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This text aims to be a short introduction to some of the basic notions in ordinary
and enriched category theory. With reasonable detail but always in a compact
fashion, we have brought together in the first part of this paper the definitions and
basic properties of such notions as limit and colimit constructions in a category,
adjoint functors between categories, equivalences and monads. In the second part
we pass on to enriched category theory: it is explained how one can “replace”
the category of sets and mappings, which plays a crucial role in ordinary category
theory, by a more general symmetric monoidal closed category, and how most
results of ordinary category theory can be translated to this more general setting.
For a lack of space we had to omit detailed proofs, but instead we have included
lots of examples which we hope will be helpful. In any case, the interested reader
will find his way to the references, given at the end of the paper.

1. Ordinary categories

When working with vector spaces over a field K, one proves such theorems as: for
all vector spaces there exists a base; every vector space V' is canonically included
in its bidual V**; every linear map between finite dimensional based vector spaces
can be represented as a matrix; and so on. But where do the universal quantifiers
take their value? What precisely does “canonical” mean? How can we formally
“compare” vector spaces with matrices? What is so special about vector spaces
that they can be based?

An answer to these questions, and many more, can be formulated in a very
precise way using the language of category theory. All vector spaces and all
linear maps form a “category” Vecty, and the construction of the bidual of a
vector space proves to be a “functor” (—)**:Vectx — Vectx. The inclusions
oy:V — V** being canonical means that they constitute a “natural transforma-
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tion” o: lvect,e = (—)**, lvecty being the identity functor on Vectg. The fact that
computations with linear maps between finite dimensional vector spaces can be
done “via matrices” translates categorically as an “equivalence” between FVecty,
the category of finite dimensional vector spaces, and Matr(K), the category of ma-
trices. On the other hand, the fact that every vector space can be based translates
categorically as an equivalence between Vectyx and the category of “free algebras”
for the corresponding monad T': Set — Set on the category of sets and mappings.

We better begin, in section 1.1, by giving the correct definitions of the basic
notions of category theory. Further on, in section 1.2, we discuss the universal con-
structions in a category. Passing to the notions of “adjoints” and “equivalences”
in section 1.3, we conclude in section 1.4 with a brief introduction to the theory
of “monads”.

1.1. CATEGORIES, FUNCTORS AND NATURAL TRANSFORMATIONS

1.1.1 Definition A category C consists of:
e a class Cy of “objects”;
e for any A, B € Cy a set C(A, B) of “morphisms from A to B”;
o for any A, B,C € Cy a “composition law” which is a mapping of sets
ca,,c:C(A, B) x C(B,C) — C(A,C):(f,9) — ca,c(f,9) =go f;
e for any object A € Cy an “identity morphism” 14 € C(A, A);
subject to the following axioms:
e associativity for composition: for any f € C(A,B), g € C(B,C) and
heC(C,D), ho(gof)=(hog)of;
e identity for composition: for any f € C(A,B), fola=f=1go f.
Given two categories A and B, a functor F': A — B consists of:
e a mapping Ay — By: A— FA;
e for any A, B € Ay a mapping A(A,B) — B(FA,FB): f— Ff;
subject to the following axioms:
e preservation of composition: for any f € A(A, B) and g € A(B,C),
FgoFf=F(go [):
e preservation of identities: for any A € Ao, lpa = F(1a).
For two functors F,G: A — B, a natural transformation o: F = G: A — B is a
class of B-morphisms (as: FA — GA)aca such that for any f € A(A, B),
apoFf=Gfoay.

For a morphism f € A(A, B) the notation f: A — B is common. It is worth
remarking that 14 is the only morphism in A(A, A) that plays the role of an
identity for the composition law. Given two functors F, G: A — B, the “naturality”
of a class (aa: FA — GA)aca can be expressed by the the commutativity of the
following diagram, for any f € A(A, B)F

FA—>FB
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Some obvious examples of categories include the following: Set is the category
of sets and mappings, Rel is the category of sets and relations, Gr (Ab) is the cate-
gory of groups (abelian groups) and group homomorphisms, Vecty is the category
of vector spaces over a field K and linear transformations, Sup is the category
of complete lattices and sup-preserving maps. A monoid with unit (M,-, 1) is a
category M with one object, say %, such that M(x,*) = M in which, of course,
the composition law is the multiplication of the monoid and the identity on * is
the unit for that multiplication. Hence also any group can be viewed as a category
with one object. A poset (P, <) is a category P whose objects are the elements
of P, and for which P(a,b) is a singleton if a < b and is empty otherwise. More
generally, a category of which each set of morphisms is either a singleton or empty,
is called “thin”, and besides posets the examples include also preordered sets, even
preordered classes. A category C is “small” when its objects constitute a set. With
the obvious definition for composition of functors F: A — B and G: B — C, and
the obvious definition for identity functor 14:. 4 — A, it is now easily verified
that there is a category Cat of all small categories and functors between them.
It is crucial to consider only small categories, for otherwise Cat(A,B) would not
necessarly constitute a set.

Given a category 4, one can always consider a “dual” or “opposite” category
A°P| by reversing the direction of the arrows. More specifically, A" = Ap but
A°P(A, B) = A(B, A) and accordingly (go f)°° = fog. A “contravariant” functor
F: A — B is by definition a (genuine) functor F: A°® — B. By way of contrast,
a (genuine) functor is said to be “covariant”. We specify contra- or covariance of
a given functor only when confusion could arise, cf. 1.1.4. It is clear that if a
statement expresses the existence of some objects or morphisms, or the equality
of some composites of morphisms in any category, then the “dual statement”,
obtained by reversing arrows and suitably adjusting the composition, is also valid
in any category. This is sometimes referred to as “the duality principle”.

An obvious functor from Gr to Set is the one that maps any group onto the
underlying set, and any group homomorphism onto the underlying map. Such
type of functor is quite rightly called “forgetful”. Another typical example would
be the functor Vectx — Set that “forgets” all about the linear algebra in Vecty.
Of a different nature is the “inclusion” of Ab in Gr, or likewise the “inclusion”
of Set in Rel, both functorial. Note that a functor between two posets viewed as
small thin categories corresponds precisely to an isotone mapping between those
posets. Yet another example: Given a set A, there is a functor A x —:Set — Set
that maps any set X onto A x X, the cartesian product of A and X, and any
mapping f: X — Y onto the mapping 14 X f: Ax X — AxY:(a,z) — (a, f(x)).

Given two categories A and B and an object B € By we will always write
Ap: A — B for the functor that maps any object to B and any morphism to 1p.
For any category A and any object A of A, we can define a functor A(A, —): A —
Set by putting A(A, —)(X) = A(A4, X) for an object X and A(A, —)(x) = xo— for
a morphism x € A(X,Y) — the latter prescription defines then indeed a mapping
from A(A, X) to A(A,Y). This functor is said to be “represented by A”. Along
the same lines, one defines a contravariant representable functor A(—, A): A — Set.
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When considering two isotone mappings f,g: P, — P> between two posets
from the categorical point of view, thus as functors F,G:P; — P, between thin
small categories, then there exists a natural transformation a: F' = G iff f < g for
the pointwise order; indeed, the condition of naturality of the class of morphisms
(ac: FC — GC)cep, is empty since P, is thin, and the existence of such a class
coincides with pointwise order.

Given a morphism f: A — B in a category B, we can consider the two constant
functors Ay, Ag: A——Z BB on some category A, and define the “constant natural
transfo” Ay: A4 = Ap by putting every one of its components to be f: A — B.
Indeed, since the image of any A-morphism by A4 (Ap) is the identity 14 (1p),
the naturality condition of Ay: Ay = Ap reads 1gp o f = f o 14, which is trivial.

On the other hand, for a morphism f: A — B in the category A, we denote
by A(f,—): A(B,—) = A(A, —) the natural transformation between the functors
represented by B and A, of which the component at an object C' € Ajg is defined
as A(f,—)c = —o f: A(B,C) — A(A,C). Naturality is in fact induced by the
associativity of the composition in the category A: Let z: X — Y be a morphism
in A, then commutativity of

A(B,X) =" A(B,Y)

ofl lof

A4, X) 255 A(AY)

means that for every g: B — X we have (xog)o f = zo(go f). Dually one defines
A(—, f): A(—, A) = A(—, B). In analogy to the term “representable functor” we
could speak here of “representable natural transformation”.

