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Abstract. We study ideals in, and continuity of, quantaloid-enriched categories (Q-
categories for short) as a ‘many-valued and many-typed’ generalization of domain the-
ory. Abstractly, for any (saturated) class Φ of presheaves, we define and study the
Φ-continuity of Q-categories. Concretely, we compute three examples of such saturated
classes of presheaves – the class of flat ideals, the class of irreducible ideals and the class
of conical ideals – which are proper generalizations of ideals in domain theory.

1. Introduction

Domain theory [1, 14] originated from the work of Dana Scott [41, 42] as a formal basis
for the semantics of programming languages. Through the study of special properties of
partially ordered sets, it formalizes the intuitive ideas of approximation and convergence
in a very general way. Since America and Rutten’s [4] and Smyth’s [47] early work on
solving recursive domain equations in the category of metric spaces, several other papers
[40, 13, 56, 57, 19, 32, 33, 60] have been written to compare and unify both the posetal
and the metric approach to solving domain equations. This lead to so-called quantitative
domain theory, where one typically replaces posets, resp. metric spaces, by quantale-
enriched categories, and one develops general concepts of approximation and convergence
for these. With this paper we want to contribute to this line of research, replacing now
quantales by quantaloids.

Whereas a quantale is a monoid in the symmetric monoidal closed category Sup
of complete lattices and supremum-preserving morphisms, a quantaloid is a category
enriched in Sup. Viewing a quantaloid Q as a (locally posetal) bicategory [8], it is natural
to study categories, functors and distributors enriched inQ [58, 48, 49, 50, 51]. As a special
case of categories enriched in a bicategory, quantaloid-enriched categories have special
properties and important applications. Walters [59] uses Q-categories to describe the
topos of sheaves on a small site (see also [16]), and Rosenthal [38, 39] relates Q-categories
to automata theory. More recently, also (many-valued) topological concepts have been
formalized in the context of quantaloid-enriched categories [10, 21, 26, 29, 43, 44, 45, 46].

Since quantales are precisely quantaloids with a single object, complete residuated
lattices and frames are all special quantaloids. Thus, quantale-enriched categories [57, 27]
and L-ordered sets [7, 12, 62] are special quantaloid-enriched categories. The theory of
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quantaloid-enriched categories can be viewed as a many-typed extension of the theory of
quantale-enriched categories. This enables us to interpret some structures that can not
be treated in the framework of quantale-enriched categories. For instance, partial metric
spaces and probabilistic partial metric spaces can be treated as quantaloid-enriched cat-
egories [54, 22, 15], yet they cannot be quantale-enriched categories because they cannot
be treated with only one type.

In [52], Stubbe studied Q-categories as crucial mathematical structure for a so-called
dynamic logic as common mathematical foundation for dynamic phenomena in both com-
puter science and physics. In that paper, totally continuous cocomplete Q-categories were
studied as “dynamic domains”. However, just as Stubbe claimed in [52], totally contin-
uous cocomplete Q-categories are very strong structures. One can argue that, having
abandoned the notion of directedness, their usefulness in computation is rather limited.
So it is definitely an interesting project to investigate how a notion of directedness can
be brought back again. Over the past decade, research progress in this area is slow and
mostly restricted to frame- or quantale-enriched categories.

In this paper, we further develop Stubbe’s work [52] by defining continuity of Q-
categories relative to any (saturated) class of presheaves. We propose several saturated
classes of presheaves that are natural generalizations of the concept of ideals in (posetal)
domain theory. Thus we establish quantitative domain theory based on Q-categories,
which enables us to unify the approach of quantale-enriched categories and the approach
of partial metric spaces into one framework.

The contents of the paper are arranged as follows. Section 2 lists some preliminary
notions and results about quantaloids and quantaloid-enriched categories. In Section
3, based on a (saturated) class Φ of presheaves, Φ-cocompleteness of Q-categories is
studied. In Section 4, three saturated classes of presheaves are given: the class of all
irreducible ideals, the class of all flat ideals, and the class of all conical ideals. In Section
5, Φ-continuity in Q-categories is defined and studied as a generalization of continuity
in domain theory, and several examples are computed to show the non-triviality of the
generalization. In Section 6, Φ-algebraic Q-categories are defined and studied. We end
with a conclusion in Section 7.

2. Preliminaries on quantaloid-enriched categories

A quantaloid Q [39] is a category enriched in the symmetric monoidal closed category
Sup of complete lattices and morphisms that preserve arbitrary suprema. In elementary
terms, a quantaloid Q is a category for which each hom-set Q(p, q) is a complete lattice,
in such a way that, for all u, ui ∈ Q(p, q) and all v, vj ∈ Q(q, r),

v ◦ (
∨
i

ui) =
∨
i

(v ◦ ui) and (
∨
j

vj) ◦ u =
∨
j

(vj ◦ u).

Given any arrow u : p → q and object r in Q, both − ◦ u : Q(q, r) → Q(p, r) and
u ◦ − : Q(r, p) → Q(r, q) preserve suprema between complete lattices and thus have a
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right adjoint; we shall denote these by (− ◦ u) ⊣ (− ↙ u) and (u ◦ −) ⊣ (u↘ −).
Next, we shall recall some basic facts about quantaloid-enriched categories from [49].

From now on, Q always denotes a small quantaloid, and Q0 is the set of its objects.
A Q-typed set X is a (small) set X together with a mapping t : X → Q0 : x 7→ tx

assigning each element x ∈ X to its type tx ∈ Q0. Throughout the paper, we use tx to
denote the type of an element x in a Q-typed set X.

2.1. Definition. A Q-enriched category 1 (or Q-category for short) A consists of a Q-
typed set A0 together with hom-arrows A(a′, a) : ta′ → ta in Q for all a, a′ ∈ A0 satisfying

A(a′, a′′) ◦ A(a, a′) ≤ A(a, a′′) and 1ta ≤ A(a, a)

for all a, a′, a′′ ∈ A0.

There is a natural underlying preorder on A0 defined by

x ≤ y
def⇐⇒ tx = ty and 1tx ≤ A(x, y).

When both x ≤ y and y ≤ x hold in (A0,≤), then we write x ∼= y and say that these are
isomorphic elements; and A is called skeletal when x ∼= y always implies x = y. A Q-
category B is a full Q-subcategory of A if B0 ⊆ A0 and B(x, y) = A(x, y) for all x, y ∈ B0;
and then B is skeletal whenever A is.

2.2. Definition. A Q-functor F : A → B between Q-categories is a type-preserving map
F : A0 → B0 such that

A(a′, a) ≤ B(Fa′, Fa)
for all a, a′ ∈ A0.

The Q-functor F : A → B is fully faithful when the inequality in the definition above
is in fact an equality (for all a, a′ ∈ A0).

With the pointwise order on Q-functors, given by

F ≤ G : A → B def⇐⇒ Fx ≤ Gx for all x ∈ A0,

and the obvious composition and identities, Q-categories and Q-functors constitute a 2-
category Cat(Q). Following general 2-categorical principles, a Q-functor F : A → B is
called left adjoint to a Q-functor G : B → A in Cat(Q) (and then G is called right adjoint
to F ), written F ⊣ G, if 1A ≤ G ◦F and F ◦G ≤ 1B (or equivalently B(Fx, y) = A(x,Gy)
for all x ∈ A0, y ∈ B0.) A Q-functor F : A → B is an equivalence of Q-categories if there
exists a Q-functor G : B → A with GF ∼= 1A, FG ∼= 1B; in this case, we write A ≃ B.

