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Abstract

In the context of quantaloid-enriched categories, we explain how each sat-
urated class of weights defines, and is defined by, an essentially unique full
sub-KZ-doctrine of the free cocompletion KZ-doctrine. The KZ-doctrines
which arise as full sub-KZ-doctrines of the free cocompletion, are charac-
terised by two simple “fully faithfulness” conditions. Conical weights form
a saturated class, and the corresponding KZ-doctrine is precisely (the gen-
eralisation to quantaloid-enriched categories of) the Hausdorff doctrine of
[Akhvlediani et al., 2009].

1. Introduction

At the meeting on “Categories in Algebra, Geometry and Logic” honouring Fran-
cis Borceux and Dominique Bourn in Brussels on 10–11 October 2008, Walter
Tholen gave a talk entitled “On the categorical meaning of Hausdorff and Gromov
distances”, reporting on joint work with Andrei Akhvlediani and Maria Manuel
Clementino [2009]. The term ‘Hausdorff distance’ in his title refers to the follow-
ing construction: if (X, d) is a metric space and S, T ⊆ X , then

δ(S, T ) :=
∨
s∈S

∧
t∈T

d(s, t)

defines a (generalised) metric on the set of subsets of X . But Bill Lawvere [1973]
showed that metric spaces are examples of enriched categories, so one can aim at
suitably generalising this ‘Hausdorff distance’. Tholen and his co-workers achieved
this for categories enriched in a commutative quantale V . In particular they devise
a KZ-doctrine on the category of V-categories, whose algebras – in the case of
metric spaces – are exactly the sets of subsets of metric spaces, equipped with the
Hausdorff distance.

We shall argue that the notion of Hausdorff distance can be developed for quant-
aloid-enriched categories too, using enriched colimits as main tool. In fact, very
much in line with the work of [Albert and Kelly, 1988; Kelly and Schmitt, 2005;
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Schmitt, 2006] on cocompletions of categories enriched in a symmetric monoidal
category and the work of [Kock, 1995] on the abstraction of cocompletion pro-
cesses, we shall see that, for quantaloid-enriched categories, each saturated class
of weights defines, and is defined by, an essentially unique KZ-doctrine. The KZ-
doctrines that arise in this manner are the full sub-KZ-doctrines of the free cocom-
pletion KZ-doctrine, and they can be characterised with two simple “fully faith-
fulness” conditions. As an application, we find that the conical weights form a
saturated class and the corresponding KZ-doctrine is precisely (the generalisation
to quantaloid-enriched categories of) the Hausdorff doctrine of [Akhvlediani et al.,
2009].

In this paper we do not speak of ‘Gromov distances’, that other metric notion
that Akhvlediani, Clementino and Tholen [2009] refer to. As they analyse, Gromov
distance is necessarily built up from symmetrised Hausdorff distance; and because
their base quantale V is commutative, they can indeed extend this notion too to
V-enriched categories. More generally however, symmetrisation for quantaloid-
enriched categories makes sense when that quantaloid is involutive. Preliminary
computations indicate that ‘Gromov distance’ ought to exist on this level of gener-
ality, but quickly got too long to include them in this paper: so we intend to work
this out in a sequel.

2. Preliminaries

2.1 Quantaloids

A quantaloid is a category enriched in the monoidal category Sup of complete lat-
tices (also called sup-lattices) and supremum preserving functions (sup-morphisms).
A quantaloid with one object, i.e. a monoid in Sup, is a quantale. Standard refer-
ences include [Rosenthal, 1996; Paseka and Rosicky, 2000] .

Viewing Q as a locally ordered category, the 2-categorical notion of adjunction
in Q refers to a pair of arrows, say f :A //B and g:B //A, such that 1A ≤ g ◦ f
and f ◦ g ≤ 1B (in which case f is left adjoint to g, and g is right adjoint to f ,
denoted f a g).

Given arrows

A
f

//

h ��
@@@@@@@ B

g
~~~~~~~~~

C
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in a quantaloid Q, there are adjunctions between sup-lattices as follows:

Q(B,C) ⊥
− ◦ f

((

{f,−}
hh Q(A,C), Q(A,B) ⊥

g ◦ −
((

[g,−]

hh Q(A,C),

Q(A,B) ⊥
{−, h}

((

[−, h]

hh Q(B,C)op.

The arrow [g, h] is called the lifting of h trough g, whereas {f, h} is the extension
of h through f . Of course, every left adjoint preserves suprema, and every right
adjoint preserves infima. For later reference, we record some straightforward facts:

Lemma 2.1 If g:B //C in a quantaloid has a right adjoint g∗, then [g, h] = g∗ ◦
h and therefore [g,−] also preserves suprema. Similarly, if f :A //B has a left
adjoint f! then {f, h} = h ◦ f! and thus {f,−} preserves suprema.

Lemma 2.2 For any commutative diagram

A

f   
@@@@@@@ B

g

~~~~~~~~~
h

  
@@@@@@@ C

i��~~~~~~~

D
j

// E

in a quantaloid, we have that [i, h] ◦ [g, f ] ≤ [i, j ◦ f ]. If all these arrows are left
adjoints, and g moreover satisfies g ◦ g∗ = 1D, then [i, h] ◦ [g, f ] = [i, j ◦ f ].

Lemma 2.3 If f :A //B in a quantaloid has a right adjoint f∗ such that moreover
f∗ ◦ f = 1A, then [f ◦ x, f ◦ y] = [x, y] for any x, y:X

//
//A.

2.2 Quantaloid-enriched categories

From now on Q denotes a small quantaloid. Viewing Q as a (locally ordered)
bicategory, it makes perfect sense to consider categories enriched inQ. Bicategory-
enriched categories were invented at the same time as bicategories by Jean Bénabou
[1967], and further developed by Ross Street [1981, 1983]. Bob Walters [1981]
particularly used quantaloid-enriched categories in connection with sheaf theory.
Here we shall stick to the notational conventions of [Stubbe, 2005], and refer to that
paper for additional details, examples and references.
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AQ-category A consists of a set of objects A0, a type function t:A0
//Q0, and

Q-arrows A(a′, a): ta // ta′; these must satisfy identity and composition axioms,
namely:

1ta ≤ A(a, a) and A(a′′, a′) ◦ A(a′, a) ≤ A(a′′, a).

A Q-functor F :A //B is a type-preserving object map a 7→ Fa satisfying the
functoriality axiom:

A(a′, a) ≤ B(Fa′, Fa).

And a Q-distributor Φ:A c //B is a matrix of Q-arrows Φ(b, a): ta // tb, indexed
by all couples of objects of A and B, satisfying two action axioms:

Φ(b, a′) ◦ A(a′, a) ≤ Φ(b, a) and B(b, b′) ◦ Φ(b′, b) ≤ Φ(b, a).

Composition of functors is obvious; that of distributors is done with a “matrix”
multiplication: the composite Ψ ⊗ Φ:A c //C of Φ:A c //B and Ψ:B c //C has as
elements

(Ψ⊗ Φ)(c, a) =
∨
b∈B0

Ψ(c, b) ◦ Φ(b, a).