When F,G, H are functors from A to B, and a: F' = G and 3:G = H are
natural transformations, then the formula (8o a)4 = 84 o a4 defines a class of
B-morphisms ((foa)a: FA — HA) ac4 that constitutes a natural transformation
Boa: F' — H. Defining furthermore for any functor F': A — B an “identity natural
transformation” 1p: F' = F of which all components are identity arrows, that is,
(1p)a = 1pa, it is now routine to check that, for any small category A and any
category B, there is a category Fun(A, B) with as objects all functors from A to
B and as morphisms all natural transfos between these functors. Again, smallness
of A is necessary to make sure that the morphism-sets in this category are indeed
sets!

The following proposition involves some calculations with representable func-
tors. It establishes the crucial lemma for 1.1.4, which in turn is an omnipresent
result in category theory.

1.1.2 Proposition (Yoneda lemma) Consider a small category A, a functor
F: A — Set, and an object A € A. Denote by Nat(A(A,—), F') the set of natural
transformations o: A(A, —) = F: A — Set. There exists a bijection

Op a:Nat(A(A, —), F) — FA.

Further, we can define:
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e a functor N: A — Set by N(A) = Nat(A(A, —), F') for an object A of A and
N(f):Nat(A(A, —),F) — Nat(A(B,—), F):a +— ao A(f,—) for a morphism
f:A— B;

e a functor M:Fun(A, Set) — Set by M (F) = Nat(A(A, —), F') for an object
F of Fun(A, Set) and M (~y): Nat(A(4, —), ) — Nat(A (A, -),G):a—yoa
for a morphism v: F — G

e a functor evs:Fun(A,Set) — Set by eva(F) = FA for an object F of
Fun(A,Set) and eva(y) = ya for a morphism : F = G (this functor is
called “evaluation in A” for the obvious reason).

The bijections 0 4:Nat(A(A,—),F) — FA constitute a natural transformation
0p: N = F with components (0p) 4 = 0r a and a natural transformation 6 4: M =
evy with components (04)r = 0r 4.

Proof. For the definition of the bijection 0 4: Given a: A(A,—) = F, define
0p a(a) = aa(la) € FA; on the other hand, given a € F'A, define 7(a): A(A, —) =
F by its components 7(a)p: A(A, B) — FB: f — Ff(a). Naturality of 7(a) is eas-
ily verified: For every morphism g € A(B, C), the naturality condition expressed

in the following diagram: T(a)B

A4, B2, kg
A(A,q) Fg
AA, )M, po

reduces to: for all f € A(A,B), F(go f)(a) = Fg(Ff(a)), which is true by func-
toriality of F!.A — Set. So indeed 7(a) € Nat(A(A, —), F'). These assignments are
inverse to each other: Starting from a € F'A we have

Or.a(7(a)) = m(a)a(1a) = F(1a)(a) = 1ra(a) = 4;

starting from a: A(A4, —) = F we have for any f € A(A, B)

T(0ra(a)s(f) = 7(aa(la))s(f)
= Ff(aa(la)
= )

)
= ap (14)) (by naturality of «)

(
(
= B(
= aB(
We leave to the reader the verification of the functoriality of N: A — Set and

M, eva:Fun(A,Set) — Set, as well as the naturality of 6z 4 as indicated in the
proposition. O

Actually, even when A is a “large” category the bijections of 1.1.2 exist (hence
in particular Nat(A(A,—),F) is a set) and constitute a natural transformation
0N = F. But when A is not small, it makes no sense to define a “cate-
gory” Fun(A,Set), let alone a natural transfo 04: M = ev4: Fun(A, Set) — Set.
Note that, for a small category A, the set Nat(A(A, —), F) is just a notation for
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Fun(A, Set)(A(A, —), F) since the latter is by definition the set of morphisms from
the object A(A, —) to the object F in the category Fun(A, Set), hence precisely
the natural transformations A(A, —) = F.

Let us now fix some standard terminology.

1.1.3 Definition A morphism f: A — B in a category C is a
e monomorphism if for every object C' and every pair g, h: C' — A of morphisms
inC, fog= foh implies g = h;
e epimorphism if for every object D and every pair s,t: C — D of morphisms
inC,sof=tof implies s =t;
e isomorphism if there exists a (necessarily unique) morphism f~1:B — A
such that fof~'=1gand f~'o f=14.
A functor F: A — B
e preserves monomorphisms (epimorphisms, isomorphisms) if the image F f of
any such morphism f is again such a morphism;

e reflects monomorphisms (epimorphisms, isomorphisms) if, when the image
Ff is such a morphism, then f was such a morphism in the first place.
Consider now a functor F: A — B, and for each pair of objects A, B € Ay the

mapping A(A,B) — B(FA,FB): f — Ff. The functor F is:
e faithful when all these mappings are injective;
e full when all these mappings are surjective.
Now consider the mapping Ay — By associated to F: A — B. F is:
e injective on objects when this mapping is injective;
e surjective on objects when this mapping is surjective;
e essentially surjective on objects if every object in B is isomorphic to the
image by F of an object in A.

Notice that the notions of monomorphism and epimorphism are “dual”, in the
sense that f: A — B is mono in C iff it is epi in C°P. An isomorphism is both mono
and epi, but the converse does not hold: Consider the category with two objects,
say A and B, in which there exists besides the identity morphisms exactly one other
morphism f: A — B. Then trivially f is both mono and epi, but never iso. (In fact,
in every thin category every morphism is both mono and epi, but not necessarily
iso.) The composition of two monomorphisms (epimorphisms, isomorphisms) is
again such a map, and clearly identity morphisms are isomorphisms, hence also
mono and epi. As notation, one often writes f: A~ B for a monomorphism,
f: A——= B for an epimorphism, and f: A—=—= B for an isomorphism.

A monomorphism (epi, iso) in Set, Gr, Sup is an injective (surjective, bijective)
morphism. In Rng, the category of rings and ring homomorphisms, the inclusion
of the integers in the rationals is epi, but clearly not surjective! It is also mono,
so it once again shows that being mono and epi does not suffice to be iso. This
can also be seen in the category Top of topological spaces and continuous maps,
where the monomorphisms (epimorphisms) are exactly the continuous injections
(surjections), but the homeomorphisms, which are the isomorphisms, are more
than just continuous bijections.
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The composition of two faithful (full, injective, surjective, essentially surjec-
tive) functors is again such a functor. A faithful functor reflects monomorphisms
and epimorphisms. Obviously every functor preserves isomorphisms, and a full
and faithful one also reflects iso’s. A functor F: A — B is an isomorphism in Cat
if it is full, faithful and injective and surjective on objects. If A is a small cate-
gory, then an isomorphism in the category Fun(A, B) is a natural transformation
a: A = G of which every component aa: FA — GA is an isomorphism in B; of
course, @ ': G = F is then the transformation with components a;l: GA — FA.
Even when A is large, we will say that a “natural isomorphism” a: G = F is a
natural transformation all of whose components are isomorphisms (in the category
B), even though in this case there is no “category” Fun(.A,B) in which « can be
an “isomorphism” in the sense of 1.1.3.

The forgetful functors Gr — Set, Ab — Gr are both faithful. The latter is
also full and injective on objects, the former obviously neither. Next consider
the category FVecty of finite dimensional vector spaces over a field K, and the
category Matr(K) of which the objects are all natural numbers, and of which an
arrow from n to m is a m X n matrix with elements from K. Then we can define
a functor from Matr(K) to FVectx that assigns to any natural number n the
vectorspace K™, and to any m X n matrix the linear application from K" — K™
represented by this matrix. This functor is full, faithful and essentially surjective.
(In 1.3.13 we will call such a functor an “equivalence”.)

A category A is said to be a “subcategory” of a category B if Ay is a subclass
of By and, for any A, B € A, A(A, B) is a subset of B(A, B), such that A is
a category under the composition law and identities inherited from B. Clearly,
this situation gives rise to an injective and faithful inclusion functor A — B. If
this functor is also full, then A is said to be a “full subcategory” of B. A full
subcategory can thus be defined by specifying its class of objects. For instance,
the category of all sets and all injections is a subcategory of Set, but is not a full
subcategory. On the contrary, the category of all finite sets and all mappings is a
full subcategory of Set. We have already noticed that Ab is a full subcategory of
Gr. In the obvious way one can also consider the inclusion of Set in Rel, which is
not full.