1The definition for Q-category given here is different from that used by Stubbe in a series of papers
[49, 50, 52, 54] (but agrees with that in the papers [26, 43, 55]) in the choice for the direction of the
hom-arrows. We refer to [49, Proposition 3.8]: what we call a Q-category in this paper is precisely a
Qop-category for Stubbe [49] (which itself is the “opposite” of a Q-category in the terminology of [49]).
As a consequence, also the direction of the Q-distributors in this paper (see further) is opposite to that
in [49]. Modulo this duality, all notions presented here (presheaf, colimit, ...) agree with those in [49].
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2.3. Definition. A Q-distributor ϕ : A c //B between two Q-categories is given by a
matrix of Q-arrows (ϕ(x, y) : tx→ ty)x∈A0,y∈B0

such that

B(y′, y) ◦ ϕ(x′, y′) ◦ A(x, x′) ≤ ϕ(x, y)

for all x, x′ ∈ A0 and y, y′ ∈ B0.

Two such Q-distributors ϕ : A c //B and ψ : B c //C compose with the formula

(ψ ◦ ϕ)(x, z) =
∨
y∈B0

ψ(y, z) ◦ ϕ(x, y).

The identity Q-distributor on A is given by the hom-arrows A : A c //A, and together
with the pointwise local order inherited from Q, Q-categories and Q-distributors then
form a (large) quantaloid Dist(Q). This means in particular that Dist(Q) is itself a 2-
category, and so we can speak of left/right adjoint Q-distributors in the obvious manner:
for ϕ : A c //B and ψ : B c //A we write ϕ ⊣ ψ whenever A ≤ ψ ◦ϕ and ϕ ◦ψ ≤ B. But the
quantaloid Dist(Q) is also “closed”, i.e. both ϕ◦− and −◦ϕ have right adjoints (denoted
by ϕ ↘ − and − ↙ ϕ respectively). These relate to the adjoints to composition in Q in
the following manner: for any ϕ : A c //B, γ : A c //C and ψ : C → B,

(ϕ↘ ψ)(c, a) =
∧
b∈B0

ϕ(a, b) ↘ ψ(c, b) and (ϕ↙ γ)(c, b) =
∧
a∈A0

ϕ(a, b) ↙ γ(a, c).

Each Q-functor F : A → B determines Q-distributors F♮ : A c //B and F ♮ : B c //A by

F♮(x, y) = B(Fx, y) and F ♮(y, x) = B(y, Fx),

which form an adjunction F♮ ⊣ F ♮ in Dist(Q). Thus we have

F♮ ↘ − = F ♮ ◦ − and − ↙ F ♮ = − ◦ F♮. (2.1)

Particularly, (1A)♮ = (1A)
♮ = A, and for two Q-functors F : A → B and G : B → C, we

have
(G ◦ F )♮ = G♮ ◦ F♮ and (G ◦ F )♮ = F ♮ ◦G♮. (2.2)

That is to say, the assignments F 7→ F♮ and F → F ♮ are (covariantly and contravari-
antly) 2-functorial from Cat(Q) to Dist(Q); they thus send adjoint functors to adjoint
distributors as well. Note however that F♮ = F ′♮ (or F

♮ = F ′♮) only implies F ∼= F ′, and
not necessarily F = F ′.

For any Q-distributor ϕ : A c //B and Q-functors F : X → A, G : Y → B, we have

ϕ(F−, G−) = G♮ ◦ ϕ ◦ F♮. (2.3)

For each q ∈ Q0, we write {q} for the discrete Q-category with a single object q, in
which tq = q and {q}(q, q) = 1q.
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2.4. Definition. A (contravariant) presheaf (also called a weight) with type q on a
Q-category A is a Q-distributor µ : A c // {q}. The Q-typed set of all presheaves on A
constitutes a Q-category PA with hom-arrows PA(µ, µ′) = µ′ ↙ µ for all µ, µ′ ∈ (PA)0.

Dually, the Q-category P†A of covariant presheaves (also copresheaves) [49, 43] on A
has Q-distributors λ : {q} c //A as objects and P†A(λ, λ′) = λ′ ↘ λ as hom-arrows. Note
that both PA and P†A are skeletal Q-categories.

The (covariant) Yoneda embedding on a Q-category A is the Q-functor YA : A → PA
which sends each x ∈ A0 to the representable presheaf A(−, x) : A c // {tx}. The Yoneda
Lemma [49, Proposition 6.3] says that

PA(YAx, µ) = µ(x) (2.4)

for all x ∈ A0, µ ∈ (PA)0. For two representable presheaves this implies that(
(YA)

♮ ◦ (YA)♮
)
(x, y) = PA(YAx, YAy) = (YAy)(x) = A(x, y) (2.5)

for all x, y ∈ A0. That is to say, the Yoneda embedding is fully faithful.
Each Q-functor F : A → B determines a pair of Q-functors,

F→ : PA → PB : µ 7→ µ ◦ F ♮ and F← : PB → PA : λ 7→ λ ◦ F♮ (2.6)

such that F→ ⊣ F← in Cat(Q). For F : A → B and G : B → C, we have

(G ◦ F )→ = G→ ◦ F→ and (G ◦ F )← = F← ◦G←. (2.7)

2.5. Definition. Given a Q-functor F : B → A and a Q-distributor θ : B c //C, the
colimit of F weighted by θ is (whenever it exists) a Q-functor colim(θ, F ) : C → A such
that

colim(θ, F )♮ = F♮ ↙ θ.

That colimit is preserved by a functor G : A → A′ if colim(θ,G ◦ F ) (exists and) equals
G ◦ colim(θ, F ).

Colimits need not be unique, but are always essentially unique (up to isomorphism).
For a presheaf µ : A c // {q} and a Q-functor F : A → B, colim(µ, F ) is in principle a

Q-functor from {q} to B. But such a Q-functor simply picks out an object of type q in B.
Therefore we will often think of colim(µ, F ) just as being that object [49]. In particular,
given µ ∈ (PA)0, if colim(µ, 1A) exists in A, then we call it “the” supremum of µ, and
write it as sup(µ). We may thus consider sup(µ) as an object of A of type tµ, determined
up to isomorphism, such that

A(sup(µ),−) = (1A)♮ ↙ µ = A ↙ µ.

Since F♮ ↙ µ = (1A ◦ F )♮ ↙ µ = ((1A)♮ ◦ F♮) ↙ µ = (1A)♮ ↙ F ♮ ↙ µ, the colimit
of a Q-functor F : A → B weighted by a presheaf µ ∈ (PA)0 is the supremum of µ ◦ F ♮.
Furthermore, it is routine to check that the colimit of F : B → A weighted by a Q-
distributor θ : B c //C is a Q-functor sending each object c ∈ C0 to the supremum of
θ(−, c) ◦ F ♮, i.e., colim(θ, F )(c) = sup(θ(−, c) ◦ F ♮). Thus, a Q-category A admits all
weighted colimits if and only if every µ ∈ (PA)0 has a supremum.
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2.6. Definition. [49, 26] A Q-category A is said to be cocomplete if it satisfies one of
the following equivalent conditions:
(1) A admits all weighted colimits;
(2) every µ ∈ (PA)0 has a supremum;
(3) the Yoneda embedding YA : A → PA has a left adjoint sup : PA → A in Cat(Q).