Moreover, the elementwise supremum of parallel distributors (Φi:A c //B)i∈I gives
a distributor

∨
i Φi:A c //B, and it is easily checked that we obtain a (large) quan-

taloid Dist(Q) of Q-categories and distributors. Now Dist(Q) is a 2-category, so
we can speak of adjoint distributors. In fact, any functor F :A //B determines an
adjoint pair of distributors:

A ⊥
B(−, F−)c

((

B(F−,−)
chh B. (1)

Therefore we can sensibly order parallel functors F,G:A //
//B by putting F ≤ G

whenever B(−, F−) ≤ B(−, G−) (or equivalently, B(G−,−) ≤ B(F−,−)) in
Dist(Q). Doing so, we get a locally ordered category Cat(Q) of Q-categories and
functors, together with a 2-functor

i:Cat(Q) //Dist(Q):
(
F :A //B

)
7→
(
B(−, F−):A c //B). (2)

(The local order in Cat(Q) need not be anti-symmetric, i.e. it is not a partial order
but rather a preorder, which we prefer to call simply an order.)

This is the starting point for the theory of quantaloid-enriched categories, in-
cluding such notions as:

- fully faithful functor: an F :A //B for which A(a′, a) = B(Fa′, Fa), or
alternatively, for which the unit of the adjunction in (1) is an equality,
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- adjoint pair: a pair F :A //B, G:B //A for which 1A ≤ G ◦ F and also
F ◦G ≤ 1B, or alternatively, for which B(F−,−) = A(−, G−),

- equivalence: an F :A //B which are fully faithful and essentially surjective
on objects, or alternatively, for which there exists aG:B //A such that 1A ∼=
G ◦ F and F ◦G ∼= 1B,

- left Kan extension: given F :A //B and G:A //C, the left Kan extension
of F through G, written 〈F,G〉:C //B, is the smallest such functor satisfy-
ing F ≤ 〈F,G〉 ◦G,

and so on. In the next subsection we shall recall the more elaborate notions of
presheaves, weighted colimits and cocompletions.

2.3 Presheaves and free cocompletion

If X is an object of Q, then we write ∗X for the one-object Q-category, whose
single object ∗ is of type X , and whose single hom-arrow is 1X .

Given a Q-category A, we now define a new Q-category P(A) as follows:

- objects: (P(A))0 = {φ: ∗X c //A | X ∈ Q0},

- types: t(φ) = X for φ: ∗X c //A,

- hom-arrows: P(A)(ψ, φ) = (single element of) the lifting [ψ, φ] in Dist(Q).

Its objects are (contravariant) presheaves on A, and P(A) itself is the presheaf
category on A.

The presheaf category P(A) classifies distributors with codomain A: for any
B there is a bijection between Dist(Q)(B,A) and Cat(Q)(B,P(A)), which asso-
ciates to any distributor Φ:B c //A the functor YΦ:B //P(A): b 7→ Φ(−, b), and
conversely associates to any functor F :B //P(A) the distributor ΦF :B c //A with
elements ΦF (a, b) = (Fb)(a). In particular is there a functor, YA:A //P(A),
that corresponds with the identity distributor A:A c //A: the elements in the image
of YA are the representable presheaves on A, that is to say, for each a ∈ A we
have A(−, a): ∗ta c //A. Because such a representable presheaf is a left adjoint in
Dist(Q), with right adjoint A(a,−), we can verify that

P(A)(YA(a), φ) = [A(−, a), φ] = A(a,−)⊗ φ = φ(a).

This result is known as Yoneda’s Lemma, and implies that YA:A //P(A) is a
fully faithful functor, called the Yoneda embedding of A into P(A).

By construction there is a 2-functor

P0:Dist(Q) //Cat(Q): (Φ:A c //B) 7→ (Φ⊗−:P(A) //P(B)),
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which is easily seen to preserve local suprema. Composing this with the one in (2)
we define two more 2-functors:

Dist(Q)

P0

$$IIIIIIIIIIIIIII

P1 // Dist(Q)

Cat(Q)

i

OO

P
// Cat(Q)

i

OO

(3)

In fact, P1 is a Sup-functor (a.k.a. a homomorphism of quantaloids). Later on we
shall encounter these functors again.

For a distributor Φ:A c //B and a functor F :B //C between Q-categories,
the Φ-weighted colimit of F is a functor K:A //C such that [Φ,B(F−,−)] =
C(K−,−). Whenever a colimit exists, it is essentially unique; therefore the nota-
tion colim(Φ, F ):A //C makes sense. These diagrams picture the situation:

B F // C

A

cΦ
OO

colim(Φ, F )

?? B CcC(F−,−)
oo

c
[Φ,C(F−,−)] = C(colim(Φ, F )−,−)

��

A

cΦ
OO

A functor G:C //C′ is said to preserve colim(Φ, F ) if G ◦ colim(Φ, F ) is the
Φ-weighted colimit of G ◦ F . A Q-category admitting all possible colimits, is
cocomplete, and a functor which preserves all colimits which exist in its domain,
is cocontinuous. (There are, of course, the dual notions of limit, completeness and
continuity. We shall only use colimits in this paper, but it is a matter of fact that a
Q-category is complete if and only if it is cocomplete [Stubbe, 2005, Proposition
5.10].)

For two functors F :A //B and G:A //C, we can consider the C(G−,−)-
weighted colimit of F . Whenever it exists, it is 〈F,G〉:C //B, the left Kan exten-
sion of F through G; but not every left Kan extension need to be such a colimit.
Therefore we speak of a pointwise left Kan extension in this case.

Any presheaf category P(C) is cocomplete, as follows from its classifying
property: given a distributor Φ:A c //B and a functor F :B //P(C), consider the
unique distributor ΦF :B //C corresponding with F ; now in turn the composition
ΦF ⊗ Φ:A c //C corresponds with a unique functor YΦF⊗Φ:A //P(C); the latter
is colim(Φ, F ).

In fact, the 2-functor
P:Cat(Q) //Cat(Q)
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is the Kock-Zöberlein-doctrine1 for free cocompletion; the components of its
multiplication M :P ◦ P +3P and its unit Y : 1Cat(Q)

+3P are

colim(−, 1P(C)):P(P(C)) //P(C) and YC:C //P(C).

This means in particular that (P,M, Y ) is a monad on Cat(Q), and aQ-category C
is cocomplete if and only if it is a P-algebra, if and only if YC:C //P(C) admits
a left adjoint in Cat(Q).

2.4 Full sub-KZ-doctrines of the free cocompletion doctrine

The following observation will be useful in a later subsection.