1.1.4 Proposition (Yoneda embedding) For every small category A, both

e the contravariant functor Y*: A — Fun(A, Set), defined for an object A and
a morphism f: A — B in A as Y*(A) = A(A, ), Y*(f) = A(f, —);

e the covariant functor Y,: A — Fun(A,Set), defined for an object A and a
morphism f: A — B in A as Y,(A) = A(—, A), Yi(f) = A(—, f)

are full and faithful.

Proof. To show that for any A, B € A there is a bijective correspondence between
A(A, B) and Nat(A(B,—), A(A, —)), apply the Yoneda lemma for A(A4, —) and B.
A similar argument goes to prove the “covariant” case. a
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1.2. UNIVERSAL CONSTRUCTIONS IN A CATEGORY

In a poset (P, <), viewed as a thin category, the infimum [ = inf{x; | ¢ € I} of
a family is, by definition, an element [ € P provided with morphisms A\;:l — z;
(that is, I < x; for each i € I) such that, if another element k € P is provided with
morphisms k;: k — x; (that is, k < x; for each i € I) then there is a (necessarily
unique) morphism f:k — [ (that is, £ < ). Transposing this idea to the more
general context of a category C, not necessarily thin, yields the notion of “limit in
C”. Of course, in a thin category, all existing diagrams are commutative; in the
general contex the expected commutativity conditions must be specified. This is
done in particular by requesting the “naturality” of the families (\;);er, (K;)ier in
the following definition.

1.2.5 Definition Given a (covariant) functor F: D — C, a cone on F' is a natural
transformation \: Ay, = F for some object L € C. A limit of F is a “universal”
cone in the following sense: for any other cone k: A = F there exists a unique
constant natural transformation Ay: A = Ap such that AoA¢ = k. The category
C is (finitely) complete when all (finite) small limits exist, that is, when for every
(finite) small category D and every functor F: D — C, the limit of F exists.

The dual notions of cocone and colimit are obtained by reversing the directions
of the natural transformations in the above; equivalently, a colimit of F:D — C
is a limit of F:D°® — C°P. Accordingly, one speaks of a (finitely) cocomplete
category.

At first sight it may seem more natural to define a complete category as “a category
which has all (even large) limits”, for the notion of large limit makes sense. But
in fact, a “complete category” in this sense is necesseraly thin. Therefore, the
pertinent definition is indeed the one with a “smallness condition”.

The following proposition explains at once the term “universal”.

1.2.6 Proposition If a functor has a (co)limit, then this (co)limit is unique “up
to isomorphism”.

Proof: Suppose that, given F: D — C, there are two limits, say A\: Ay = F and
N:Ap = F. Then the factorizations Af:AL/ = Ar and Af/: Ap = Ay prove
to be inverses to each other: Consider A: A;, = F merely as a cone on F', then one
factorization of \: Ay, = F through \: Ap, = F is 1a,: A = Ar, and another is
Ay oAy, hence by unicity of the factorization already Ay o Ay = 14, . Likewise
one shows that Ay o Ay =1a,,. The proof for colimits proceeds “dually”. m|

Let us make these abstract notions somewhat more practical. If we think of the
category D as an abstract diagram of which the vertices are the objects and the
edges are the morphisms of D, with maybe some commutativity rules encoded by
the composition in D, then the functor F: D — C will produce in C a diagram of
shape D, in which the same commutativity rules apply. Therefore we often speak
of “a limit of this or that diagram in C”. Here are some examples of particular
interest.
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Take for D a non-empty small “discrete category”, that is, a set thought of as
a category with no other morphisms that the identity morphisms. The image
of a functor F: D — C is then just a family of objects of C, indexed by the
objects of D, say (Cp)pep. A limit of a diagram of this kind, if it exists, is
called a “product” and its colimit is a “coproduct” (or “sum”). The notation for
the product is [[, Cp, or Ci x Cy for binary products, and the C-morphisms
(Ao, (D) — FD)pep that constitute the natural transformation Ao, =
F are called “projections”, written (pp:][,Cp — Cp)pep. In principle these
projections constitute a natural transformation, but the naturality condition is
empty because there are no non-trivial arrows in the diagram D. So far we have
described a cone over the diagram. Its universality means that for any other
such “object with projections”, say (K, kp: K — Cp)pep, there exists a unique
constant natural factorization Af: Ax = A, ¢, that is, there exists a unique
C-morphism f: K — [[,Cp such that both triangles in the following diagram
commute (the diagram shows the case of the binary product, D = {1,2}):

K
Ay
k \ k
! Cl X CQ ’
PN
Cl C(2

Dually, the coproduct is denoted [ [, Cp, the according morphisms are “coprojec-
tions”. The picture that goes with this is just the dual of the diagram above (for
a binary coproduct).

In Set, the product of A and B is just their cartesian product A x B with
the projections ps: A X B — A:(a,b) — a and pg: A x B — B:(a,b) — b. The
coproduct of two sets is their disjoint union, together with the obvious inclusions
as coprojections. Also Cat has products and coproducts: A x B is the category
with (A x B)g = Ao x By, and (A X B)((A,B), (A’,B’)) = A(A, A") x B(B,B’);
coproducts are disjoint unions. In Gr the coproduct of a family of groups is, what
is called in group theory, their “free product”; in Ab, coproducts are simply “direct
sums”. In fact, both Gr and Ab have products, given by cartesian product with
pointwise operations, but in Ab the product of a given finite family is isomorphic
to the coproduct of that family. In that respect, Sup is much like Ab: all products
“are” coproducts, they are given respectively by cartesian product with pointwise
order operations and a “direct sum”. A counterexample: whereas in Ban.,, the
category of real Banach spaces and bounded linear applications, all finite products
exist, the product of an infinite family of objects does not exist in general (for
instance, R x R x ... does not exist). In a poset P, thought of as a thin small
category P, the product of a family of elements (a;);c; is, when it exists, precisely
the infimum of this family; likewise, if it exists, their coproduct is their supremum.

It can easily be verified that, given a family of objects (C;);esr in a cate-
gory C and a partition (J)rex of I, one has that [[;c; Ci = [l cx [Lies, G-
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The analogue holds for coproducts, of course. It should be noted that in general
“products do not distribute over coproducts”: Consider four sets A, Ao, By, Bo,
then (A1 x A2) [[(B1 x Bs) is different from (A3 [] B1) X (A2 ][ B2) in Set, if only
by a cardinality argument.

If D is the empty category, then the limit of this diagram in C, if it exists, is
called a “terminal object” of C: it is just one object (or any object isomorphic to
that object, cf. 1.2.6), usually denoted 1, such that for every other object C in C
there exists exactly one morphism C' — 1 in C. Dually, the colimit of the empty
diagram is called an “initial object”; it is denoted 0. In some categories 1 = 0,
and then it is called a “zero object”. For example, Set has as terminal object a
(thus any) singleton {x} and as initial object the empty set. In Gr there is a zero
object which is simply the group with one element.

A different type of (co)limit, is the “(co)equalizer” of two morphisms in a
category C. By definition, this is the (co)limit of the diagram that besides identities
is e_—Ze. Thus, applying 1.2.5, the equalizer of two arrows f,g:A——Z B
in a category C is an object K together with an arrow k: K — A such that
fok = gok, and the pair (K, k) has the universal property. Dually, a coequalizer
is a universal pair (@, ¢: B — Q) of an object and a morphism in C for the property
that g o f = q o g. The notations Ker(f,g) and Coker(f,g) are standard for
respectively equalizer and coequalizer. If an equalizer (coequalizer) exists, then it
is a monomorphisms (epimorphism). In every category, for every morphism f: A —
B, Ker(f, f) exists and is simply 14; likewise, Coker(f, f) = 15. A morphism that
is both an epimorphism and an equalizer is an isomorphism; dually, a morphism
that is both a monomorphism and a coequalizer is an isomorphism as well.

In Set, for two morphisms f,g: A——Z B, the equalizer is given by the set
{a € A | f(a) = g(a)} with the obvious inclusion mapping; the coequalizer is
the quotient of B by the equivalence relation generated by {(f(a),g(a)) | a € A}
with the quotient map. This construction for Ker(f,g) is also valid in “concrete
categories” such as Gr, Top, Ban,,, where the object part of Ker(f, g) then inherits
its structure (as group, as topological space, as Banach space) from A. In the
category Ab, the coequalizer of a group homomophism f: A — B and the zero
homomorphism 0: A — B is precisely the quotient of B by the subgroup f(A); more
generally there is the formula Coker(f, g) = Coker(f — g,0). An analogue holds in
Vectg. In Top the coequalizer of two arrows is constructed as in Set and provided
with the quotient topology. In Gr and Rng one calculates Coker(f, g) as the quotient
of B by the congruence relation (= smallest equivalence relation closed under the
considered algebraic operations) generated by all pairs {(f(a),g(a)) | a € A}. In
any thin category there are of course no non-trivial parallel arrows; therefore all
(co)equalizers exist and are identities.