Completeness of Q-categories is defined dually. A Q-category is complete if and only
if it is cocomplete, see [49, Proposition 5.10.]. The category PA of presheaves on a Q-
category A is always cocomplete [49, Proposition 6.4.]: for Ψ ∈ (P(PA))0 one can check
that

sup(Ψ) = Y ←A (Ψ) = Ψ ◦ (YA)♮. (2.8)

Note that this is an equality (and not a mere isomorphism), because PA is skeletal.

2.7. Example. (1) A unital quantale (Q,
∨
, ·, 1) is precisely (the hom-lattice of) a quan-

taloid with a single object. If Q is (the one-object suspension of) a unital commutative
quantale, then Q-categories are precisely quantale-enriched categories studied in [27, 57].
Since a complete residuated lattice L is a commutative integral quantale, we see that
L-ordered sets in the sense of Bělohlávek and Fan [7, 12, 62] are special Q-categories.
Thus, Q-categories can be interpreted as a generalization of quantale-enriched categories
in a many-typed setting.

(2) Let 2 be the two-element Boolean algebra. Then 2-categories are preordered sets,
2-distributors are ideal relations, 2-functors are order-preserving maps and presheaves are
lower sets. Thus, Q-categories can be interpreted as a generalization of (pre)ordered sets
in a many-valued and many-typed setting. If A is a 2-category, then the category PA is
just the poset of lower sets on A with inclusion order.

(3) Let [0,∞]+ = ([0,∞],
∧
,+, 0) be the quantale whose underlying complete lattice

is the extended non-negative real line [0,∞] equipped with the order ≥. A partial metric
[32, 60] on a set X is a map p : X ×X → [0,∞) which satisfies for all x, y, z ∈ X,
(i) p(x, y) = p(y, x) (symmetry).
(ii) p(x, y) = p(x, x) = p(y, y) implies x = y (T0 separation axiom).
(iii) p(x, y) ≤ p(x, z)− p(z, z) + p(z, y) (the sharp triangle inequality).
(iv) p(x, x) ≤ p(x, y) (SSD – “small self-distances”)
If we abandon axioms (i) and (ii) and extend the range of p to [0,+∞], then p is called a
generalized partial metric [34]. Let D[0,∞]+ denote the quantaloid of diagonals in [0,∞]+.
It is remarkable that (generalized) partial metric spaces are exactly D[0,∞]+-categories,
see [22, 34], and especially [54, Example 2.14] and [18].

(4) For any object A in a quantaloid Q, we shall write QA for the Q-category P{A}
of contravariant presheaves on the one-object Q-category {A}. As in [49, Example 3.9],
we can explicitly describe QA: the set (QA)0 contains all Q-arrows with domain A; the
type of f : A → X is its codomain X; and for f : A → X and g : A → Y , we have
(QA)(g, f) = f ↙ g in Q(Y,X). As any category of presheaves, QA is (complete and)
cocomplete. Specifically, for µ ∈ (PQA)0, it follows from (2.6) that sup(µ) = µ(1A) since
the Yoneda embedding Y{A} : {A} → P{A} = QA maps the single object of {A} to 1A.
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Note that, if Q has more than one element, then QA is a Q-category, which can not fall
into the framework of quantale-enriched categories.

Many more examples can be found in the references.

3. Φ-cocomplete Q-categories

In order to develop domain theory in Q-categories, the first step is to build the concept
of directed completeness [3, 24]. Based on the successful experiences of studying domain
theory through subset systems, and taking into account the fact that there is no standard
concept of directedness in Q-categories, we shall work abstractly with Q-categories which
are cocomplete with respect to a suitable class of weights.

3.1. Definition. A class of presheaves Φ is determined by a set (ΦA)0 ⊆ (PA)0 for each
Q-category A, such that
(i) each (ΦA)0 contains all representable presheaves on A,
(ii) for every µ ∈ (ΦA)0 and every Q-functor F : A → B, µ ◦ F ♮ ∈ (ΦB)0.

We call µ ∈ (ΦA)0 a Φ-ideal in A.

Obviously, the Φ-ideals in A are the objects of a full Q-subcategory ΦA of PA; we
shall write the inclusion functor as iA : ΦA → PA. As PA is skeletal, so is ΦA. The first
condition in the above definition says exactly that the Yoneda embedding YA : A → PA
co-restricts to a Q-functor YA : A → ΦA; the second condition in the above definition says
exactly that, for any Q-functor F : A → B, the Q-functor F→ : PA → PB (co)restricts
to a Q-functor F→ : ΦA → ΦB.

From now on, we use Φ to denote a class of presheaves.

3.2. Definition. A Q-category A is said to be Φ-cocomplete if every Φ-ideal in A has
a supremum, that is, for every µ ∈ (ΦA)0, sup(µ) = colim(µ, 1A) exists.

An element a of type q in aQ-category A determines, and is determined by, aQ-functor
a : {q} → A : q 7→ a. Let ϕ : A c //B be a Q-distributor, b ∈ B0. Then ϕ(−, b) = b♮ ◦ ϕ
is a presheaf on A. A Q-distributor ϕ : A c //B is said to be a Φ-distributor, if for every
b ∈ B0, ϕ(−, b) is a Φ-ideal in A. Clearly, a Φ-ideal is a particular Φ-distributor. By the
relation between suprema of presheaves and general weighted colimits, it follows that:

3.3. Proposition. For any Q-category A, the following are equivalent:
(1) A is Φ-cocomplete,
(2) the co-restricted Yoneda embedding YA : A → ΦA is right adjoint (to µ 7→ sup(µ)),
(3) A has all colimits weighted by Φ-ideals,
(4) A has all colimits weighted by Φ-distributors.

3.4. Definition. A Q-functor F : A → B between two Q-categories is said to be Φ-
cocontinuous if it preserves all suprema of Φ-ideals that exist in A, that is, for every
ϕ ∈ (ΦA)0, if sup(ϕ) exists, then sup(F→(ϕ)) exists and equals F (sup(ϕ)).
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Again using the relation between suprema of presheaves and general weighted colimits,
it follows that:

3.5. Proposition. For any Q-functor F : A → B, the following are equivalent:
(1) F is Φ-cocontinuous,
(2) F preserves all colimits weighted by Φ-ideals that exist in A,
(3) F preserves all colimits weighted by Φ-distributors that exist in A.

Since the category PA of presheaves on A is cocomplete, it certainly is Φ-cocomplete
for any class of presheaves Φ. However, note that ΦA is not Φ-cocomplete in general. In
order to “fix” this, we need a further condition on the class Φ, that we recall first.

3.6. Definition. [53] A class of presheaves Φ is saturated if for each µ ∈ (ΦA)0 and
each G : A → PB for which each G(a) ∈ (ΦB)0, colim(µ,G) is in (ΦB)0 too.

3.7. Remark. If a class of presheaves Φ is saturated, then condition (ii) in Definition
3.1 follows from condition (i) in Definition 3.1 and the colimit-condition in Definition 3.6;
and that is how it was put in [53, Definition 4.1], where “non-saturated” classes were
simply not considered. The interesting point is, however, that the saturatedness of a class
of presheaves is equivalent to each ΦA being Φ-cocomplete, as we shall show next.

3.8. Proposition. For a class of presheaves Φ, the following are equivalent:
(1) for all A, ΦA is Φ-cocomplete and the inclusion iA : ΦA → PA is Φ-cocontinuous,
(2) Φ is saturated,
(3) the composite of any two Φ-distributors is a Φ-distributor.