Proposition 2.4 Suppose that T :Cat(Q) //Cat(Q) is a 2-functor and that

Cat(Q)

P
((

T
66
Cat(Q)

=
⇒ε

is a 2-natural transformation, with all components εA: T (A) //P(A) fully faithful
functors, such that there are (necessarily essentially unique) factorisations

P ◦ P M +3 P

1Cat(Q)

Y
dl QQQQQQQQQ

QQQQQQQQQ

ηrzT ◦ T

ε ∗ ε

KS

µ
+3 T

ε

KS

Then (T , µ, η) is a sub-2-monad of (P,M, Y ), and is a KZ-doctrine. We call the
pair (T , ε) a full sub-KZ-doctrine of P .

Proof : First note that, because each εA: T (A) //P(A) is fully faithful, for each
F,G:C // T (A),

εA ◦ F ≤ εA ◦G =⇒ F ≤ G,

thus in particular εA is (essentially) a monomorphism in Cat(Q): if εA ◦ F ∼=
εA ◦ G then F ∼= G. Therefore we can regard ε: T +3P as a subobject of the

1A Kock-Zöberlein-doctrine (or KZ-doctrine, for short) T on a locally ordered category K is a
2-functor T :K //K for which there are a multiplication µ: T ◦ T +3 T and a unit η: 1K +3 T
making (T , µ, η) a 2-monad, and satisfying moreover the “KZ-inequation”: T (ηK) ≤ ηT (K) for all
objectsK ofK. The notion was invented independently by Volker Zöberlein [1976] and Anders Kock
[1972] in the more general setting of 2-categories. We refer to [Kock, 1995] for all details.
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monoid (P,M, Y ) in the monoidal category of endo-2-functors on Cat(Q). The
factorisations of M and Y then say precisely that (T , µ, η) is a submonoid, i.e. a
2-monad on Cat(Q) too.

But P:Cat(Q) //Cat(Q) maps fully faithful functors to fully faithful functors,
as can be seen by applying Lemma 2.3 to the left adjoint B(−, F−):A c //B in
Dist(Q), for any given fully faithful F :A //B. Therefore each

(ε ∗ ε)A: T (T (A)) //P(P(A))

is fully faithful: for (ε ∗ ε)A = P(εA) ◦ εT A and by hypothesis both εA and εT A are
fully faithful. The commutative diagrams

P(A)
P(YA)

// P(P(A))

T (P(A))

YT (A)

OO

T (A)

εA

OO

T (ηA)
//

T (YA)

;;vvvvvvvvvvvvvvv
T (T (A))

T (εA)

OO
(ε ∗ ε)A

YY
P(A)

YP(A)
//

ηPA
##HHHHHHHHHHHHHHH
P(P(A))

T (P(A))

YT (A)

OO

T (A)

εA

OO

ηT (A)
// T (T (A))

T (εA)

OO
(ε ∗ ε)A

YY

thus imply, together with the KZ-inequation for P , the KZ-inequation for T . 2

Some remarks can be made about the previous Proposition. Firstly, about the
fully faithfulness of the components of ε: T +3P . In any locally ordered category
K one defines an arrow f :A //B to be representably fully faithful when, for any
object X of K, the order-preserving function

K(f,−):K(X,A) //K(X,B):x 7→ f ◦ x

is order-reflecting – that is to say, K(f,−) is a fully faithful functor between or-
dered sets viewed as categories – and therefore f is also essentially a monomor-
phism in K. But the converse need not hold, and indeed does not hold in K =
Cat(Q): not every monomorphism in Cat(Q) is representably fully faithful, and
not every representably fully faithful functor is fully faithful. Because the 2-functor
P:Cat(Q) //Cat(Q) preserves representable fully faithfulness as well, the above
Proposition still holds (with the same proof) when the components of ε: T +3P are
merely representably fully faithful; and in that case it might be natural to say that
T is a “sub-KZ-doctrine” of P . But for our purposes later on, the interesting notion
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is that of full sub-KZ-doctrine, thus with the components of ε: T +3P being fully
faithful.

A second remark: in the situation of Proposition 2.4, the components of the
transformation ε: T +3P are necessarily given by pointwise left Kan extensions.
More precisely, 〈YA, ηA〉: T (A) //P(A) is the T (A)(ηA−,−)-weighted colimit
of YA (which exists because P(A) is cocomplete), and can thus be computed as

〈YA, ηA〉: T (A) //P(A): t 7→ T (A)(ηA−, t).

By fully faithfulness of εA: T (A) //P(A) and the Yoneda Lemma, we can com-
pute that

T (A)(ηA−, t) = P(A)(εA ◦ ηA−, εA(t)) = P(A)(YA−, εA(t)) = εA(t).

Hence the component of ε: T +3P at A ∈ Cat(Q) is necessarily the Kan extension
〈YA, ηA〉. We can push this argument a little further to obtain a characterisation of
those KZ-doctrines which occur as full sub-KZ-doctrines of P:

Corollary 2.5 A KZ-doctrine (T , µ, η) on Cat(Q) is a full sub-KZ-doctrine of P if
and only if all ηA:A // T (A) and all left Kan extensions 〈YA, ηA〉: T (A) //P(A)
are fully faithful.

Proof : If T is a full sub-KZ-doctrine of P , then we have just remarked that εA =
〈YA, ηA〉, and thus these Kan extensions are fully faithful. Moreover – because
εA ◦ ηA = YA with both εA and YA fully faithful – also ηA must be fully faithful.

Conversely, if (T , µ, η) is a KZ-doctrine with each ηA:A // T (A) fully faith-
ful, then – e.g. by [Stubbe, 2005, Proposition 6.7] – the left Kan extensions 〈YA, ηA〉
(exist and) satisfy 〈YA, ηA〉◦ηA ∼= YA. By assumption each of these Kan extensions
is fully faithful, so we must now prove that they are the components of a natural
transformation and that this natural transformation commutes with the multiplica-
tions of T and P . We do this in four steps:

(i) For any A ∈ Cat(Q), there is the free T -algebra µA: T (T (A)) // T (A).
But the free P-algebra MA:P(P(A)) //P(A) on P(A) also induces a T -algebra
on P(A): namely, MA ◦ 〈YP(A), ηP(A)〉: T (P(A) //P(A). To see this, it suffices
to prove the adjunction MA ◦ 〈YP(A), ηP(A)〉 a ηP(A). The counit is easily checked:

MA ◦ 〈YP(A), ηP(A)〉 ◦ ηP(A) = MA ◦ YP(A) = 1P(A),

using first the factorisation property of the Kan extension and then the split adjunc-
tion MA a YP(A). As for the unit of the adjunction, we compute that

ηP(A) ◦MA ◦ 〈YP(A), ηP(A)〉 = T (MA ◦ 〈YP(A), ηP(A)〉) ◦ ηT (P(A))

≥ T (MA ◦ 〈YP(A), ηP(A)〉) ◦ T (ηP(A))
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= T (MA ◦ 〈YP(A), ηP(A)〉 ◦ ηP(A))

= T (1P(A))

= 1T (P(A)),

using naturality of η and the KZ inequality for T , and recycling the computation we
made for the counit.