There are several other important particular examples of limits and colimits,
but (co)products and (co)equalizers prove to be the “generic” examples, in the
sense of the following proposition.

1.2.7 Proposition A category is (co)complete iff each set-indexed family of ob-
Jjects has a (co)product and each pair of parallel morphisms has a (co)equalizer.
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Proving this proposition in the non-trivial direction for a general C would lead
us too far. Instead, let us verify its validity on an example: Knowing now that
products and equalizers exist in Set, let us consider a functor F: D — Set, where
D is, besides identity morphisms, given by e———e<——e_ and let us construct
its limit (which is called a “pullback”).

The image of F' will be A—f—>C<-9—B, a diagram of sets and mappings. In
principle, according to 1.2.5, a cone on this diagram in Set consists of a set L and
three mappings, say l4: L — A, lg: L — B and l¢: L — C, such that foly =Ip
and g olc = lp — which is precisely the naturality of a natural transformation
Ajp = F with components (l4,lp,lc). In other terms, such a cone consists of a
set L and two morphisms [4,lg such that fols = golc. This cone is a limit if
it has the universal property, which means that any other such cone (K;ku, kg)
must factor uniquely through L:

But in fact, this set L can easily be described directly as:
L ={(a,b) € Ax B f(a) = g(b)}.

Hence L is the subset of the product A x B whose elements equalize the arrows
fopa and gopp, where now the morphisms p4 and pp are the respective projections
from A x B onto A and B; that is, L is the equalizer

fopa
L>——>AxB—=ZC.
gops

With 1.2.7 we can now conclude that Set is complete and cocomplete; the same
goes for Ab, Rng, Sup, etc. A poset viewed as thin small category is complete iff
it is a complete lattice iff it is cocomplete as category.

We conclude this paragraph with some observations on functors that commute
with limits.

1.2.8 Definition A functor F: A — B
e preserves (co)limits when, for every small category D and every functor
G:D — A, the image by F of the (co)limit of G, if this exists, is the (co)limit
of F'oG;
o reflects (co)limits when, for every small category D and every functor G: D —
A, if the image of a (co)cone on G is a (co)limit of F o G, then this (co)cone
is the (co)limit of G.
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By 1.2.7 it is clear that, for a (co)complete category A, F: A — B preserves
(co)limits iff it does so for (co)products and (co)equalizers. (In fact, the result can
be improved: Only the existence of (co)products in A is required.) Since we have
by a direct argument that the forgetful functor Ab — Set preserves equalizers and
products (their calculation is “the same” in both these categories), we have that
this functor preserves all limits.

Further it is true that a limit preserving functor F: A — B, defined on a
complete category A, that reflects isomorphisms, also reflects limits. Therefore,
the forgetful Ab — Set is also a limit reflecting functor. By calculation one shows
that any full and faithful functor reflects limits. As a consequence, the “forgetful”
functor Ab — Gr reflects limits; it also preserves them.

Any representable functor A(A,—): A — Set preserves limits (even “large”
limits); it requires a mere calculation to verify this. Remark that, when F: A — B
is a contravariant functor, thus corresponds with a covariant functor A°® — B,
if the latter preserves limits then the former will transform colimits into limits;
therefore any contravariant representable functor A(—, A): A — Set transforms
colimits into limits.

Next consider the functor category Fun(A,B) for a small category A and a
complete category B, and any functor F: D — Fun(A, B) on any small category
D. The limit of F exists, and can be computed “pointwise”: The limit of F
is a functor L: A — B the value of which at an object A € A is the limit of the
functor F4: D — B determined by Fa(D) = F(D)(A). (However it is possible that
Fun(A, B) is complete while 3 is not! More details can be found in any handbook.)
As a consequence, for any small category A, the category Fun(A, Set) is complete,
and the Yoneda embeddings A — Fun(A, Set) of 1.1.4 reflect limits, because they
are both full and faithful. It is also true that the covariant embedding Y,: A —
Fun(A, Set), mapping A onto A(—, A), preserves limits: Counsider a functor F: D —
A, with limit (L, A\: Ay = F), then we must show that (A(—, L), (A(—,Ip))pep),
where the [p are the components of the natural transformation A\: Ay = F, is the
limit of Y,oF'. But Set being complete, it is sufficient to know that for every A € A,
(A(A, L), (A(A,lp))pep) is the limit of the functor A(A, —)o F:C — Set, because
then a pointwise computation will give us the limit of F. This last assertion is
true because L is the limit of F' and every representable A(A, —) preserves limits.

This explains at once why the Yoneda embeddings are so important in Cat-
egory Theory: They allow the covariant embedding of a small category A in the
complete category Fun(A,Set) in which the computation of limits is “easy” be-
cause all calculations actually take place in Set; the embedding then allows to
“reflect” the limit back to the category A.

1.3. ADJUNCTIONS AND EQUIVALENCES

Once more we take the theory of sets with order as a motivating example. For an
isotone mapping f: (P, <) — (@, <), a reverse isotone map g: (Q,<) — (P, <) is
commonly called the “Galois adjoint” of (or “Galois dual” to) f if, for all z € P
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and all y € Q:
g(y) <z <y < fla)

Of course, g needn’t exist, but if it exists, the pair (g, f) is referred to as a “Galois
pair”. From the categorical perspective, when writing P, resp. Q, for the poset P,
resp. Q, viewed as thin category, this condition says exactly that, for any object
2 in P and any object y in Q, the morphism sets P(g(y),z) and Q(y, f(z)) are
either both empty or both a singleton; in any case,

P(g(y),x) = Q(y, f(x)) in Set.

It is well known that a Galois pair (f,g) is also caracterized by the following
inequations, for all z € P and y € Q:

y < f(g(y)) and g(f(x)) < z.

Recalling that natural transformations between isotone mappings are the “cate-
gorical translation” of the pointwise order of these maps, we can restate this as:

there exist natural transformations n:1g = fogande:go f = 1p.

Now what does this Galois dual, if it exists, mean? Simply put, the map g:Q — P
selects, for every element y € @, the smallest element of P whose image through f
is still bigger than (or equal to) y. Again using the idiom of categories, we can say
that for every object y € Q we want to select an object g(y) € P together with a
P-morphism n,:y — f(g(y)) (that is, y < f(g(y))) such that for any other such
pair of an object € P and a morphism £:y — f(z) (that is, for any other z such
that y < f(z)) there exists a (necessarily unique) morphism ¢: g(y) — = (that is,
g(y) < ). Such a couple (g(y), n,) is what we will call in 1.3.11 a “reflection of y
along f7.

In principle, a dual definition is possible as well: Calling then g as above the
“left Galois adjoint” of f, by reversing all “less or equal than” signs in the above
one can speak of a “right Galois adjoint” of f, which is then, if it exists, an isotone
map ¢ such that (f,g) is a Galois pair.

It is the aim of definition 1.3.10 and the propositions thereafter to develop a
theory of “adjoint functors” between (not necessarily thin) categories. Of course,
the situation for thin categories is particularly simple because any diagram in
such a category commutes; it should come as no surprise that we have to ask for
a “compatibility” of the natural transformations 7:1g = fogand e:go f = 1p
if we replace P and Q by more general categories. To properly express these
requirements, we need the following technicality.

1.3.9 Proposition Consider three categories A, B and C, two pairs of functors
F,.G:A—ZB and R,S: B—_——ZC, and two natural transformations a: F' = G
and v: R = S. We can define a natural transformation y*x«o: RoF' = SoG, called
the “Godement product” of a and -y, by putting its components to be

(y*a)a =7ga 0 R(aa) = S(aa) o ypa.
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If moreover two functors H: A — B and T: B — C with natural transformations
B:G = H and §: S = T are given, then the “interchange law” holds, that is,

(Boa)x(d07) = (6+p)o(y*a)

The straightforward proof is left to the reader. Note that the definition of the
Godement product uses the naturality of v: R = S:B — C applied to the B-
morphism ay : FA — GA.

