is given by “infimum”, infB : P†B // B : φ 7→ lim(φ, 1B). The resulting 2-
monad on Cat(Q) is:

- the 2-functor P†r,

- with multiplications infP†A : P†P†A // P†A,

- and units Y †A : A // P†A.

It is a co-KZ-doctrine, because P†rY
†
A ≥ Y †

P†A. This gives many characterisations of complete categories,
entirely dual to Proposition 5.2:

1. B is complete,

2. B is injective wrt. fully faithful functors in Cat(Q),

3. Y †B has a left inverse in Cat(Q),

4. Y †B has a right adjoint in Cat(Q),

5. B is a P†r-algebra;

and the right adjoint/left inverse to Y †B is exactly infB.
As is immediately clear now, a Q-category B is complete if and only if it is cocomplete—for both reduce

to the self-dual notion of injectivity wrt. fully faithful functors in Cat(Q). (This was observed in [Stubbe,
2005, 5.10] too, but with a different proof.)

The Yoneda lemmas, as stated in Lemma 3.2, now have the following incarnation:

Lemma 5.3 For any Q-category A, supPA = PrYA and infP†A = P
†
lY
†
A .

Proof : The free P-algebra PA is necessarily cocomplete, so supPA is the left adjoint/inverse to YPA. The
statement in Lemma 3.2, saying that PrYA is left inverse to YPA, is thus equivalent to the statement that
supPA = PrYA. Similar for the other statement. 2

Lemma 5.4 For any (co)complete B,

P
†
lYB = P†rsupB PlYB = PrsupB PrYB = P∗supB P

†
∗YB = P

†
l supB

P
†
∗Y
†
B = P

†
l infB PrY

†
B = PlinfB P∗Y

†
B = PrinfB P

†
lYB = P

†
∗infB

Proof : We know that supB a YB, and by 2-functoriality of (say) Pl it follows that PlsupB a PlYB too.
However, PlsupB a PrsupB too, so by uniqueness of adjoints we find that PrsupB = PlYB. Similar for the
other equations. 2

Suppose now that F : A //B is any cocontinuous functor between cocomplete Q-categories: it has a right
adjoint F ∗ : B //A (by Proposition 5.1). Applying the 2-functor P†r : Cat(Q) // Cat(Q) produces again an
adjunction P†r(F ) a P†r(F

∗), exhibiting P†rF : P†A // P†B to be a cocontinuous functor between cocomplete
categories. This shows that the 2-functor P†r lifts to the full subcategory Cocont(Q) of Cat(Q):

Cat(Q)
P†r // Cat(Q)

Cocont(Q)

U

OO

P†r

// Cocont(Q)

U

OO

(3)
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Because Pl is a KZ-doctrine, the forgetful 2-functor U : Cocont(Q) // Cat(Q) is injective on objects and
morphisms, so there can be at most one lifting of P†r to Cocont(Q). In the speak of the theory of distribu-
tive laws [Beck, 1969], the existence of this (necessarily unique) lifting is equivalent to the existence of a
(necessarily unique) distributive law of the monad Pl over the endofunctor P†r: a natural transformation
λ : Pl ◦ P†r +3 P†r ◦ Pl satisfying the commutativity of

PP†A

λA

��

PPP†A
supPP†Aoo

PlλA
��

P†A

YP†A
99

P†rYA %%

PP†PA

λPA
��

P†PA P†PPA
P†rsupPA

oo

(4)

Indeed, the commutative diagram in (3) determines (via the “calculus of mates”) the distributive law as
follows4:

PP†A
PlP

†
rYA // PP†PA

supP†PA // P†PA

And conversely, the distributive law λ determines the lifting of P†r to Cocont(Q) in the following sense:
for any cocomplete A, i.e. Pl-algebra supA : PA //A, the Pl-algebra structure on the (free) P†r-algebra
infP†A : P†P†A // P†A is

PP†A
λA // P†PA

P†rsupA // P†A

In other words, if A is cocomplete then supP†A = P†rsupA ◦ λA; in still other words, if A is cocomplete then
YP†A is right adjoint to P†rsupA ◦ λA.