(ii) Next we prove, for each Q-category A, that 〈YA, ηA〉: T (A) //P(A) is a
T -algebra homomorphism, for the algebra structures explained in the previous step.
This is the case if and only if 〈YA, ηA〉 = (MA◦〈YP(A), ηP(A)〉)◦T (〈YA, ηA〉)◦ηT (A)

(because the domain of 〈YA, ηA〉 is a free T -algebra), and indeed:

MA ◦ 〈YP(A), ηP(A)〉 ◦ T (〈YA, ηA〉) ◦ ηT (A)

= MA ◦ 〈YP(A), ηP(A)〉 ◦ ηP(A) ◦ 〈YA, ηA〉
= MA ◦ YP(A) ◦ 〈YA, ηA〉
= 1P(A) ◦ 〈YA, ηA〉
= 〈YA, ηA〉.

(iii) To check that the left Kan extensions are the components of a natural trans-
formation we must verify, for any F :A //B in Cat(Q), that P(F ) ◦ 〈YA, ηA〉 =
〈YB, ηB〉 ◦ T (F ). Since this is an equation of T -algebra homomorphisms for the
T -algebra structures discussed in step (i) – concerning P(F ), it is easily seen to be
a left adjoint and therefore also a T -algebra homomorphism [Kock, 1995, Proposi-
tion 2.5] – it suffices to show that P(F ) ◦ 〈YA, ηA〉 ◦ ηA = 〈YB, ηB〉 ◦ T (F ) ◦ ηA.
This is straightforward from the factorisation property of the Kan extension and the
naturality of YA and ηA.

(iv) Finally, the very fact that 〈YA, ηA〉: T (A) //P(A) is a T -algebra homo-
morphism as in step (ii), means that

T (T (A))
T (〈YA, ηA〉)

//

µA

��

T (P(A))
〈YP(A), ηP(A)〉

// P(P(A))

MA

��

T (A)
〈YA, ηA〉

// P(A)

commutes: it expresses precisely the compatibility of the natural transformation
whose components are the Kan extensions, with the multiplications of, respectively,
T and P . 2
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3. Interlude: classifying cotabulations

In this section it is Proposition 3.3 which is of most interest: it explains in particular
how the 2-functors on Cat(Q) of Proposition 2.4 can be extended to Dist(Q). It
could easily be proved with a direct proof, but it seemed more appropriate to include
first some material on classifying cotabulations, then use this to give a somewhat
more conceptual proof of (the quantaloidal generalisation of) Akhvlediani et al.’s
‘Extension Theorem’ [2009, Theorem 1] in our Proposition 3.2, and finally derive
Proposition 3.3 as a particular case.

A cotabulation of a distributor Φ:A c //B between Q-categories is a pair of
functors, say S:A //C and T :B //C, such that Φ = C(T−, S−). If F :C //C′
is a fully faithful functor then also F ◦S:A //C′ and F ◦T :B //C′ cotabulate Φ;
so a distributor admits many different cotabulations. But the classifying property of
P(B) suggests a particular one:

Proposition 3.1 Any distributor Φ:A c //B is cotabulated by YΦ:A //P(B) and
YB:B //P(B). We call this pair the classifying cotabulation of Φ:A c //B.

Proof : We compute for a ∈ A and b ∈ B that P(B)(YB(b), YΦ(a)) = YΦ(a)(b) =
Φ(b, a) by using the Yoneda Lemma. 2

For two distributors Φ:A c //B and Ψ:B c //C it is easily seen that YΨ⊗Φ =
P0(Ψ) ◦ YΦ, so the classifying cotabulation of the composite Ψ⊗Φ relates to those
of Φ and Ψ as

Ψ⊗ Φ = P(C)(P0(Ψ) ◦ YΦ−, YC−). (4)

For a functor F :A //B it is straightforward that YB(−,F−) = YB ◦ F , so

B(−, F−) = P(B)(YB−, YB ◦ F−). (5)

In particular, the identity distributor A:A c //A has the classifying cotabulation

A = P(A)(YA−, YA−). (6)

Given that classifying cotabulations are thus perfectly capable of encoding compo-
sition and identities, it is natural to extend a given endo-functor on Cat(Q) to an
endo-functor on Dist(Q) by applying it to classifying cotabulations. Now follows
a statement of the ‘Extension Theorem’ of [Akhvlediani et al., 2009] in the gener-
ality of quantaloid-enriched category theory, and a proof based on the calculus of
classifying cotabulations.

Proposition 3.2 (Akhvlediani et al., 2009) Any 2-functor T :Cat(Q) //Cat(Q)
extends to a lax 2-functor T ′:Dist(Q) //Dist(Q), which is defined to send a dis-
tributor Φ:A c //B to the distributor cotabulated by T (YΦ): T (A) // T (P(B)) and
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T (YB): T (B) // T (P(B)). This comes with a lax transformation

Dist(Q)
T ′ // Dist(Q)

Cat(Q)

i

OO

T
//

⇐
=

Cat(Q)

i

OO

(7)

all of whose components are identities. This lax transformation is a (strict) 2-
natural transformation (i.e. this diagram is commutative) if and only if T ′ is normal,
if and only if each T (YA): T (A) // T (P(A)) is fully faithful.

Proof : If Φ ≤ Ψ holds in Dist(Q)(A,B) then (and only then) YΦ ≤ YΨ holds
in Cat(Q)(A,P(B)). By 2-functoriality of T :Cat(Q) //Cat(Q) we find that
T (YΦ) ≤ T (YΨ), and thus T ′(Φ) ≤ T ′(Ψ).

Now suppose that Φ:A c //B and Ψ:B c //C are given. Applying T to the com-
mutative diagram

A

YΦ !!DDDDDDDD B
YB

}}zzzzzzzz
YΨ

!!DDDDDDDD C
YC

}}zzzzzzzz

P(B)
P0(Ψ)

// P(C)

gives a commutative diagram in Cat(Q), which embeds as a commutative diagram
of left adjoints in the quantaloid Dist(Q) by application of i:Cat(Q) //Dist(Q).
Lemma 2.2, the formula in (4) and the definition of T ′ allow us to conclude that
T ′(Ψ)⊗ T ′(Φ) ≤ T ′(Ψ⊗ Φ).

Similarly, given F :A //B in Cat(Q), applying T to the commutative diagram

A

F ��
>>>>>>>> B

1B

���������� YB

!!DDDDDDDD B

YB}}zzzzzzzz

B
YB

// P(B)

gives a commutative diagram in Cat(Q). This again embeds as a diagram of left
adjoints in Dist(Q) via i:Cat(Q) //Dist(Q). Lemma 2.2, the formula in (5) and
the definition of T ′ then straightforwardly imply that

T ′(B(−, F−)) = T (P(B))(T (YB)−, T (YB)−)⊗ T (B)(−, T (F )−)

≥ T (B)(−, T (F )−),

accounting for the lax transformation in (7).