1.3.10 Definition A functor F: A — B is right adjoint to a functor G: B — A
(and G is left adjoint to F'), notation G 4 F': A — B, if there exist natural transfor-
mationsn: 1p = Fo(G and e: GoF = 1 4 such that the following diagrams, of which
the vertices are functors and the edges are natural transformations, commute:

IBOFLU;FOGOF G0131G—ﬂ>GOFOG
\ ﬂ/lp*e \ ﬂa*lc
Foly ly0G

A functor can have several adjoints, but if G; + F' and G5 4 F' then there exists
a natural isomorphism a: G; = G3. (Recall that such a natural isomorphism « is
a natural transformation of which every component a4 is an isomorphism.)

The following proposition is then a characterization of adjointness of functors
that generalizes what we already know for isotone maps between posets.

1.3.11 Proposition The following are equivalent:
1. GAF: A— B;

2. there exist bijections 04 p: A(GB, A)—B(B,FA), for all A€ A and B € B,
which constitute a natural isomorphism between both expressions, seen as
functors defined on B°P x A;

3. there exists a natural transformation n:1z = F o G such that for every
B e B, (GB,ng) is a “reflection” of B along F, that is, for every other pair
(A,a) of an object A € A and morphism a: B — FA in B there exists a
unique A-morphism f: GB — A such that F'f ong = «a;

4. there exists a natural transformation €:G o F' = 14 such that for every
A€ A, (FA,ey) is a “coreflection” of A along G, that is, the dual of the
universal property in part 3 holds.

Proof (1 = 2) Defining 04 p(a) = Fa onp for a morphism a € A(GB,A),
and conversely 671(b) = €4 o Gb for b € B(A, FB), one uses the naturality of
both n and € to prove that these maps are indeed inverse to each other; the
naturality of 64 g as indicated in the proposition is now easily verified. (2 = 3)
One proves that, given B € B, its reflection along F is given by (GB, 0gp.5(1aB)),
where in fact the B-morphisms g g(lgp): B — F(G(B)) are components of the
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required natural transformation 1z = FoG. (3 = 1) The component at an object
A € A of the required natural transformation e: Go F' = 14 is obtained as follows:
Since (FA,nra) is a reflection of FA along F', considering the pair (A, 1p4), that
satisfies the conditions as in (3), produces a unique morphism €4 : G(FA) — A
such that Feq ong = 1pa (which is already one of the “triangles” of definition
1.3.10). It remains to show that ¢ is indeed natural, and that the other “triangle”
commutes as well, which is routine. (4) As for the equivalence with part 4, it
follows by duality with part 3. |

Now for some examples. The forgetful functor Ab — Set has a left adjoint functor
that associates to any set X just the coproduct in Ab of X copies of the abelian
group of integers. Indeed, calling this group Ax, an explicit formula is:

Ax = {(22)zex | 22 € Z,{x | 2, # 0} is finite },

such that X is, as set, included in Ax simply by mapping an element zy to the
sequence where z;, is 1 and the other are 0. Moreover, given an abelian group
(A,4+) and a mapping f: X — A, there is a unique factorization g:Axy — A
given by g((2z)zex) = X _,ex 22f(x). By 1.3.11 we have indeed described a left
adjoint to the forgetful functor. Analogously, the forgetful Rng — Set has a left
adjoint that maps a set X onto the ring of polynomials with integer coefficients,
of which the variables are the elements of X. In general, a left adjoint F: Set — A
to a “forgetful” functor U: A — Set is said to be a “free” functor, or the “free
construction (of groups, rings, etc.)”. Other such examples include: The free
constructed group gives F' - U: Gr — Set, the powerset construction gives F'
U:Sup — Set, and so on.

The functor — x A:Set — Set, discussed earlier in this text, has a right ad-
joint, given by “exponentiation by A”: For any two sets X, Y, there is an obvious
bijective correspondence between maps f: X x A — Y and maps f: X — Y4, that
is, Set(X x A,Y)—==Set(X,Y*), which by 1.3.11 means that — x A - (—)%.
Remark that (—)” = Set(A, —). Along the same lines one can prove that, for a
given small category A, there is an adjunction — x A 4 Fun(A, —): Cat — Cat.

“Adjunctions can be composed”, is the slogan by which the following is meant:
Two adjunctions G 4 F: A — B, S 4 R:B — C, imply a third one, namely
(GoS)d(RoF):A— C. This is evident by considering the canonical bijections
A((Go S)(C),A) —==B(SC,FA) —==C(C,(Ro F)(A)), using 1.3.11. Denoting
by Top the category of topological spaces and continuous maps, and by Comp the
subcategory of compact Hausdorff spaces, the inclusion Comp — Top has a left
adjoint, which is the Stone-Cech compactification. Also the forgetful Top — Set
has a left adjoint, taking the discrete topology on a set (taking the chaotic topology
on a set provides for a right adjoint), and therefore the forgetful Comp — Set has
a left adjoint.

Functors with an adjoint have some “good” properties, for instance, a functor
F: A — B with left adjoint preserves all limits which turn out to exist in A;
dually, a functor with right adjoint preserves all existing colimits. (For a proof,
see any handbook on Category Theory.) Therefore the forgetful functors Ab — Set,
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Gr — Set, Rng — Set, Sup — Set and so on preserve limits, and their adjoints
preserve colimits. And an isotone mapping with Galois adjoint preserves existing
infima, its adjoint preserves suprema. But how do we know whether a functor has
an adjoint?

Let us once more turn to isotone mappings between posets. If for such a
mapping f: (P, <) — (@, <), the poset P happens to be a complete lattice and
f preserves infima, then the Galois adjoint exists; indeed, it is given by the easy
formula:

G:Q Py inflre Ply< f(2)}

As a matter of fact, one considers all elements of P of which the image through
f is bigger than an element y € @, and since this collection forms a subset of P,
it makes sense to take its infimum; the infimum preserving map f will then take
a value at this infimum that is bigger than y and by construction this infimum is
the smallest such element. The following theorem generalizes this idea to the case
of categories and functors.

1.3.12 Theorem (Adjoint functor theorem) Let A be a complete category,
B just any category, F': A — B a functor. The following are equivalent:

1. F has a left adjoint;

2. F preserves small limits and F' satisfies the “solution set condition”, that
is, for any object B in B there exists a set Sp C Ay such that, for any
A € Ay and any morphism b: B — F A in B there exists an object A’ € Sp,
a morphism a: A’ — A in A and a morphism ¥': B — F A’ in B such that
F(a)ob/ =b.

A detailed proof of this theorem is beyond the scope of this introductory text;
however it can be found in the references given at the end of the paper. Moreover,
by duality one can rephrase the theorem so as to become a criterion for the exis-
tence of a right adjoint. Remark that, for (1 = 2), by 1.3.11, part 3, we can take
for any B € B the reflection along F' as singleton “solution set”. Of course, the
solution set condition is trivial if A is a small category, as is the case for posets.

To conclude this paragraph, we present a definition upon which we already
touched briefly when considering the full, faithful and essentially surjective functor
from Matr(K) to FVecty. These categories are clearly not isomorphic, but they
are still “very much the same thing”.

1.3.13 Definition Two categories A and B are equivalent if there exists a full,
faithful and essentially surjective functor F: A — B.

1.3.14 Proposition The following are equivalent:
1. A and B are equivalent;

2. there exist a functor F': A — B and a functor G: B — A and two (arbitrary)
natural isomorphisms 1z = F oG and Go F = 14;
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3. there exists a functor F: A — B with left adjoint G: B — A such that the
two canonical natural transformations n:1p = F oG and e:Go F = 14 of
the adjunction are natural isomorphisms;

4. there exists a full and faithful functor F: A — B with a full and faithful right
adjoint G: B — A.

For a lack of space, we omit the proof. Let us just indicate that part 2 of this
proposition says that “equivalence” is indeed a weaker notion than “isomorphism”
of categories: the latter would mean that there exist functors F: A — B and
G:B — A such that 1z = Fo G and G o F = 14, in particular G = F~!. But
equivalence just means that 15 2 F oG and Go F = 14, that is, F' has an inverse
“up to a natural isomorphism”. Part 3 of the proposition can be specified: if
n:lg = FoG and e:G o F = 14, then there exists ¢/: G o F = 14 such that
1, satisfy the “triangular equalities” of definition 1.3.10; or dually, there exists
n': 1 = Fo( such that 7/, ¢ satisfy these equalities. Often, when working with an
equivalence expressed by an adjoint pair of functors as in part 3 of the proposition,
one speaks of an “adjoint equivalence”.