In this case, for all Ψ ∈ (Φ(ΦA))0, supΨ = sup(i→A (Ψ)).

Proof. (1⇒2) Suppose that µ : A c // {q} is in (ΦA)0 and that G : A → PB is a Q-
functor for which each G(a) is in (ΦA)0. Then G is the composite of its co-restriction
G′ : A → ΦB and the inclusion iB : ΦB → PB. By assumption, colim(µ,G′) exists in
ΦB and is preserved by iB, that is, iB(colim(µ,G′)) = colim(µ, iB ◦ G′) = colim(µ,G).
Therefore the latter is in (ΦB)0, as wanted.
(2⇒1) This is in [53, Proposition 4.4].
(2 ⇔ 3) This is in [53, Proposition 4.2].
Assuming now the (equivalent) conditions in the statement, for any Ψ ∈ (Φ(ΦA))0 both
colim(Ψ, 1ΦA) = sup(Ψ) and colim(Ψ, iA) = colim(i→A (Ψ), 1PA) = sup(i→A (Ψ)) exist, and
colim(Ψ, 1ΦA) = iA(colim(Ψ, 1ΦA)) = colim(Ψ, iA). This explains the stated formula.

3.9. Remark. (1) If Q is a commutative unital quantale, then the concept of a saturated
class of presheaves agrees with that of a saturated class of weights in quantale-enriched
categories given in [27]. Thus, a saturated class of presheaves on Cat(Q) can be seen as
extension of a saturated class of weights on quantale-enriched categories in a many-typed
setting.

(2) Following the pioneer work of Wright, Wagner and Thatcher [61] on so-called subset
systems Z, order-theoretical, topological and categorical properties of posets have been
extended to the general Z-setting [5, 11, 30]. Recall that 2 is the two-element Boolean
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algebra, Cat(2) is the category of preordered sets and order-preserving maps. Thus, if Φ
is a saturated class of presheaves on Cat(2), then it is a union-complete subset system
in the sense of [61], albeit on preorders and with all Φ-ideals being lower sets. Strictly
speaking, union-complete subset systems Z were only defined for posets, and Z-sets need
not be a lower sets. However, this has little or no impact on developing the theory of
completeness and continuity of posets/preorders in a general setting. Thus, the concept
of a saturated class of presheaves on Cat(Q) can be viewed as a generalization of that of
a union-complete subset system on Poset in a many-typed and many-valued setting.

(3) In [53], Stubbe studied more categorical properties of Φ-cocomplete Q-categories
and Φ-cocontinuous Q-functors. In particular, [53, Theorem 4.6], contains the fact that
there is an essentially bijective correspondence between saturated classes Φ of presheaves
on Q-categories on the one had, and so-called full sub-KZ-doctrines (T , ε) of the free co-
completion KZ-doctrine P : Cat(Q) → Cat(Q) on the other. Particularly, any saturated
class of presheaves Φ determines the KZ-doctrine (a special 2-monad)

Φ : Cat(Q) → Cat(Q) : (F : A → B) 7→ (F→ : ΦA → ΦB)

whose image is precisely the category of Φ-cocomplete Q-categories and Φ-cocontinuous
functors. We refer to [53] for details.

(4) The minimal class of presheaves Φmin is that which contains only the representable
presheaves; it is saturated, and ΦminA = YA(A). The maximal class is that which contains
all presheaves; it is also saturated, and ΦmaxA = PA. In the next section we shall study
more interesting examples.

4. Examples of saturated classes of presheaves

With the rapid development of quantitative domain theory, ideals in quantale-enriched
categories and in L-ordered sets are studied and there are some elegant results [27, 31,
28, 62, 65]. Recently, Lai and Zhang gave a comparative study of three kinds of ideals in
fuzzy ordered sets [28], each of generalizing well-known posetal definitions.

Let us first recall the posetal situation. For a non-empty lower set I of a poset P , the
following are equivalent:
(i) I is an ideal : for every x, y ∈ I, there is some z ∈ I such that x, y ≤ z;
(ii) I is irreducible: for lower sets B,C of P , I ⊆ B ∪ C implies that I ⊆ B or I ⊆ C;
(iii) I is flat : for upper sets G,H of P , if I intersects with G and with H, then I

intersects with G ∩H.
The above characterizations of ideals in posets have been generalized to quantale-enriched
categories (or L-ordered sets) in [27, 28, 31, 62], where they are no longer equivalent, as
pointed out in [28]. In what follows, we shall introduce saturated classes of presheaves
that further generalize the above definitions to the ‘many-valued, many-typed’ setting of
quantaloid-enriched categories.

Directed sets and ideals in domain theory are usually assumed to be non-empty [14].
Based on the definition of inhabited fuzzy sets in [28], we shall give a corresponding
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concept for ideals in Q-categories.

4.1. Definition. A presheaf µ : A c // {q} is inhabited if

1q ≤
∨

a∈A0,ta=q

µ(a)

A copresheaf λ : {p} c //A is inhabited if

1p ≤
∨

a∈A0,ta=p

λ(a).

Next we recall that Dist(Q) is a quantaloid, so we can compute suprema (and hence
also infima) of parallel distributors. This applies in particular to parallel (co- or con-
travariant) presheaves, and we use this in the statements below.

4.2. Definition. A presheaf ϕ ∈ (PA)0 is:
1. an irreducible ideal if

PA(ϕ, ϕ1 ∨ ϕ2) = PA(ϕ, ϕ1) ∨ PA(ϕ, ϕ2)

holds for all ϕ1, ϕ2 ∈ (PA)0 with the same type;
2. a flat ideal if

ϕ ◦ (λ1 ∧ λ2) = ϕ ◦ λ1 ∧ ϕ ◦ λ2
holds for all λ1, λ2 ∈ (P†A)0 with the same type;

3. a weakly flat ideal if
ϕ ◦ (λ1 ∧ λ2) = ϕ ◦ λ1 ∧ ϕ ◦ λ2

holds for all inhabited copresheaves λ1, λ2 ∈ (P†A)0 with the same type.

4.3. Remark. (1) In [55], Tao, Lai and Zhang investigated flat weights in quantaloid-
enriched categories. Later, Lai studied irreducible ideals and flat ideals in quantale-
enriched categories in [28]. Note that, in [28], irreducible ideals and flat ideals are supposed
to be inhabited. Flat ideals in the sense of this paper are called weakly flat weights in
[55].

(2) Following the definition of an ideal given in [27], order-theoritical and categorical
properties of quantale-enriched categories are studied in a series of papers [31, 62]. By
Propositions 3.9 and 3.11 in [55], we know that if Q is a frame then ϕ is an inhabited flat
ideal if and only if ϕ is an ideal in the sense of [27].

(3) More particularly, suppose that Q is the two-element Boolean algebra 2 and that
A is a skeletal 2-category. By the fact that PA is the set of all lower sets of A with
inclusion order, we know that the following are equivalent:
(i) ϕ is an ideal in the poset A0;
(ii) ϕ is an inhabited irreducible ideal in the sense of Definitions 4.1 and 4.2;
(iii) ϕ is an inhabited flat ideal in the sense of Definitions 4.1 and 4.2.
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4.4. Theorem. Let I (resp., Iin) be the class of all irreducible ideals (resp., inhabited
irreducible ideals). These are saturated classes of presheaves.