12



It further follows from this inequation, by applying it to identity functors, that
T ′ is in general lax on identity distributors. But Lemma 2.2 also says: (i) if each
T (YB): T (B) // T (P(B)) is fully faithful (equivalently, if T ′ is normal), then nec-
essarily (i ◦ T )(F ) ∼= (T ′ ◦ i)(F ) for all F : A //B in Cat(Q), asserting that
the diagram in (7) commutes; (ii) and conversely, if that diagram commutes, then
chasing the identities in Cat(Q) shows that T ′ is normal. 2

We shall be interested in extending full sub-KZ-doctrines of the free cocomple-
tion doctrine P:Cat(Q) //Cat(Q) to Dist(Q); for this we make use of the functor
P1:Dist(Q) //Dist(Q) defined in the diagram in (3).

Proposition 3.3 Let (T , ε) be a full sub-KZ-doctrine ofP:Cat(Q) //Cat(Q). The
lax extension T ′:Dist(Q) //Dist(Q) of T :Cat(Q) //Cat(Q) (as in Proposition
3.2) can then be computed as follows: for Φ:A c //B,

T ′(Φ) = P(B)(εB−,−)⊗ P1(Φ)⊗ P(A)(−, εA−). (8)

Moreover, T ′ is always a normal lax Sup-functor, thus the diagram in (7) commutes.

Proof : Let Φ:A c //B be a distributor. Proposition 3.2 defines T ′(Φ) to be the
distributor cotabulated by T (YΦ) and T (YB); but by fully faithfulness of the com-
ponents of ε: T +3P , and its naturality, we can compute that

T (P(B))(T (YB)−, T (YΦ)−)

= P(P(B))((εP(B) ◦ T (YB))−, (εP(B) ◦ T (YΦ))−)

= P(P(B))((P(YB) ◦ εB)−, (P(YΦ) ◦ εA)−)

= P(B)(εB−,−)⊗ P(P(B))(P(YB)−,P(YΦ)−)⊗ P(A)(−, εA−).

The middle term in this last expression can be reduced:

P(P(B))(P(YB)−,P(YΦ)−) = [P(B)(−, YB−)⊗−, P(B)(−, YΦ−)⊗−]

= [−,P(B)(YB−,−)⊗ P(B)(−, YΦ−)⊗−]

= [−,P(B)(YB−, YΦ−)⊗−]

= [−,Φ⊗−]

= P(B)(−,P0(Φ)−)

= (i ◦ P0)(Φ)(−,−)

= P1(Φ)(−,−).

Thus we arrive at (8). Because P1 is a (strict) functor and because each εA is fully
faithful, it follows from (8) that T ′ is normal. Similarly, becauseP1 is a Sup-functor,
T ′ preserves local suprema too. 2
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If we apply Proposition 3.2 to the 2-functor P:Cat(Q) //Cat(Q) itself, then we
find that P ′ = P1 (and thus it is strictly functorial, not merely normal lax). In
general however, T ′ does not preserve composition.

4. Cocompletion: saturated classes of weights vs. KZ-doctrines

The Φ-weighted colimit of a functor F exists if and only if, for every a ∈ A0,
colim(Φ(−, a), F ) exists:

B F // C

A

cΦ
OO

colim(Φ, F )

77

∗ta

cA(−, a)

OO colim(Φ(−, a), F )

@@

cΦ(−, a) = Φ⊗ A(−, a)

HH

Indeed, colim(Φ, F )(a) = colim(Φ(−, a), F )(∗). But now Φ(−, a): ∗ta c //B is a
presheaf on B. As a consequence, a Q-category C is cocomplete if and only if it
admits all colimits weighted by presheaves.

It therefore makes perfect sense to fix a class C of presheaves and study thoseQ-
categories that admit all colimits weighted by elements of C: by definition these are
the C-cocomplete categories. Similarly, a functor G:C //C′ is C-cocontinuous if
it preserves all colimits weighted by elements of C.

As [Albert and Kelly, 1988; Kelly and Schmitt, 2005] demonstrated in the case
of V-categories (for V a symmetric monoidal closed category with locally small,
complete and cocomplete underlying category V0), and as we shall argue here for
Q-categories too, it is convenient to work with classes of presheaves that “behave
nicely”:

Definition 4.1 A class C of presheaves on Q-categories is saturated if:

i. C contains all representable presheaves,

ii. for each φ: ∗X c //A in C and each functor G:A //P(B) for which each
G(a) is in C, colim(φ,G) is in C too.

There is another way of putting this. Observe first that any class C of presheaves on
Q-categories defines a sub-2-graph k:DistC(Q)

�� //Dist(Q) by

Φ:A c //B is in DistC(Q)
def.⇐⇒ for all a ∈ A0: Φ(−, a) ∈ C. (9)

14



Then in fact we have:

Proposition 4.2 A class C of presheaves onQ-categories is saturated if and only if
DistC(Q) is a sub-2-category of Dist(Q) containing (all objects and) all identities.
In this case there is an obvious factorisation

Cat(Q)
i //

j %%

Dist(Q)

DistC(Q)
+ � k

99rrrrrrrrrr

Proof : With (9) it is trivial that C contains all representable presheaves if and only
if DistC(Q) contains all objects and all identities.

Next, assume that C is a saturated class of presheaves, and let Φ:A c //B and
Ψ:B c //C be arrows in DistC(Q). Invoking the classifying property of P(C) and
the computation of colimits in P(C), we find colim(Φ(−, a), YΨ) = Ψ ⊗ Φ(−, a)
for each a ∈ A0. But because Φ(−, a) ∈ C and for each b ∈ B0 also YΨ(b) =
Ψ(−, b) ∈ C, this colimit, i.e. Ψ ⊗ Φ(−, a), is an element of C. This holds for all
a ∈ A0, thus the composition Ψ⊗ Φ:A c //C is an arrow in DistC(Q).

Conversely, assuming DistC(Q) is a sub-2-category of Dist(Q), let φ: ∗A c //B
be in C and let F :B //P(C) be a functor such that, for each b ∈ B, F (b) is in C.
By the classifying property of P(C) we can equate the functor F :B //P(C) with
a distributor ΦF :B c //C and by the computation of colimits in P(C) we know that
colim(φ, F ) = ΦF ⊗ φ. Now ΦF (−, b) = F (b) by definition, so ΦF :B c //C is in
DistC(Q); but also φ : ∗A c //B is in DistC(Q), and therefore their composite is in
DistC(Q), i.e. colim(φ, F ) is in C, as wanted.