Two equivalent categories share some categorical properties, such as for in-
stance (co)completeness.

1.3.15 Proposition If A is a (finitely) (co)complete category, then so is any
category equivalent to A.

Proof: Let F: A — B be an equivalence, with G: B — A left adjoint to F' as in
1.3.14. For any (finite) small diagram D:D — B we know by (finitary) complete-
ness of A that GoD: D — A has a limit, which is preserved by F' since F' has a left
adjoint. But that limit of F o G o D is isomorphic to the limit of D just because
F o G is isomorphic to 1g. (Dually for cocompleteness.) O

1.4. MONADS

A monoid (M, -, 1) is, of course, a set M equipped with an associative binary
operation (z,y) — x -y that admits a unit 1. Therefore, in a monoid “one can
compute the product of all finite sequences”, the empty product being just the
unit 1. More precisely: Write T'(M) for the set of finite sequences of elements of
M, and epr: M — T(M), resp. pup:T(T(M)) — T(M), for the obvious inclusion
of M in T(M), resp. the concatenation of a finite sequence of finite sequences
of elements of M to a finite sequence of elements of M. Then, saying what the
product of a finite sequence is, is giving a map m:T(M) — M, that is suitably
compatible with ), and pps, in the sense of the definition below.

1.4.16 Definition A monad on a category C is a triple (T, e, ) where T:C — C
is a functor, and e:idc = T and pu:T oT = T are natural transformations such
that the following diagrams commute:
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A Ly P S ToToT 225 70T
\ﬂl/ “*“ﬂ “ﬂ
T ToT ——>T

An algebra on this monad is a pair (C,c) of an object C' in C and a morphism
c:T(C) — C of C such that the following diagrams commute:

C—>~T(C) T(T(C)) T(C)

N

T(C —>C

A morphism f:(C,c) — (D, d) of algebras is a morphism f:C — D of C such that
the following diagram commutes:
7(Cc) s 7(0)

1,k

C———

Back to the example of monoids. Let T:Set — Set be the endofunctor that
associates to any set M the set of finite sequences of M—elements, and has the
obvious action on morphisms; let the maps ej; and pps be as described before.
Then indeed these maps constitute natural transformations, and indeed the first
pair of diagrams commute. An algebra on this monad is now exactly a set equipped
with a “multiplication” m:T(M) — M, that is compatible with 57, and that is
associative with unit, by the second pair of diagrams. By the last diagram in the
definition above, a morphism of monoids is a map f: M — N in Set that “respects
the multiplication”. With a slogan one might thus say that “this monad recognizes
all things monoid in Set”.

Other examples include: For any set X, denote by T(X) the set of formal
finite linear combinations of elements of X with coefficients in a field K (modulo
the usual equivalence relation); with the obvious action on morphisms one obtains
a functor T:Set — Set, that is a monad with the obvious definitions for the
maps ex and px to constitute the required natural transformations. An algebra
(X,2:T(X) — X) on this monad is then a vector space over the field K, the map x
assigning consistently to each formal linear combination a particular “outcome” in
X. A morphism of algebras corresponds in this particular example with a linear
application. Or consider the powerset functor on Set, mapping a set onto its
powerset and with the obvious action on morphisms; then ex: X — 2%:2 — {x}
and ,uX:22X — 2%X:7 + UT, and a set X is an algebra iff it is a complete
sup-lattice, a morphism of algebras being a supremum preserving map. And a
monad on a poset, viewed as thin category, is precisely a closure operator, i.e., an
idempotent isotone mapping, the algebras now being the “closed” elements, i.e.,
the fixpoints.
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1.4.17 Proposition For a monad (T,e,u) on a category C, the algebras and
their morphisms constitute a category, written C*, called the “Eilenberg-Moore
category”. The forgetful functor U:CT — C is faithful, reflects isomorphisms and
has a left adjoint F:C — CT, such that U o F =T.

Proof. The first claim is obvious. Also faithfulness of U is obvious. Straightforward
calculations show that, if f:(C,¢) — (D,d) is such that f is an isomorphism in
C, then its inverse f~! in C is a morphism of algebras f~1:(D,d) — (C,c) that
is inverse to f in CT. To prove that U has a left adjoint, one proves that the
CT-object (T(C), uc) — recall that pc: (T o T)(C) — T(C) — together with the
morphism ec: C — T(C) constitutes the reflection of C' along U, this for every
object C in C. By construction we now have that U o FF =T. a

For the vector space monad T': Set — Set, the algebras form a category equivalent
to Vect; the adjoint to the forgetful Vectx — Set is precisely the “free construc-
tion” of a vector space. The Eilenberg-Moore category associated to the powerset
functor on Set is equivalent to Sup. One says that Vectx and Sup are “monadic
over Set”. For a poset viewed as thin category, the category of algebras is precisely
the subposet of closed elements; the adjoint of the forgetful (the inclusion of the
closed elements in the poset) is the closure itself.

With 1.3.11 we can now write down explicitly that F:C — CT maps an object C
and a morphism f:C' — D of C respectively to (T(C), uc) and T'(f): (T'(C), pic) —
(T(D), o).

1.4.18 Definition With notations as in 1.4.16 and 1.4.17, we say that an algebra
is free when it is isomorphic to one of the form F(C) = (T(C), pc).

1.4.19 Proposition The full subcategory of CT generated by the free algebras,
denoted Fr, is equivalent to the following category, denoted Cr and called the
“Kleisli category”: objects are those of C, a morphism f:C — D in Cp is a
morphism f:C — T(D) in C, composition of two such Cp—morphisms f: A — B,
g: B — C is given by A—f—=T(B)—1¢>T(T(C))—uc>T(C) and the identity on
an object C of Cr isec: C — T(C) in C.

Proof. 1t is easily checked that Cp is indeed a category. Further one defines a
functor Cr — Fr by the following assignments: an object C' of Cr is mapped
onto (T'(C), uc) and a morphism f:C — D in Cr (therefore f:C' — T(D) in C)
is mapped onto pp o T(f). By choice of Fr this functor is essentially surjective
on objects. Calculations show that this functor is also fully faithful, thus an
equivalence. O

When considering once more the vector space monad T: Set — Set, we have that
Set” is equivalent to Sety because every vector space V is free, it being isomorphic
to T(B) for B a base of V.

1.4.20 Corollary Denoting by V:Cp — C the composite of the equivalence Cp —
Fr with the inclusion Fr < CT and the forgetful CT — C, we obtain a faithful,
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isomorphism-reflecting functor which has a left adjoint G:C — Cp that is the
identity on objects and maps a morphism f:C — D toepo f:C — D.

Given a monad (T, ¢, i) on a category C we have produced two adjunctions:
e the “Eilenberg-Moore adjunction” F - U:CT — C;
e the “Kleisli adjunction” G 4V:Cpr — C.

Also a converse is true, namely, every adjoint pair produces a monad.

1.4.21 Proposition Let L 4 R: X — C constitute an adjoint pair, let the unit
and counit of this adjunction be a:ide = Ro L and 3:L o R = idy. Putting
T=RoL,e=«aand y=idg* [ *idy defines a monad (T,e, ) on C. Moreover,
there exists a full functor J: X — CT and a fully faithful functor K:Cr — X such
that UoJ 2 R, Ro K 2V and J o K is isomorphic to the canonical inclusion
Cr — CT. (Notations as in 1.4.17, 1.4.19 and 1.4.20).

Proof. By calculation one verifies the axioms for a monad, cf. 1.4.16. The functor
J: X — C7 is defined to map an object X of X onto (R(X), R(Bx)) and a mor-
phism 2: X — Y of X to R(z): R(X) — R(Y). On the other hand, the functor
K:Cr — X is defined to map an object C of Cr onto K(C) = L(C) and a mor-
phism f:C' — D of Cr onto K(f) = Brp)yo L(f): L(C) — L(D). One verifies that
this defines indeed functors with the indicated domain and codomain. Further,
the isomorphisms referred to in the proposition are true by construction. Since
J o K:Cp — CT is isomorphic to the canonical inclusion (that is the composite
of the equivalence C7 — Fr and the obvious inclusion Fr < C7T, cf. 1.4.19),
and this inclusion is full and faithful, it follows that J is full and K is faithful.
Any morphism h € X(L(C), L(D)) corresponds by the adjunction L 4 R to a
morphism f € C(C, RL(D)) (cf. 1.3.11), that is a morphism f: D — D in Cr such
that K(f) = h. This means that K is full. m|

The reader can easily apply this proposition to all the examples of adjoint functors
listed in subsection 1.2.