Proof. Clearly, both classes contain all representable presheaves. Next, let ϕ : A c // {q}
be an irreducible ideal and G : A → PB a Q-functor such that each G(a) is irreducible.
For ϕ1, ϕ2 ∈ (PB)0 with same type, we have

PB(colim(ϕ,G), ϕ1 ∨ ϕ2)

= PB(sup(ϕ ◦G♮), ϕ1 ∨ ϕ2)

= PPB(ϕ ◦G♮, YPB(ϕ1 ∨ ϕ2)) (sup ⊣ YPB)
= PA(ϕ, YPB(ϕ1 ∨ ϕ2) ◦G♮) (G→ ⊣ G←)
= PA(ϕ,PB(G−, ϕ1 ∨ ϕ2))

= PA(ϕ,PB(G−, ϕ1) ∨ PB(G−, ϕ2)) (each G(a) is irreducible)

= PA(ϕ,PB(G−, ϕ1)) ∨ PA(ϕ,PB(G−, ϕ2)) (ϕ is irreducible)

= PA(ϕ, YPB(ϕ1) ◦G♮) ∨ PA(ϕ, YPB(ϕ2) ◦G♮)

= PPB(ϕ ◦G♮, YPB(ϕ1)) ∨ PPB(ϕ ◦G♮, YPB(ϕ2))

= PB(colim(ϕ,G), ϕ1) ∨ PB(colim(ϕ,G), ϕ2).

This suffices to conclude that I is a saturated class of presheaves (see also Remark 3.7).
In addition, suppose that ϕ and each G(a) are inhabited. We have∨

b∈B0,tb=q

colim(ϕ,G)(b) =
∨

b∈B0,tb=q

(ϕ ◦G♮ ◦ (YB)♮)(b)

=
∨

b∈B0,tb=q

∨
a∈A0

∨
ψ∈(PB)0

ϕ(a) ◦ PB(ψ,G(a)) ◦ PB(YB(b), ψ)

≥
∨

b∈B0,tb=q

∨
a∈A0

ϕ(a) ◦ PB(YB(b), G(a))

≥
∨

a∈A0,ta=q

(
ϕ(a) ◦

∨
b∈B0,tb=q

G(a)(b)

)
≥

∨
a∈A0,ta=q

(ϕ(a) ◦ 1q)

=
∨

a∈A0,ta=q

ϕ(a)

≥ 1q.

Thus, Iin is a saturated class of presheaves.

4.5. Theorem. Let F (resp., Fin, WF) be the class of flat ideals (resp., inhabited flat
ideals, weakly flat ideals). These are saturated classes of presheaves.
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Proof. Clearly, these classes contain all representable presheaves. Next, let ϕ : A c // {q}
be a flat ideal andG : A → PB aQ-functor such that eachG(a) is flat. For λ1, λ2 ∈ (P†B)0
with same type, we have

colim(ϕ,G) ◦ (λ1 ∧ λ2) = ϕ ◦G♮ ◦ (YB)♮ ◦ (λ1 ∧ λ2)
= ϕ ◦ PB(YB−, G−) ◦ (λ1 ∧ λ2)
= ϕ ◦ (PB(YB−, G−) ◦ λ1 ∧ A(YB−, G−) ◦ λ2)
= ϕ ◦ PB(YB−, G−) ◦ λ1 ∧ ϕ ◦ A(YB−, G−) ◦ λ2
= ϕ ◦G♮ ◦ (YB)♮ ◦ λ1 ∧ ϕ ◦G♮ ◦ (YB)♮ ◦ λ2
= colim(ϕ,G) ◦ λ1 ∧ colim(ϕ,G) ◦ λ2.

So, we can conclude that F and WF are saturated classes of presheaves. By similar
arguments given in Theorem 4.4, we obtain that Fin is a saturated class of presheaves.

Finally, based on the class of conical presheaves studied in [53, Section 5], we shall
introduce the third kind of ideals in Q-enriched categories. Below we shall write (Aq,≤q)
for the preordered set of objects of type q in A.

4.6. Definition. A presheaf ϕ : A c // {q} is a
- conical presheaf if there exists a set {ai}i∈I in (Aq,≤q) such that ϕ =

∨
i∈I A(−, ai);

- conical ideal if there exists a directed set {ai}i∈I in (Aq,≤q) such that ϕ =
∨
i∈I A(−, ai).

Since every directed set is nonempty, every conical ideal is inhabited.

4.7. Theorem. Let C (resp. CD) be the class of conical presheaves (resp. conical ideals).
These are saturated class of presheaves.

Proof. Clearly, both these classes contain all representable presheaves. That C is a
saturated class of presheaves is proved in [53, Proposition 5.3]. Now let ϕ : A c // {q} be a
conical ideal and G : A → PB a Q-functor such that each G(a) is a conical ideal. Then
there exist is a directed set {ai}i∈I in (Aq,≤q) such that ϕ =

∨
i∈I A(−, ai). For each ai,

there is a directed set {bik}k∈Ji such that G(ai) =
∨
k∈Ji B(−, b

i
k).

colim(ϕ,G) = ϕ ◦G♮ ◦ (YB)♮
= ϕ ◦ PB(YB−, G−)

=

(∨
i∈I

A(−, ai)

)
◦ PB(YB−, G−)

=
∨
i∈I

(A(−, ai) ◦ PB(YB−, G−))

=
∨
i∈I

PB(YB−, G(ai))

=
∨
i∈I

G(ai)
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=
∨
i∈I

∨
k∈Ji

B(−, bik)

By the directedness of {ai}i∈I and {bik}k∈Ji , also {bik | i ∈ I, k ∈ Ji} is a directed set.
Thus colim(ϕ,G) is a conical ideal.

5. Continuity in Q-categories

As mentioned before, Stubbe [52] studied “totally continuous” quantaloid-enriched cat-
egories, i.e. cocomplete quantaloid-enriched categories which satisfy a further continuity
condition with respect to the class of all presheaves. For quantale-enriched categories,
Hofmann and Waszkiewicz [19] expressed continuity with respect to any given class of
presheaves, without any cocompleteness requirement. In this section, we shall combine
these works to appropriately formulate Φ-continuity for quantaloid-enriched categories.

Recall that, given a class of presheaves Φ on Cat(Q), ΦA is the category of Φ-ideals in
A. It is a full subcategory of PA, and we know that the Yoneda embedding YA : A → PA
co-restricts to ΦA ⊆ PA. Now consider a further full subcategory of ΦA (and thus of
PA), determined by

(ΦsA)0 = {ϕ ∈ (ΦA)0 | sup(ϕ) exists}.

Because sup(YA(a)) = a for any a ∈ A0, and YA(sup(µ)) ≥ µ for any µ ∈ PA whenever
the supremum exists, we find that the co-restriction of the Yoneda embedding is right
adjoint to the restriction of the supremum map:

A
YA

;;⊥
sup

|| ΦsA

5.1. Definition. For a Q-category A and a class of presheaves Φ, the Φ-way-below
distributor on A is the distributor ⇓: A c //A defined by

A

c⇓ := (sup)♮ ↘ (YA)♮
��

c(YA)♮
((

ΦsA

A
c

(sup)♮

66

and the corresponding way-below functor is defined as F⇓ : A → PA : a 7→ ⇓Φ (−, a).

The Q-distributor ⇓ and the Q-functor F⇓ determine each other under the “classifying
property” of the Q-category PA, cf. [49, Proposition 6.1].