Finally, if F :A //B is any functor, then for each a ∈ A the representable
B(−, Fa): ∗ta c //B is in the saturated class C, and therefore B(−, F−):A c //B
is in DistC(Q). This accounts for the factorisation of Cat(Q) //Dist(Q) over
DistC(Q)
�� //Dist(Q). 2

We shall now characterise saturated classes of presheaves on Q-categories in
terms of KZ-doctrines on Cat(Q). (We shall indeed always deal with a saturated
class of presheaves, even though certain results hold under weaker hypotheses.) We
begin by pointing out a classifying property:

Proposition 4.3 Let C be a saturated class of presheaves and, for a Q-category
A, write JA: C(A) //P(A) for the full subcategory of P(A) determined by those
presheaves on A which are elements of C. A distributor Φ:A c //B belongs to
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DistC(Q) if and only if there exists a (necessarily unique) factorisation

A
YΦ //

IΦ   

P(B)

C(B)
JB

;;xxxxxxxx
(10)

in which case Φ is cotabulated by IΦ:A // C(B) and IB:B // C(B) (the latter
being the factorisation of YB through JB).

Proof : The factorisation property in (10) literally says that, for any a ∈ A, the
presheaf YΦ(a) on B must be an element of the class C. But YΦ(b) = Φ(−, b)
hence this is trivially equivalent to the statement in (9), defining those distributors
that belong to DistC(Q). In particular, if C is saturated then DistC(Q) contains
all identities, hence we have factorisations YB = JB ◦ IB of the Yoneda embed-
dings. Hence, whenever a factorisation as in (10) exists, we can use the fully faithful
JB: C(B) //P(B) to compute, starting from the classifying cotabulation of Φ, that

Φ = P(B)(YB−, YΦ−) = P(B)(JB(IB(−)), JB(IΦ(−))) = C(B)(IB−, IΦ−),

confirming the cotabulation of Φ by IΦ and IB. 2

Any saturated class C thus automatically comes with the 2-functor

C0:DistC(Q) //Cat(Q):
(

Φ:A c //B) 7→ (
Φ⊗−: C(A) // C(B)

)
and the full embeddings JA: C(A) //P(A) are the components of a 2-natural trans-
formation

Dist(Q) P0

##

DistC(Q)

k 44

C0

// Cat(Q)

=
⇒ J

Composing C0 with j:Cat(Q) //DistC(Q) it is natural to define

C:Cat(Q) //Cat(Q):
(
F :A //B

)
7→
(
B(−, F−)⊗−: C(A) // C(B)

)
together with

Cat(Q)

P
))

C
55
Cat(Q)

=
⇒J

(slightly abusing notation). We apply previous results, particularly Proposition 2.4:
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Proposition 4.4 If C is a saturated class of presheaves on Q-categories then the
2-functor C:Cat(Q) //Cat(Q) together with the transformation J : C +3P forms
a full sub-KZ-doctrine of P . Moreover, the C-cocomplete Q-categories are pre-
cisely the C-algebras, and the C-cocontinuous functors between C-cocomplete Q-
categories are precisely the C-algebra homomorphisms.

Proof : To fulfill the hypotheses in Proposition 2.4, we only need to check the
factorisation of the multiplication: if we prove, for any Q-category A and each
φ ∈ C(C(A)), that the (J ∗ J)A(φ)-weighted colimit of 1P(A) is in C(A), then we
obtain the required commutative diagram

P(P(A))
colim(−, 1P(A))

// P(A)

C(C(A)) //

(J ∗ J)A

OO

C(A)

JA

OO

But because (J ∗ J)A = P(JA) ◦ JC(A) we can compute that

colim((J ∗ J)A(φ), 1P(A)) = colim(P(A)(−, JA−)⊗ φ, 1P(A)) = colim(φ, JA)

and this colimit indeed belongs to the saturated class C, because both φ and (the
objects in) the image of JA are in C.

AQ-category B is a C-algebra if and only if IB:B // C(B) admits a left adjoint
in Cat(Q) (because C is a KZ-doctrine). Suppose that B is indeed a C-algebra,
and write the left adjoint as LB: C(B) //B. If φ: ∗X c //A is a presheaf in C and
F :A //B is any functor, then C(F )(φ) is an object of C(B), thus we can consider
the object LB(C(F )(φ)) of B. This is precisely the φ-weighted colimit of F , for
indeed its universal property holds: for any b ∈ B,

B(LB(C(F )(φ)), b) = C(B)(C(F )(φ), IB(b))

= P(B)(JB(C(F )(φ)), JB(IB(b)))

= [P(F )(JB(φ)), YB(b)]

= [B(−, F−)⊗ JB(φ),B(−, b)]
= [JB(φ),B(F−,−)⊗ B(−, b)]
= [φ,B(F−, b)].

(Apart from the adjunction LB a IB we used the fully faithfulness of JB and its
naturality, and then made some computations with liftings and adjoints in Dist(Q).)

Conversely, suppose that B admits all C-weighted colimits. In particular can we
then compute, for any φ ∈ C(B), the φ-weighted colimit of 1B, and doing so gives
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a function f : C(B) //B:φ 7→ colim(φ, 1B). But for any φ ∈ C(B) and any b ∈ B
it is easy to compute, from the universal property of colimits and using the fully
faithfulness of JB, that

B(f(φ), b) = [φ,B(1B−, b)] = P(B)(φ, YB(b))

= P(B)(JB(φ), JB(IB(b))) = C(B)(φ, IB(b)).

This straightforwardly implies that φ 7→ f(φ) is in fact a functor (and not merely a
function), and that it is left adjoint to IB; thus B is a C-algebra.

Finally, let G:B //C be a functor between C-cocomplete Q-categories. Sup-
posing that G is C-cocontinuous, we can compute any ψ ∈ C(B) that

G(LB(ψ)) = G(colim(ψ), 1B) = colim(ψ), G) = LC(C(G)(ψ)),

proving that G is a homomorphism between the C-algebras (B, LB) and (C, LC).
Conversely, supposing now that G is a homomorphism, we can compute for any
presheaf φ: ∗X c //A in C and any functor F :A //B that

G(colim(φ, F )) = G(LB(C(F )(φ))) = LC(C(G)(C(F )(φ))) = colim(φ,G ◦ F ),

proving that G is C-cocontinuous. 2

Also the converse of the previous Proposition is true:

Proposition 4.5 If (T , ε) is a full sub-KZ-doctrine of P:Cat(Q) //Cat(Q) then

CT := {εA(t) | A ∈ Cat(Q), t ∈ T (A)} (11)

is a saturated class of presheaves on Q-categories. Moreover, the T -algebras are
precisely the CT -cocomplete categories, and the T -algebra homomorphisms are
precisely the CT -cocontinuous functors between the CT -cocomplete categories.

Proof : We shall write DistT (Q) for the sub-2-graph of Dist(Q) determined – as
prescribed in (9) – by the class CT , and we shall show that it is a sub-2-category con-
taining all (objects and) identities of Dist(Q). But a distributor Φ:A c //B belongs
to DistT (Q) if and only if the classifying functor YΦ:A //P(B) factors (necessar-
ily essentially uniquely) through the fully faithful εB: T (B) //P(B).

By hypothesis there is a factorisation YA = εA ◦ ηA for any A ∈ Cat(Q), so
DistT (Q) contains all identities. Secondly, suppose that Φ:A c //B and Ψ:B c //C
are in DistT (Q), meaning that there exist factorisations

A
YΦ //

IΦ !!