So, with a minimal effort, we exhibited a distributive law λ of the monad Pl over the endofunctor P†r: λ
is compatible with the multiplication and the unit of the monad Pl, as expressed by the commutativity of
the diagram in (4). It takes a bit more effort to show that λ is also compatible with the multiplication and
unit of the monad P†r.

Lemma 5.5 The transformation λ satisfies the commutativity of

PP†A

λA

��

PP†P†A
PlinfP†Aoo

λP†A
��

PA

PlY
†
A

99

Y †PA
%%

P†PP†A

P†rλA
��

P†PA P†P†PA
infP†PA

oo

Proof : Using naturality of Y † in the upper trapezoid, cocontinuity5 of Y †PA in the lower trapezoid, (one of)
the unit-counit axioms for the 2-adjunction Pl a U in the left-hand triangle, and the definition of λ in the

4Note that λA is left adjoint to PrP
†
rYA ◦ YP†PA.

5Because PA is (co)complete, Y †
PA has a right adjoint, namely infPA.
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right-hand triangle, the following diagram is seen to commute:

PA
PlY

†
A //

1PA

��

PlYA

!!

PP†A
PlP

†
rYA

zz

λA

��

PPA
PlY

†
PA

//

supPA
}}

PP†PA

supP†PA
$$

PA
Y †PA

// P†PA

The outer square is exactly the triangle in the statement of the proposition.
As for the rectangle in the statement of the proposition, we break it down in two parts. First we use the

definition of λ in the left-hand triangle, continuity of (the right adjoint) P†rYA in the upper trapezoid and
cocontinuity6 of infP†PA in the lower trapezoid to check the commutativity of the following diagram:

P†PA

λA

��

PlP
†
rYA

$$

PP†P†A
PlinfP†Aoo

PlP
†
rP
†
rYA

��

PP†PA

supP†PA
zz

PP†P†PA
PlinfP†PA
oo

supP†P†PA

��

P†PA P†P†PA
infP†PA

oo

Next, by naturality of Y in the upper-left square, cocontinuity7 of P†rPlP
†
rYA in the lower-left square,

cocontinuity8 of P†rsupP†PA in the lower-right square, (one of) the unit-counit axioms for the 2-adjunction
Pl a U in the upper-right triangle, and finally the definition of λ for the remaining bent arrows, we obtain

6Because infP†PA = P
†
l Y

†
PA by Lemma 5.3, it is a left adjoint, with right adjoint P

†
rY

†
PA.

7Because P
†
rPlP

†
rYA = P

†
lPrP

†
rYA by Proposition 3.1, it is a left adjoint, with right adjoint P

†
rPrP

†
rYA.

8Because P†PA is (co)complete, P†
rsupP†PA = P

†
l YP†PA by Lemma 5.4, so it is a left adjoint, with right adjoint P

†
rYP†PA.
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the commutativity of:

PP†P†A
PlP

†
rP
†
rYA //

λP†A

��

PlP
†
rYP†A

��

PP†P†PA

1PP†P†PA

$$

PlP
†
rYP†PA

��

PP†PP†A
PlP

†
rPlP

†
rYA //

supP†PP†A

��

PP†PP†PA

supP†PP†PA

��

PlP
†
rsupP†PA // PP†P†PA

supP†P†PA

��

P†PP†A
P†rPlP

†
rYA

//

P†rλA

::P†PP†PA
P†rsupP†PA

// P†P†PA

Pasting these two commutative diagrams together along their common side supP†P†PA ◦PlP†rP†rYA produces
a big diagram whose contour is precisely the rectangle in the statement of the proposition. 2

The above lemma establishes the distributive law λ between the monads Pl and P†r; in the next one we shall
compute the so-called λ-algebras, i.e. those that will turn out to be the algebras of the composite monad.

Lemma 5.6 If B is a (co)complete category, then the diagram

PP†B

λB

��

PlinfB // PB
supB

&& B

P†PB
P†rsupB

// P†B
infB

88

commutes if and only if infB : P†B //B is cocontinuous.