5.2. Proposition. For any Q-category A we have that ⇓ ≤ A (and thus also F⇓ ≤ YA
and ⇓ ◦ ⇓ ≤ ⇓).
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Proof. Consider the following diagram of Q-distributors:

A

c⇓
��

c(YA)♮
((

ΦsA c(YA)
♮

// A

A
c

(sup)♮

66

By definition of ⇓ we know that (sup)♮◦ ⇓ ≤ (YA)♮, so composing with (YA)
♮ provides

(YA)
♮ ◦ (sup)♮◦ ⇓ ≤ (YA)

♮ ◦ (YA)♮. Since (YA)
♮ ◦ (sup)♮ = (sup ◦ YA)♮ = (1A)

♮ = A and
(YA)

♮ ◦ (YA)♮ = A, we find A◦ ⇓ ≤ A, from which ⇓ ≤ A ↘ A = A follows.

Even though ⇓: A c //A is always a distributor, and so the corresponding functor
F⇓ : A → PA is well-defined, it need not be the case that F⇓ co-restricts to ΦsA.

5.3. Proposition. For a class of presheaves Φ and a Q-category A, the following state-
ments are equivalent:
(1) sup : ΦsA → A has a left adjoint,
(2) for all a ∈ A0, F⇓(a) ∈ (ΦsA)0 and sup(F⇓(a)) ∼= a,
(3) ⇓: A c //A is a Φ-distributor that is approximating, that is, it satisfies A = A ↙⇓.

In this case, F⇓ : A → PA factors through the full inclusion ΦsA ↪→ PA and the resulting
co-restriction F⇓ : A → ΦsA is the left adjoint to sup : ΦsA → A.

Proof. (1 ⇒ 2) Suppose that sup : ΦsA → A has a left adjoint L : A → ΦsA in Cat(Q),
then we can compute that

⇓ = (sup)♮ ↘ (YA)♮ Definition 5.1

= (L)♮ ↘ (YA)♮ L ⊣ sup

= (L)♮ ◦ (YA)♮ Equation 2.1

= ΦsA(YA−, L−) Equation 2.3

= PA(YA−, L−) full subcategory

and so, by the Yoneda Lemma, we find for any a ∈ A0 that

L(a) = PA(YA−, L(a)) = ⇓(−, a) = F⇓(a).

This implies that each F⇓(a) is in ΦsA. Moreover, from L ⊣ sup ⊣ YA and sup ◦ YA = 1A
we easily get sup ◦ L = 1A, which means here that sup(F⇓(a)) = a for all a ∈ A0.
(2 ⇒ 1) By hypothesis the functor F⇓ : A → PA factors through ΦsA ↪→ PA, and the
co-restriction F⇓ : A → ΦsA satisfies sup ◦F⇓ = 1A. A direct computation shows that, for
any ϕ ∈ ΦsA and a ∈ A0,

F⇓(sup(ϕ))(a) =
∧

ψ∈(ΦsA)0

A(sup(ϕ), sup(ψ)) ↘ ψ(a)

≤ A(sup(ϕ), sup(ϕ)) ↘ ϕ(a)
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≤ ϕ(a),

that is, F⇓ ◦ sup ≤ 1ΦsA. This means that F⇓ ⊣ sup.
(2 ⇔ 3) By Definition 5.1, ⇓ (−, a) = F⇓(a) for all a ∈ A0, and so ⇓: A c //A is a
Φ-distributor if and only if F⇓(a) ∈ Φ for each a ∈ A0. Furthermore,

sup(F⇓(a)) = colim(F⇓(a), 1A) = colim(⇓(−, a), 1A) = colim(⇓, 1A)(a)

and the functor colim(⇓, 1A) : A → A is characterized by

colim(⇓, 1A)♮ = (1A)♮ ↙⇓= A ↙⇓ .

Therefore we have that sup(F⇓(a)) exists and equals a for all a ∈ A0 if and only if
colim(⇓, 1A) = 1A, if and only if A = A ↙⇓.

5.4. Definition. A Q-category is said to be Φ-continuous if it satisfies the equivalent
conditions of Proposition 5.3.

5.5. Proposition. If Φ is a saturated class of presheaves and A is a Φ-continuous Q-
category, then ⇓: A c //A is interpolating, that is, ⇓ = ⇓ ◦ ⇓.
Proof. Using (3) of Proposition 5.3 we can compute for the Φ-continuous A that

(1A)♮ = A = A ↙⇓= (A ↙⇓) ↙⇓= A ↙ (⇓ ◦ ⇓) = (1A)♮ ↙ (⇓ ◦ ⇓)

which shows that 1A = colim(⇓ ◦ ⇓, 1A). From this we have, for any a ∈ A0,

a = colim(⇓ ◦ ⇓, 1A)(a) = colim((⇓ ◦ ⇓)(−, a), 1A) = sup((⇓ ◦ ⇓)(−, a)).

Because ⇓: A → A is a Φ-distributor and the class Φ is saturated, also ⇓ ◦ ⇓ is a Φ-
distributor (cf. (3) of Proposition 3.8). The above thus implies that (⇓ ◦ ⇓)(−, a) ∈ ΦsA,
and through the adjunction F⇓ ⊣ sup we get

⇓(−, a) = F⇓(a) ≤ (⇓ ◦ ⇓)(−, a).

This proves that ⇓ ≤ ⇓ ◦ ⇓; the reverse inequality was proved in Proposition 5.2.

5.6. Remark. (1) If Φ = Fin, Φ = CD or Φ = Iin, then a (Φ-cocomplete) Φ-continuous
2-category is just a (directed complete) continuous poset in the sense of [14].

(2) If Q = 2, Φ is a saturated class of presheaves, Z is a union-complete subset
system, then a Φ-continuous 2-category is just a Z-continuous poset in the sense of [6],
and a Φ-continuous Φ-compelte 2-category is just a Z-continuous poset in the sense of
[5].

(3) In the case that Q is a commutative unital quantale, Φ and J are saturated,
the concept of a Φ-continuous Q-category agrees with that of a J-continuous quantale-
enriched category in [19].

(4) Let Q be a frame and let Fin be the class of presheaves of inhabited flat ideals.
Note that the concept of an inhabited flat ideal agree with the concept of an ideal in
[27]. Thus, an Fin-continuous Fin-cocomplete Q-category is just a continuous Ω-partially
ordered set or a fuzzy domain in the sense of [27, 62].
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5.7. Remark. The totally continuous Q-categories as defined and studied in [52] cor-
respond (up to the duality referred to in an earlier footnote) with the P-cocomplete P-
continuous Q-categories in this paper. It is furthermore shown in [52, Proposition 5.1]
that a Q-category A is P-cocomplete and P-continuous if and only if it is the category of
“regular presheaves on a regular Q-semicategory”. We shall not recall this in full general-
ity here, but simply mention a particular case: any presheaf category PA is P-cocomplete
and P-continuous. Indeed, referring to Equations 2.6 and 2.8, we know that

F⇓ : PA → PPA : ϕ 7→ Y →A (ϕ) and sup : PPA → PA : Ψ 7→ Y ←A (Ψ)

are left/right adjoint to each other.

Given an object A ∈ Q0, recall that we write {A} for the singleton Q-category whose
single hom-arrow is 1A, and that QA denotes P{A}. It thus follows from Remark 5.7
that QA is P-continuous. To prepare for further examples, we include it here, simplifying
somewhat our notation:

5.8. Proposition. Let A be any object in any quantaloid Q, then QA is P-continuous
and the left adjoint to the Q-functor sup : PQA → QA is given by

d : QA → PQA : f 7→
(
df : QA c // {dom(f)}

)
where df(g) = f ◦ (1A ↙ g).