P(B)

T (B)
εB

::vvvvvv

B
YΨ //

IΨ !!

P(C)

T (C)
εC

::vvvvvv
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The following diagram is then easily seen to commute:

T (B)
εB //

T (IΨ)

��

P(B)

P(IΨ)

��

P(YΨ)

||

T (T (C))
εT (C)

//

T (εC)

��

(ε∗ε)C
%%

µC

{{vvvvvvvvvvvvvvv
P(T (C))

P(εC)

��

T (C)

εC
##HHHHHHHHHHHHHHH
T (P(C)) εP(C)

// P(P(C))

MC
yytttttttttttttttt

P(C)

But we can compute, for any φ ∈ P(B), that

(MC ◦ P(YΨ))(φ) = colim(P(A)(−, YΨ−)⊗ φ, 1P(A))

= colim(φ, YΨ)

= Ψ⊗ φ
= P0(Ψ)(φ)

and therefore YΨ⊗Ψ = P0(Ψ)◦YΦ = MC◦P(YΨ)◦εB◦IΦ = εC◦µC◦T (IΨ)◦IΦ,
giving a factorisation of YΨ⊗Φ through εC, as wanted.

The arguments to prove that aQ-category B is a T -algebra if and only if it is CT -
cocomplete, and that a T -algebra homomorphism is precisely a CT -cocontinuous
functor between CT -cocomplete Q-categories, are much like those in the proof of
Proposition 4.4. Omitting the calculations, let us just indicate that for a T -algebra
B, thus with a left adjoint LB: T (B) //B to ηB, for any weight φ: ∗X c //A in
CT – i.e. φ = εA(t) for some t ∈ T (A) – and any functor F :A //B, the ob-
ject LB(T (F ))(t) is the φ-weighted colimit of F . And conversely, if B is a CT -
cocomplete Q-category, then T (B) //B: t 7→ colim(εB(t), 1B) is the left adjoint
to ηB, making B a T -algebra. 2

If C is a saturated class of presheaves and we apply Proposition 4.4 to ob-
tain a full sub-KZ-doctrine (C, J) of P:Cat(Q) //Cat(Q), then the application
of Proposition 4.5 gives us back precisely that same class C that we started from.
The other way round is slightly more subtle: if (T , ε) is a full sub-KZ-doctrine of
P then Proposition 4.5 gives us a saturated class CT of presheaves, and this class in

19



turn determines by Proposition 4.4 a full KZ-doctrine of P , let us write it as (T ′, ε′),
which is equivalent to T . More exactly, each (fully faithful) εA: T (A) //P(A) fac-
tors over the fully faithful and injective ε′A: T ′(A) //P(A), and this factorisation is
fully faithful and surjective, thus an equivalence. These equivalences are the com-
ponents of a 2-natural transformation δ: T +3 T ′ which commutes with ε and ε′.

We summarise all the above in the following:

Theorem 4.6 Propositions 4.4 and 4.5 determine an essentially bijective corre-
spondence between, on the one hand, saturated classes C of presheaves on Q-
categories, and on the other hand, full sub-KZ-doctrines (T , ε) of the free co-
completion KZ-doctrine P:Cat(Q) //Cat(Q); a class C and a doctrine T cor-
respond with each other if and only if the T -algebras and their homomorphisms
are precisely the C-cocomplete Q-categories and the C-cocontinuous functors be-
tween them. Proposition 3.3 implies that, in this case, there is a normal lax Sup-
functor T ′:Dist(Q) //Dist(Q), sending a distributor Φ:A c //B to the distributor
T ′(Φ): T (A) c // T (B) with elements

T ′(Φ)(t, s) = P(B)(εB(t),Φ⊗ εA(s)), for s ∈ T (A), t ∈ T (B),

which makes the following diagram commute:

Dist(Q)
T ′ // Dist(Q)

Cat(Q)
T
//

i

OO

Cat(Q)

i

OO

5. Conical cocompletion and the Hausdorff doctrine

5.1 Conical colimits

Let A be a Q-category. Putting, for any a, a′ ∈ A,

a ≤ a′ def.⇐⇒ ta = ta′ and 1ta ≤ A(a, a′)

defines an order relation on the objects of A. (There are equivalent conditions in
terms of representable presheaves.) For a given Q-category A and a given object
X ∈ Q0, we shall write (AX ,≤X) for the ordered set of objects of A of type X .
Because elements of different type in A can never have a supremum in (A0,≤), it
would be very restrictive to require this order to admit arbitrary suprema; instead,
experience shows that it makes good sense to require each (AX ,≤X) to be a sup-
lattice: we then say that A is order-cocomplete [Stubbe, 2006]. As spelled out in
that reference, we have:
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Proposition 5.1 For a family (ai)i∈I in AX , the following are equivalent:

i.
∨

i ai exists in AX and A(
∨

i ai,−) =
∧

iA(ai,−) holds in Dist(Q)(A, ∗X),

ii.
∨

i ai exists in AX and A(−,
∨

i ai) =
∨

iA(−, ai) holds in Dist(Q)(∗X ,A),

iii. if we write (I,≤) for the ordered set in which i ≤ j precisely when ai ≤X aj
and I for the free Q(X,X)-category on the poset (I,≤), F : I //A for the
functor i 7→ ai and γ: ∗X c // I for the presheaf with values γ(i) = 1X for all
i ∈ I, then the γ-weighted colimit of F exists.

In this case, colim(γ, F ) =
∨

i ai and it is the conical colimit of (ai)i∈I in A.

It is important to realise that such conical colimits – which are enriched colimits! –
can be characterised by a property of weights:

Proposition 5.2 For a presheaf φ: ∗X c //A, the following conditions are equiva-
lent:

i. there exists a family (ai)i∈I in AX such that for any functor G:A //B, if
the φ-weighted colimit of G exists, then it is the conical colimit of the family
(G(ai))i,

ii. there exists a family (ai)i∈I in AX for which φ =
∨

iA(−, ai) holds in
Dist(Q)(∗X ,A),

iii. there exist an ordered set (I,≤) and a functor F : I //A with domain the free
Q(X,X)-category on (I,≤) such that, if we write γ: ∗X c // I for the presheaf
with values γ(i) = 1X for all i ∈ I, then φ = A(−, F−)⊗ γ.

In this case, we call φ a conical presheaf.

Proof : (i⇒ii) Applying the hypothesis to the functor YA:A //P(A) – indeed
colim(φ, YA) exists, and is equal to φ by the Yoneda Lemma – we find a family
(ai)i∈I such that φ is the conical colimit in P(A) of the family (YA(a))i. This
implies in particular that φ =

∨
iA(−, ai).

(ii⇒iii) For φ =
∨

iA(−, ai) it is always the case that [
∨

iA(−, ai),−] =∧
i[A(−, ai),−], i.e. P(A)(

∨
iA(−, ai),−) =

∧
i P(A)(A(−, ai),−). Thus φ is

the conical colimit in P(A) of the family (A(−, ai))i, and Proposition 5.1 allows
for the conclusion.