So every monad produces adjoint pairs, and every adjoint pair produces a
monad. The next proposition, that can be proved by calculation, shows how the
ends meet.

1.4.22 Proposition For a monad (T, ¢, 1) on a category C, both the Eilenberg-
Moore adjunction and the Kleisli adjunction reproduce the monad (T, e, u) via the
construction of 1.4.21.

There exist several theorems that say when a given functor R: X — C is “monadic”,
that is, when there exists a monad (7', &, 1) on C such that X is equivalent to CT
via the construction of 1.4.21. However important these theorems are, they are
beyond the scope of this introductory text. Other important topics related to
monads that we can not explain here include: calculation of limits and colimits
in categories of algebras, the “adjoint lifting theorem”, descent theory, and many
more. The reader can find out more about all this in the references given at the
end of this paper.
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2. Enriched category theory

Close inspection of definition 1.1.1 shows that a category C is a collection of objects
A, B,C, ... such that with any two objects A and B is associated an object C(A, B)
of Set, with any three objects A, B and C' is associated a composition morphism
of Set, ca.p,c:C(A,B) x C(B,C) — C(A, (), and with any object A is associated
a morphism of Set, ua: {x} — C(A, A), which selects that morphism of C(A, A)
that will play the role of identity on A, of course such that some adequate axioms
hold. In the same idiom, a functor F: 4 — B maps an object A € A on an
object F(A) € B and has an action on sets of morphisms given by morphisms in
Set, Faai: A(A, A") — B(F(A),F(A")). Finally a natural transformation a: F =
G between functors F,G: A_—__—Z B can be viewed as a collection of morphisms
aa: {x} — B(F(A),G(A)) such that a “naturality condition” holds. It is now
our aim to replace in the above the category Set by a more abstract category V
that mimics just enough properties of Set so as to do “category theory”. It turns
out that already with a symmetric monoidal category V), introduced in section
2.1, one can develop “V-enriched category theory” as in section 2.2. However, to
build a theory that is in many ways parallel to ordinary category theory, one needs
closedness of V, as discussed in the concluding section 2.3.

2.1. SYMMETRIC MONOIDAL CATEGORIES

In view of the previous introduction, one would be tempted to replace Set by a
category V with products; this is certainly an interesting possible generalization,
which provides many interesting examples. But if we choose for V the category
of real vector spaces, which has products, a V-enriched category C has now vector
spaces C(A, B), C(B, C) of morphisms and certainly we do not want the composi-
tion C(A, B) x C(B,C) — C(A, C) to be linear, that is, to satisfy

(i rigi) ° (z": Sifi> = irisi(gi o fi)-
=1 1 i=1

1=

We want instead the more standard relation

m

(2": mgi) o (Z ijj) = Zrisj(gi o f;),

i=1 j=1 ij
that is, the bilinearity of the composition. But this bilinearity reduces to the
linearity of the corresponding morphism C(A, B) ® C(B,C) — C(A4,C).

2.1.23 Definition A symmetric monoidal category V is a category V provided
with a bifunctor — ® —:V x V — V which is associative, symmetric and admits a
unit I. More precisely, there are natural isomorphisms A® (B®C) =2 (A®B)®C,
AR B~ B® A, A® I =2 A which satisfy coherence axioms, equivalent to the
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fact that every diagram constructed from these isomorphisms and identities, is
necessarily commutative.

A minimal list of coherence axioms can be found in any reference on the subject.
It is of course a deep theorem to prove that a finite list of coherence axioms implies
the commutativity of all possible diagrams mentioned in the previous definition
(see [3] for a proof).

Among the examples, we have certainly all categories admitting binary prod-
ucts and a terminal object 1, which is the unit of the product. Among these we
have in particular all the preordered sets admitting binary infima and a top ele-
ment. Another generic class of examples is obtained by taking the actual tensor
product as monoidal structure: abelian groups, modules over a commutative ring,
graded (or differential) modules over a graded (or differential) commutative ring,
Banach spaces with their projective tensor product, locally convex spaces, and so
on. The category Sup of complete lattices and join preserving maps is yet another
example; the tensor product of X and Y in Sup is obtained by taking the set of
formal expressions \/,.; x; ® y;, with I a set, z; € X and y; € Y, and performing
the quotient by the congruence generated by = ® (\,c; %) = V,e(x ® v;) and
(Vierzi) @y = Ve (zi @ y).

To conclude this section, consider the “forgetful functor” V(I,—):V — Set. In
the case V = Set, I = {x} and V(I, —) is isomorphic to the identity. In the case
of abelian groups, with the tensor product as monoidal structure, one has I = Z,
the group of integers. For a group A, the morphisms Z — A are determined by
their value on 1, thus are in bijection with the elements of A; therefore V(I,—) is
isomorphic to the ordinary forgetful functor Ab — Set. An analogous conclusion
holds for modules over a commutative ring R, replacing now Z by R.

Now we are ready to introduce category theory enriched in such a symmetric
monoidal category V.

2.2. ENRICHED CATEGORIES

2.2.24 Definition Let V be a symmetric monoidal category. A V—category con-
sists in
e a class Cy of objects;

e for all objects A, B € Cy, an object C(A, B) € V called the “object of mor-
phisms from A to B”;

e for all objects A, B,C € Cy, a “composition” morphism in V;
CA,B,C": C(Aa B) ® C(Ba C) - C(A7 O):
e for every object A € C, a V-morphism “identity on A” ua:1 — C(A, A).

Those data must satisfy diagrammatically the axioms expressing the associativity
of the composition and the unit property; namely, the commutativity of
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(C(A, B) @ C(B,C)) @ C(C, D) = C(A,B) ® (C(B,C) ®C(C, D))
CA,B,C@ll l1®CB,C.D

C(A,C) ®C(C, D) ——— > C(A, D)

CA,C,D CA,B,D

C(A,B)®C(B,D)
where the isomorphism is the associativity one, and that of

I®C(A,B)~—C(A,B)——>C(A,B)® I

uA®1l ll@uB

Among the examples of V-categories, we obtain in fact all the ordinary categories
as Set-enriched categories. Categories like modules on a ring or vector spaces
over a field are enriched in Ab, the category of abelian groups, with the tensor
product as monoidal structure. The category of Hilbert spaces is enriched in that
of Banach spaces, with the projective tensor product as monoidal structure. A
category enriched in Sup is called a “quantaloid”. Now consider the positive reals
[0,00[ as a category, where a single arrow exists from r to s when r > s. The
addition of reals provides a symmetric monoidal structure on that category, with
0 as unit. Every metric space (X, d) can be viewed as a category X enriched in
the monoidal category of positive reals: just choose the elements of X as objects
of X and define X(x,y) = d(z,y), the distance between those two points. The
axioms for a V-category reduce to d(z,y) + d(y, z) > d(z,z) and d(z,z) = 0.

Given a V-category C, it is routine to verify the existence of a dual V-category
C°P, with the same objects and “reversed objects of morphisms”, C°?(A,B) =
C(B,A). In the same spirit, it is easy to check that given two V-categories A
and B, we get a new category A ® B with objects the pairs (A, B) of an object
A € Aand an object B € B, and (A®B)((A, B), (A", B")) = A(A, A)® B(B, B').
Writing down the straightforward details will in particular emphasize the necessity
of the symmetry axiom in the definition of a monoidal category.

2.2.25 Definition Let V be a symmetric monoidal category and A, B two V-
categories. A V-functor IF': A — B consists in giving

e for each object A € Ay, an object F(A) € By;

e for all objects A, A’ € Ay, a V-morphism Fu a: A(A, A") — B(F(A), F(A")).
Those data are required to satisfy diagrammatically the axioms of functoriality,
namely the commutativity of
Fy ar®Far an

A(A,A') @ A(A", A" B(F(A), F(A")) @ B(F(A), F(A"))

CA,A’,A”l lCmA),F(A'),F(A”)

C(A, A") B(F(A), F(A"))

FA,A”

and the equality Fa aoua = up(4)-
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2.2.26 Definition Let V be a symmetric monoidal category, A, B two V-catego-
ries and F,G: A——Z B two V-functors. A V-natural transformation a: F = G
consists in giving, for each object A € A, a morphism ax:1 — B(F(A),G(A)).
Those data are required to satisfy diagrammatically the axiom of naturality, that
the reader will easily write down.