If 1A = ⊤A,A is the top element of Q(A,A), then this simplifies to df(g) = f ◦ ⊤cod(g),A.

Proof. It is a matter of making explicit the formula in Remark 5.7 for A = {A}. An
object of QA is some morphism f : A → X in Q. The Yoneda embedding Y{A} : {A} 7→
QA sends the single object of {A} to 1A. Therefore

df := F⇓(f) = Y →{A}(f) = f ◦ QA(−, 1A) = f ◦ (1A ↙ −)

as claimed. For any g : A→ Y we have

⊤Y,A ≤ 1A ↙ g ⇐⇒ ⊤Y,A ◦ g ≤ 1A,

the latter of which holds whenever 1A = ⊤A,A; thus we get ⊤Y,A = 1A ↙ g in this case.

In a similar way we find:

5.9. Proposition. Let A be any object in a quantaloid Q for which 1A = ⊤A,A. If, for
every morphism f : A → X and object B in Q, the map f ◦ − : Q(B,A) → Q(B,X)
preserves finite meets, then QA is F-continuous.

Proof. Let λ : {q} c //QA be any copresheaf. Then for f ∈ Q(A,X) and g ∈ Q(A, Y )
we have QA(f, g) ◦ λ(f) ≤ λ(g), i.e., g ↙ f ≤ λ(g) ↙ λ(f). Thus, ⊤Y,A ≤ ⊤A,A ↙
g ≤ λ(⊤A,A) ↙ λ(g), whence ⊤Y,A ◦ λ(g) ≤ λ(⊤A,A). Furthermore, if g ∈ Q(A,A), then
λ(g) ≤ λ(1A).
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Now, for f ∈ (QA)0 and λ1, λ2 ∈ (P†QA)0 with the same type q, we have

(df ◦ λ1) ∧ (df ◦ λ2) =

 ∨
g∈(QA)0

df(g) ◦ λ1(g)

 ∧

 ∨
g∈(QA)0

df(g) ◦ λ2(g)


=

 ∨
g∈(QA)0

f ◦ ⊤cod(g),A ◦ λ1(g)

 ∧

 ∨
g∈(QA)0

f ◦ ⊤cod(g),A ◦ λ2(g)


= f ◦

 ∨
g∈(QA)0

⊤cod(g),A ◦ λ1(g)

 ∧ f ◦

 ∨
g∈(QA)0

⊤cod(g),A ◦ λ2(g)


= (f ◦ λ1(1A)) ∧ (f ◦ λ2(1A))

and

df ◦ (λ1 ∧ λ2) =
∨

g∈(QA)0

df(g) ◦ (λ1 ∧ λ2)(g)

≥ df(1A) ◦ (λ1 ∧ λ2)(1A)
= f ◦ (λ1(1A) ∧ λ2(1A)).

By the above arguments, it is easy to see that (df ◦ λ1) ∧ (df ◦ λ2) = df ◦ (λ1 ∧ λ2). Thus
df is a flat ideal for every f ∈ (QA)0. Therefore QA is F -continuous.

For the next Proposition, we recall from [22, 55] that a (unital) quantale (Q,
∨
,&, 1),

in which we shall write the residuations as (a&−) ⊣ (a\−) and (−&a) ⊣ (−/a), is said to
be divisible when

a&(a\b) = a ∧ b = (b/a)&a

for all a, b ∈ Q. As pointed out in the cited references, any such divisible quantale enjoys
several properties, notably:
(i) Q is integral, that is, 1 = ⊤,
(ii) Q is localic, that is, a ∧

∨
j bj =

∨
j(a ∧ bj) for all a, (bj)j ∈ Q,

(iii) (b ∧ c)&a = (b&a) ∧ (c&a) and a&(b ∧ c) = (a&b) ∧ (a&c) for all a, b, c ∈ Q.
As Hohle and Kubiak [22] first pointed out, there is an important quantaloid BQ associated
with a divisible quantale, as follows:

- objects: are the elements x, y, z, ... of Q,
- hom-lattices: BQ(x, y) := {a ∈ Q | a ≤ x ∧ y} (with order inherited from Q),
- composition: for a ∈ BQ(x, y) and b ∈ B(y, z), b ◦ a := b&(y\a) = (b/y)&a,
- identities: 1x := x.

Categories enriched over this quantaloid can be regarded as fuzzy sets endowed with fuzzy
preorders [22, 55], and when applied to the divisible quantale ([0,∞],

∧
,+, 0) of Example

2.7(3), those enriched categories are (generalized) partial metric spaces [22, 54, 18]. (In a
suitable context, the construction of BQ from Q has a universal property, see [54, Example
2.14].)



18 MIN LIU, SHENGWEI HAN AND ISAR STUBBE

5.10. Proposition. Let (Q,
∨
,&, 1) be a unital divisible quantale and BQ be the quan-

taloid described above. Then for every object A in BQ, (BQ)
A is F-continuous.

Proof. The quantaloid BQ being integral (i.e. 1x = x is the top element of BQ(x, x)),
we only need to show that, for any b ∈ BQ(y, z) and x ∈ (BQ)0, the sup-morphism
b ◦ − : BQ(x, y) → BQ(x, z) preserves finite meets. For a1, a2 ∈ BQ(x, y) we compute:
b◦ (a1∧a2) = b&(y\(a1∧a2)) = b&(y\a1∧y\a2) = b&(y\a1)∧ b&(y\a2) = b◦a1∧ b◦a2.

5.11. Example. Following [54, Examples 2.7 and 2.11], for any set X we denote by
Q(X) the quantaloid whose objects are the subsets of X, and in which the arrows from
S ⊆ X to T ⊆ X are precisely all U ⊆ S ∩ T . The composition law in Q(X) is given
by intersection, and the identity on the object S ⊆ X is S : S → S itself. Using Q(X)-
enriched categories, we can overcome the issue of partial elements in a quantale-enriched
category. In fact, it is easy to see that the quantale (P(X),

⋃
,∩, X) of subsets of X is

divisible, and that the quantaloid Q(X) is precisely BP(X). Therefore, for every object S
in Q(X), the Q(X)-enriched category Q(X)S is F -continuous.

6. Algebraicity in Q-categories

In this section we sketch the appropriate generalization of [52, Section 6]: we define and
study (approximation by) Φ-compact elements in Q-categories.

Recall from Proposition 5.2 that, for any class of presheaves Φ and any Q-category A,
we always have a Q-functor F⇓ : A → PA which satisfies F⇓ ≤ YA. We now study when
this inequality is actually an equality.

6.1. Proposition. Let A be a Q-category and Φ a class of presheaves on Cat(Q). For
a ∈ A0, the following condititions are equivalent:
(1) YA(a) ≤ F⇓(a),
(2) A(x, a) ≤ ⇓(x, a) for every x ∈ A0,
(3) A(a, x) ≤ ⇓(a, x) for every x ∈ A0,
(4) 1ta ≤ ⇓(a, a).
(5) A(a, sup(ϕ)) ≤ ϕ(a) for all ϕ ∈ (ΦsA)0.

In all but the fourth condition, the inequality can be replaced by an equality.