(iii⇒i) If, for some functor G:A //B, colim(φ,G) exists, then, by the hy-
pothesis that φ = A(−, F−) ⊗ γ, it is equal to colim(A(−, F−) ⊗ γ,G) =
colim(γ,G ◦ F ). The latter is the conical colimit of the family (G(F (i)))i∈I ; thus
the family (F (i))i fulfills the requirement. 2
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A warning is in order. Proposition 5.2 attests that the conical presheaves on a
Q-category A are those which are a supremum of some family of representable
presheaves on A. Of course, neither that family of representables, nor the family of
representing objects in A, need to be unique.

Now comes the most important observation concerning conical presheaves.

Proposition 5.3 The class of conical presheaves is saturated.

Proof : We shall check both conditions in Proposition 4.1. All representable pre-
sheaves are clearly conical, so the first condition is fulfilled. As for the second
condition, consider a conical presheaf φ: ∗X c //A and a functor G:A //P(B)
such that each G(a): ∗ta c //B is a conical presheaf too. The φ-weighted colimit
of G certainly exists, hence the first statement in Proposition 5.2 applies: it says
that colim(φ,G) is the conical colimit of a family of conical presheaves. In other
words, colim(φ,G) is a supremum of a family of suprema of representables, and is
therefore a supremum of representables too, hence a conical presheaf. 2

5.2 The Hausdorff doctrine

Applying Theorem 4.6 to the class of conical presheaves we get:

Definition 5.4 We writeH:Cat(Q) //Cat(Q) for the KZ-doctrine associated with
the class of conical presheaves. We call it the Hausdorff docrine on Cat(Q), and
we say that H(A) is the Hausdorff Q-category associated to a Q-category A. We
writeH′:Dist(Q) //Dist(Q) for the normal lax Sup-functor which extendsH from
Cat(Q) to Dist(Q).

To justify this terminology, and underline the concordance with [Akhvlediani et
al., 2009], we shall make this more explicit. According to Proposition 4.4, H(A)
is the full subcategory of P(A) determined by the conical presheaves on A. By
Proposition 5.2 however, the objects of H(A) can be equated with suprema of rep-
resentables; so suppose that

φ =
∨
a∈A

A(−, a) and φ′ =
∨

a′∈A′

A(−, a′)

for subsets A ⊆ AX and A′ ⊆ AY . Then we can compute that

H(A)(φ′, φ) = P(A)(φ′, φ)

= [φ′, φ]

= [
∨
a′

A(−, a′),
∨
a

A(−, a]
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=
∧
a′

[A(−, a′),
∨
a

A(−, a)]

=
∧
a′

∨
a

[A(−, a′),A(−, a)]

=
∧
a′

∨
a

A(a′, a).

(The penultimate equality is due to the fact that each A(−, a′): ∗Y c //A is a left
adjoint in the quantaloid Dist(Q), and the last equality is due to the Yoneda lemma.)
This is precisely the expected formula for the “Hausdorff distance between (the
conical presheaves determined by) the subsetsA andA′ of A”. It must be noted that
[Schmitt, 2006, Proposition 3.42] describes a very similar situation particularly for
symmetric categories enriched in the commutative quantale of postive real numbers.

Similarly for functors: given a functor F :A //B between Q-categories, the
functor H(F ):H(A) //H(B) sends a conical presheaf φ on A to the conical pre-
sheaf B(−, F−) ⊗ φ on B. Supposing that φ =

∨
a∈AA(−, a) for some A ⊆ AX ,

it is straightforward to check that

B(−, F−)⊗ φ =
∨
x∈A

(
B(−, Fx) ◦

∨
a∈A

A(x, a)

)

=
∨
a∈A

(∨
x∈A

B(−, Fx) ◦ A(x, a)

)
=

∨
a∈A

B(−, Fa).

That is to say, “H(F ) sends (the conical presheaf determined by) A ⊆ A to (the
conical presheaf determined by) F (A) ⊆ B”.

Finally, by Proposition 3.3, the action of H′ on a distributor Φ:A c //B gives
a distributor H′(Φ):H(A) c //H′(B) whose value in φ ∈ H(A) and ψ ∈ H(B) is
P(B)(ψ,Φ⊗ φ). Assuming that

φ =
∨
a∈A

A(−, a) and ψ =
∨
b∈B

B(−, b)

for some A ⊆ AX and B ⊆ BY , a similar computation as above shows that

H′(Φ)(ψ, φ) =
∧
b∈B

∨
a∈A

Φ(b, a).

This is the expected generalisation of the previous formula, to measure the “Haus-
dorff distance between (the conical presheaves determined by) A ⊆ A and B ⊆ B
through Φ:A c //B”.
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5.3 Other examples

The following examples of saturated classes of presheaves have been considered by
[Kelly and Schmitt, 2005] in the case of categories enriched in symmetric monoidal
categories.

Example 5.5 (Minimal and maximal class) The smallest saturated class of pre-
sheaves onQ-categories is, of course, that containing only representable presheaves.
It is straightforward that the KZ-doctrine on Cat(Q) corresponding with this class is
the identity functor. On the other hand, the class of all presheaves on Q-categories
corresponds with the free cocompletion KZ-doctrine on Cat(Q).

Example 5.6 (Cauchy completion) The class of all left adjoint presheaves, also
known as Cauchy presheaves, on Q-categories is saturated. Indeed, all repre-
sentable presheaves are left adjoints. And suppose that Φ:A c //B and Ψ:B c //C
are distributors such that, for all a ∈ A and all b ∈ B, Φ(−, a): ∗ta c //B and
Ψ(−, b): ∗tb c //C are left adjoints. Writing ρb:C c // ∗tb for the right adjoint to
Ψ(−, b), it is easily verified that Ψ is left adjoint to

∨
b∈B B(−, b)⊗ ρb. This makes

sure that (Ψ ⊗ Φ)(−, a) = Ψ ⊗ Φ(−, a) is a left adjoint too, and by Proposition
4.2 we can conclude that the class of Cauchy presheaves is saturated. The KZ-
doctrine on Cat(Q) which corresponds to this saturated class of presheaves, sends
a Q-category A to its Cauchy completion [Lawvere, 1973; Walters, 1981; Street,
1983].

Inspired by the examples in [Lawvere, 1973] and the general theory in [Kelly
and Schmitt, 2005], Vincent Schmitt [2006] has studied several other classes of
presheaves for ordered sets (viewed as categories enriched in the 2-element Boolean
algebra) and for generalised metric spaces (viewed as categories enriched in the
quantale of positive real numbers). He constructs saturated classes of presheaves
by requiring that each element of the class “commutes” (in a suitable way) with all
elements of a given (not-necessarily saturated) class of presheaves. These inter-
esting examples do not seem to generalise straightforwardly to general quantaloid-
enriched categories, so we shall not survey them here, but refer instead to [Schmitt,
2006] for more details.
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