Proof : It was indicated before that P†rsupB ◦ λB = supP†B, so the diagram in the statement of the lemma
is identical to

PP†B
PlinfB //

supP†B

��

PB

supB

��

P†B
infB

// B

Its commutativity amounts to the cocontinuity of infB. 2

Dualizing results from [Stubbe, 2007, 4.1, 5.4] provides us with several equivalent characterisations of the
objects encountered in Lemma 5.6:
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Proposition 5.7 For a (co)complete category B, the following conditions are equivalent:

1. infB is cocontinuous,

2. infB has a right adjoint in Cat(Q),

3. infB has a continuous right inverse,

4. B is projective wrt. essentially surjective morphisms in Cont(Q),

5. for the distributor ∆B := B(infB−,−)↘P†B(−, Y †B−) : B c // B we have that

∀b ∈ B0 : b = infB(∆B(b,−));

and then DB : B // P†B : b 7→ ∆B(b,−) is the right adjoint/continuous splitting of infB. Such a (co)complete
Q-category is said to be completely codistributive (or also totally cocontinuous).

The theory of distributive laws now has the following conclusion for us:

Theorem 5.8 (Composite power monad) The natural transformation λ : PlP
†
r

+3 P†rPl with compo-
nents

λA = supP†PA ◦ PlP
†
rYA

is a distributive law of the 2-monad Pl over the 2-monad P†r. This means in particular that we can speak of
their composite 2-monad:

- the 2-functor is S := P†rPl,

- the multiplications9 are µA := (infP†A ∗ supPA) ◦ (1 ∗ λA ∗ 1),

- and the units are η := P†rYA ◦ Y
†
A .

A Q-category A is an S-algebra if and only if it is (co)complete and completely codistributive; and an S-
homomorphism between S-algebras A and B is a bicontinuous (i.e. both cocontinuous and continuous) functor
F : A // B.

6. Double power monad = composite power monad

With notations as in the previous two sections we may now conclude:

Theorem 6.1 The double power monad (T,m, u) is equal to the composite power monad (S, µ, η).

Proof : The underlying 2-functors of T = P
†
lPr and S = P†rPl are identical thanks to Proposition 3.1, and the

units of both monads are trivially identical. The only thing to verify, is the equality of the multiplications.
But recall that

mA = P
†
lαPA = P

†
lY
†
PA ◦ P

†
lYP†PA

whereas
µA = infP†PA ◦ P†rP†rsupPA ◦ P†rλPA = infP†PA ◦ P†rsupP†PA = infP†PA ◦ P

†
lYP†PA,

so it suffices to see that infP†PA = P
†
lY
†
PA. This is an incarnation of the Yoneda lemma, cf. Lemma 5.3. 2

Note in particular that each mA = µA is a right adjoint, and so is each functor in the image of T. It follows
that Höhle’s [2014] ‘Condition (R)’ is satisfied (see his Definition 4.3 and Theorem 5.13), which is important
for his study of ‘regular topological T-spaces’.

9Here the operation ‘∗’ is the Godement product (i.e. the horizontal composition) of natural transformations.
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Example 6.2 As in Examples 2.1, 3.3 and 4.4, we shall specify the above results to the case of 2-categories,
viz. ordered sets. The 2-functor Pl : Ord //Ord sends an order-preserving function F : (A,≤) // (B,≤) to

PlF : Dwn(A) //Dwn(B) : φ 7→ downclosure of F (φ).

The multiplications and units that make Pl a monad are:

- supDwn(A) : Dwn(Dwn(A)) //Dwn(A) : Γ 7→
⋃

Γ,

- YA : A //Dwn(A) : a 7→↓a.

The category of Pl-algebras, which we wrote as Cocont(2), has as objects the ordered sets having all suprema,
and as morphisms those (order-preserving) functions that preserve all suprema. If we would restrict our
attention to anti-symmetric orders (i.e. to skeletal 2-categories), this is exactly the “usual” category Sup of
sup-lattices and sup-morphisms.

Dually, the monad P†r : Ord //Ord sends F : (A,≤) // (B,≤) to

P†rF : Up(A) //Up(B) : ψ 7→ upclosure of F (ψ)

and comes with multiplications and units

- infUp(A) : Up(Up(A)) //Up(A) : Γ 7→
⋃

Γ,

- Y †A : A //Up(A) : a 7→↑a.