We leave also to the reader the routine definitions of composites of V-functors or V-
natural transformations, and the description of the identity functors and identity
natural transformations.

In the example of metric spaces, observe that a [0, co[-functor F:(X,d) —
(X’,d’") between metric spaces is a contraction f: X — X', that is, a mapping
satisfying d((f(z), f(2")) > d(z,2’). Such a mapping is of course continuous.

It is immediate to observe that applying the forgetful functor V(I,—) of the
previous section to V-categories, V-functors and V-natural transformations yields
underlying Set-based, thus ordinary, categories, functors and natural transforma-
tions. We conclude with the definition of V-adjoint functors.

2.2.27 Definition Let V be a symmetric monoidal category and A, B two V-
categories. Two V-functors F: A — B and G:B — A are V-adjoint when there
exist V-natural transformations n:idg = F o G and €: G o ' = id 4 which satisfy
the same triangular identities as in definition 1.3.10.

2.3. SYMMETRIC MONOIDAL CLOSED CATEGORIES

Ordinary category theory is Set-based category theory ... and Set is itself a cat-
egory, thus a Set-based category. But a symmetric monoidal category V has a
priori no reason to be itself a V-category. For example, finite products induce a
symmetric monoidal structure on the category of groups; but in the non-abelian
case, there is no way of defining a relevant “group of morphisms” Gr(G,G’) be-
tween two groups. A symmetric monoidal category V is closed when, “in a natural
way”, it is itself a V-category.

2.3.28 Definition A symmetric monoidal category V is closed when, for every
object B of V, the functor — ® B:V — V has a right adjoint, which we denote by
[B, —]. One has thus natural bijections V(A ® B, C) ~ V(A7 [B, C])

Putting A = [B,C] in the previous formula, the identity on [B,C] induces by
adjunction an “evaluation morphism” evp:[B,C]® B — C.

2.3.29 Proposition In a symmetric monoidal category V, the following data pro-
vide V with the structure of a V-category:

e the objects of V;

e for all B, C in V, the object [B,C] € V;
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e forall A, B, C in V, the composition [A, B] ® [B,C| — [A, C] which corre-
sponds by adjunction and symmetry to the composite

eva®1 evp

[A,B]® A® [B,C]—=B ® [B,C]——=C

e for each A inV, the unit I — [A, A] which corresponds by adjunction to the
isomorphism I ® A = A.

In particular, the previous proposition allows considering V-functors C — V), for
every V-category C, and V-natural transformations between them. Among these
functors we have the representable ones, C(A, —), and by duality the V-functors
C(—,A).

In the category of sets, the classical formula Set(A x B, C’) ~ Set(A7 Set(B, C))
indicates that the set of mappings from B to C' exhibits the expected closed struc-
ture. A symmetric monoidal closed structure, in which the monoidal structure
is the cartesian product, is called a “cartesian closed category”. As pointed out
earlier in this text, also Cat, the category of small categories and functors, is a
cartesian closed category.

For every small category C, the category V = [C,Set] of Set-valued functors
and natural transformations is cartesian closed. The product of two functors F’
and G is computed pointwise. Given another functor H and choosing for F' the
representable functor ' = C(A, —), the expected cartesian closedness forces, by
the Yoneda lemma [G, H](A) = Nat(C(4,-),[G, H]) = Nat(C(4,-) x G, H).
Choosing this last formula as a definition of [G, H]|(A) yields indeed the expected
cartesian closed structure. By duality, an analogous result holds for the cate-
gories [C°P, Set] of contravariant functors. The case of simplicial sets is a famous
particular case, obtained by choosing C = A.

Next choose a topological space (X, 7) and view the poset 7 of open subsets as
a small category, with inclusions of open subsets as morphisms. Binary products
in the category 7 are just binary intersections and the terminal object is X.
It is easily seen that the right adjoint [V, —] to the functor — NV is given by
[V,W]={UeT|UNV CW}. Thus the category T is cartesian closed.

If we choose for V the category of abelian groups, Ab, or the category of
modules on a commutative ring R, Modg, the classical isomorphism V(A®B ,C) =
V(A,V(B,C’)) indicates that the category is symmetric monoidal closed, when
V(B,(C) is provided with the pointwise operations. An analogous observation
holds for the category Sup of sup-lattices. Those who are familiar with graded
or differential modules will immediately recognize that they provide symmetric
monoidal closed structures as well. An analogous conclusion holds in the case of
Banach spaces, with now V(B, (') the Banach space of linear bounded mappings.
The category [0, 00[ of section 2.2 is symmetric monoidal as well, with [s,t] =
max{t — s,0}.

When the base category V is symmetric monoidal closed, complete and cocom-
plete, all classical theorems of category theory have their enriched counterpart.



192 BORCEUX AND STUBBE

2.3.30 Proposition Let V be a complete symmetric monoidal closed category
and A, B two V-categories, with A small. In those conditions, the category of
V-functors from A to B and V-natural transformations between them is itself
provided with the structure of a V-category.

Given two V-functors F, G: A——Z B, the object Nat(F, G) € V of V-natural trans-
formations is defined as an equalizer

Nat(F,G)— [[ B(F(A).6(4)—= ] [A(A,A'),B(F(A),G(A'))}
AcA AA€A

where the parallel arrows mimic diagrammatically the two composites whose equal-
ity — forced by the equalizer — expresses the naturality. This allows at once a
Yoneda lemma:

2.3.31 Proposition Consider a complete symmetric monoidal closed category
V. Let C be a small V-category and F:C — Set a V-functor. The isomorphism
F(A) = Nat(C(A,—), F) holds in V for every object A € C.

Next the case of adjoint functors:

2.3.32 Proposition Let V be a symmetric monoidal closed category and A, B
two V categories. Two V-functors F: A — B and G: B — A are V-adjoint when
there exists a V-natural isomorphism A(G(B), A) = B(B, F(A)), where both sides
of the formula are viewed as V-functors B® @ A — V.

We conclude by introducing V-completeness and V-cocompleteness. We observe
first that in the case of an ordinary cocomplete category C, the isomorphisms

c(]_[ A, B) ~[[c(A, B) = Set(1,c(4, B))

i€l i€l

indicate that the functor from Set to C that maps an object I to J],.; A is left
adjoint to the representable functor C(A, —). By duality, when C is complete, the
functor from Set to C°P, taking I to [, A is left adjoint to the representable func-
tor C°P(A,—) = C(—, A). Thus the existence of left adjoints to the representable
functors reduces to the existence of “copowers” or “powers” in C indexed by an
object I of the base category Set. Therefore the following definition.

2.3.33 Definition Let V be a complete and cocomplete symmetric monoidal
closed category; let A be a V—category.
e A is tensored when each V-representable functor A(A,—): A — V has a left
V-adjoint;
e A is cotensored when each V-representable functor A(—, A): A°®® — V has a
left V-adjoint.
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Given objects V € V and A € C, we write V®A € C for their tensor and {V, A} € C
for their cotensor, when these exist. Those objects are thus characterized by the
existence of V-natural isomorphisms

C(Ve A, B)=[V,C(A,B)], C(B,{V,A}) = [V,C(B,A)].

A V-functor F':C — D preserves tensors or cotensors when F(V®@ A) =V ® F(A)
or F({V,A}) = {V,F(A)}. It is immediate to notice that V itself is tensored and
cotensored, with V' ® W the usual tensor product and {V,W} = [V,W]. And by
definition of a cotensor, each V-representable functor A(B,—): A — V preserves
cotensors, while the contravariant V-representable functors A(—, B) transform ten-
sors in cotensors.

2.3.34 Definition Let V be a complete and cocomplete, symmetric monoidal
closed category.
e A V-category C is V-complete when it admits cotensors and its underlying
Set-category is complete in the usual sense.
e A V-category C is V-cocomplete when it admits tensors and its underlying
Set-category is cocomplete in the usual sense.

Of course, a V-functor is said to preserve V-limits when it preserves cotensors, and
the underlying Set-functor preserves ordinary limits. And dually for V-colimits.
The previous notions allow natural generalizations of the main theorems of cate-
gory theory, for example:

2.3.35 Theorem Let V be a complete symmetric monoidal closed category. Let
A and B be V-categories and F: A — B a V-functor. If

e A is V-complete;

e [ preserves V-limits;

e the underlying Set-functor satisfies the “solution set condition” (see 1.3.12);
then F' admits a left V-adjoint.
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