The category Cont(2) of P†r-algebras is, essentially, the category Inf of inf-lattices and inf-morphisms.
The literal definition of the distributive law λ : PlP

†
r

+3 P†rPl says that it has components

λA : Dwn(Up(A)) //Up(Dwn(A))
: Γ 7→

⋂
{Σ ∈ Up(Dwn(A)) | ∃γ ∈ Γ : Σ ⊇ {φ ∈ Dwn(A) | ∃a ∈ A : a ∈ γ and ↓a ⊆ φ}}

but – luckily – this complicated expression reduces to λA(Γ) = {φ ∈ Dwn(A) | ∀γ ∈ Γ : φ ∩ γ 6= ∅}, an
expression sometimes referred to as the cross-cut of Γ.

Indeed, let us for the sake of the argument write, for Γ ∈ Dwn(Up(A)),

ΛΓ = {Σ ∈ Up(Dwn(A)) | ∃γ ∈ Γ : Σ ⊇ {φ ∈ Dwn(A) | ∃a ∈ A : a ∈ γ and ↓a ⊆ φ}}.

For any γ ∈ Up(A) and φ ∈ Dwn(A) we have that

∃a ∈ A : a ∈ γ and ↓a ⊆ φ ⇐⇒ φ ∩ γ 6= ∅

so that already
ΛΓ = {Σ ∈ Up(Dwn(A)) | ∃γ ∈ Γ : Σ ⊇ {φ ∈ Dwn(A) | φ ∩ γ 6= ∅}}.

Furthermore, given any Σ ∈ ΛΓ we know (by assumption) that there is an element γΣ ∈ Γ for which

Σ ⊇ {φ ∈ Dwn(A) | φ ∩ γΣ 6= ∅};

and conversely, given any γ ∈ Γ, we may define

Σγ = {φ ∈ Dwn(A) | φ ∩ γ 6= ∅} ∈ ΛΓ.

Finally, we also put
Σ0 = {φ ∈ Dwn(A) | ∀γ ∈ Γ : φ ∩ γ 6= ∅} ∈ ΛΓ.

From the inclusions Σ0 ⊆ ΣγΣ ⊆ Σ in ΛΓ we then have

Σ0 ⊇
⋂

ΛΓ =
⋂
γ∈Γ

Σγ ⊇ Σ0,
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so we conclude that λA(Γ) = Σ0, as claimed.
The distributive law guarantees in particular that the composite 2-functor S = P†rPl : Ord //Ord, which

sends an F : (A,≤) // (B,≤) to

P†rPlF : Up(Dwn(A)) //Up(Dwn(B)) : Γ 7→ {ψ ∈ Dwn(B) | ∃γ ∈ Γ : Fγ ⊆ ψ},

is again a monad, with multiplications and units given by

- µA : Up(Dwn(Up(Dwn(A)) //Up(Dwn(A)) : Ω 7→
⋃
{
⋂
ω ∈ Up(Dwn(A)) | ω ∈ Ω},

- ηA : A //Up(Dwn(A)) : a 7→ {φ ∈ Dwn(A) | a ∈ φ}.

Theorem 6.1 shows this monad to be identical to the monad T = P
†
lPr from Example 4.4.

The diagram in Lemma 5.6 can be written out to state that a complete lattice (B,≤) is an algebra for
the composite power monad if and only if

∀Γ ∈ Dwn(Up(B)) :
∨
{
∧
γ | γ ∈ Γ} =

∧
{
∨
φ | φ ∈ Dwn(B) is such that ∀γ ∈ Γ : φ ∩ γ 6= ∅},

which is a familiar (choice-free) expression for the complete codistributivity of B. Via Proposition 5.7 we
find several equivalent characterisations, particularly that

∀b ∈ B : b =
∧
{b′ ∈ B | ∀ψ ∈ Up(B) :

∧
ψ ≤ b⇒ b′ ∈ ψ}

(in words: each b ∈ B is the infimum of the elements totally above b). The homomorphisms between such
algebras are the sup-and-inf-preserving functions.
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