Proof. (1 ⇔ 2) Is a tautology.
(2 ⇒ 4 and 3 ⇒ 4) Put x = a and use that 1ta ≤ A(a, a).
(4 ⇒ 2 and 4 ⇒ 3) Follows directly from the distributor inequalities

⇓(a, a) ◦ A(x, a) ≤ ⇓(x, a) and A(a, x)◦ ⇓(a, a) ≤ ⇓(a, x).

(4 ⇔ 5) Follows directly from an explicit computation of ⇓ with Definition 5.1.
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6.2. Definition. Let A be a Q-category and Φ a class of presheaves on Cat(Q). We
say that a ∈ A0 is Φ-compact if the equivalent condititions in Proposition 6.1 hold.

There are non-trivial examples of such compact elements:

6.3. Proposition. Let Φ be a saturated class of presheaves on Cat(Q). For any Q-
category A and any x ∈ A0, the representable presheaf YA(x) is Φ-compact in ΦA.

Proof.By Proposition 3.8 we know that ΦA is Φ-cocomplete, and that the full embedding
iA : ΦA → PA is Φ-cocontinuous. For clarity, we shall write Y ′A : A → ΦA for the
factorisation of the Yoneda embedding YA : A → PA through iA. Then we can compute
for any Ψ ∈ (Φ(ΦA))0 and x ∈ A0 that

ΦA(Y ′A(x), sup(Ψ)) = PA(i(Y ′A(x)), i(sup(Ψ))) full embedding

= PA(YA(x), sup(i→A (Ψ))) Φ-cocontinuity

= sup(i→A (Ψ))(x) Equation 2.4

= (i→A (Ψ))(YA(x)) Equation 2.8

= Ψ ◦ PA(YA(x), i−) definition of i→A
= Ψ ◦ ΦA(Y ′A(x),−) full embedding

≤ Ψ(Y ′A(x)) distributor inequality

The result follows from (5) in Proposition 6.1.

Writing Ac for the full subcategory determined by the Φ-compact elements of A, it is
clear from the definition that the full inclusion jA : Ac ↪→ A is the inverter [9] of the 2-cell

A
YA

))

≤

F⇓

55 PA

in Cat(Q). We furthermore define the Q-distributor

ΣA := (jA)♮ ◦ (jA)♮ : A c //A,
and use the classifying property of PA to define the functor

SA : A → PA : a 7→ ΣA(−, a)

too. By Propositions 6.1 and 5.2 it easily follows that

ΣA(x, y) =
∨
a∈Ac

A(a, y) ◦ A(x, a) ≤
∨
a∈Ac

⇓(a, y) ◦ ⇓(x, a) ≤ ⇓(x, y),

that is ΣA ≤ ⇓ in Dist(Q), and thus SA ≤ F⇓ in Cat(Q) too.

6.4. Definition. Let Φ be a class of presheaves on Cat(Q). We say that a Q-category
A is Φ-algebraic if, for every x ∈ A0, SA(x) ∈ (ΦsA)0 and x ∼= sup(SA(x)).
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6.5. Remark. By a similar analysis as in Remarks 5.6 and 5.7, we can see that algebraic
posets [14], Z-algebraic posets [6], algebraic Ω-categories [64] and totally algebraic Q-
categories [52] are particular cases of (skeletal) Φ-algebraic Q-categories.

6.6. Proposition. Let Φ be a class of presheaves on Cat(Q). A Q-category A is Φ-
algebraic if and only if A is Φ-continuous and SA = F⇓.

Proof. Sufficiency is clear. Conversely, supposing that A is Φ-algebraic, we can compute,
for any x, y ∈ A0,

⇓(y, x) =
∧

ϕ∈(ΦsA)0

A(x, sup(ϕ)) ↘ ϕ(y)

≤ A(x, sup(SA(x))) ↘ SA(x)(y) SA(x) ∈ (ΦsA)0
≤ A(x, x) ↘ SA(x)(y) sup(SA(x)) = x

≤ 1tx ↘ ΣA(y, x) 1tx ≤ A(x, x)
= ΣA(y, x)

Thus F⇓ ≤ SA, and since the converse inequality always holds, the result follows.

6.7. Proposition. Let Φ be a saturated class of presheaves on Cat(Q). Then for any
Q-category A, ΦA is (Φ-cocomplete and) Φ-algebraic.

Proof. Making use of Proposition 3.8, we denote by Y ′A : A → ΦA the factorisation of
the Yoneda embedding YA : A → PA through the full embedding iA : ΦA → PA. For the
functor (Y ′A)

→ : ΦA → Φ(ΦA) and any ϕ ∈ (ΦA)0 we may then compute that

sup
(
(Y ′A)

→(ϕ)
)
= sup

(
((iA)

→ ◦ Y ′A→)(ϕ)
)

Proposition 3.8

= sup
(
(YA)

→(ϕ)
)

Equation 2.7

= sup
(
ϕ ◦ (YA)♮

)
definition of (YA)

→

= ϕ ◦ (YA)♮ ◦ (YA)♮ Equation 2.8

= ϕ ◦ A Equation 2.5

= ϕ.

Similarly, for any Ψ ∈ (Φ(ΦA))0, we can spell out that

(Y ′A)
→
(
sup(Ψ)

)
= Ψ ◦ (iA)♮ ◦ (YA)♮ ◦ (Y ′A)♮ as above

= Ψ ◦ (iA)♮ ◦ (iA ◦ Y ′A)♮ ◦ (Y ′A)♮ YA = iA ◦ Y ′A
= Ψ ◦ (iA)♮ ◦ (iA)♮ ◦ (Y ′A)♮ ◦ (Y ′A)♮ Equation 2.2

= Ψ ◦ (Y ′A)♮ ◦ (Y ′A)♮ iA is fully faithful

≤ Ψ. (Y ′A)♮ ⊣ (Y ′A)
♮
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That is, (Y ′A)
→ : ΦA → Φ(ΦA) is left adjoint to sup : Φ(ΦA) → ΦA. By Proposition 5.3,

ΦA is Φ-continuous and F⇓ = (Y ′A)
→ on ΦA. Finally, for any ϕ1, ϕ2 ∈ (ΦA)0 we compute

that

F⇓(ϕ1)(ϕ2) =
(
(Y ′A)

→(ϕ1)
)
(ϕ2) shown above

=
(
ϕ1 ◦ (Y ′A)♮

)
(ϕ2) definition of (Y ′A)

→

=
( ∨
x∈A0

ϕ1(x) ◦ ΦA(−, Y ′A(x))
)
(ϕ2) definition of (Y ′A)

♮

=
∨
x∈A0

ϕ1(x) ◦ ΦA(ϕ2, Y
′
A(x))

=
∨
x∈A0

ΦA(Y ′A(x), ϕ1) ◦ ΦA(ϕ2, Y
′
A(x)) Equation 2.4

≤
∨

κ∈((ΦA)c)0

ΦA(κ, ϕ2) ◦ ΦA(ϕ1, κ) Proposition 6.3

= ΣΦA(ϕ2, ϕ1)

= SA(ϕ1)(ϕ2)

So we find that F⇓ ≤ SA on ΦA, and since the inverse inequality always holds, we find
F⇓ = SA. By Proposition 6.6, ΦA is Φ-algebraic.

6.8. Proposition. Let Φ be a class of presheaves on Cat(Q). If A is a Φ-cocomplete
and Φ-algebraic Q-category, then A ≃ Φ(Ac).

Proof. For the full embedding jA : Ac → A, the co-restriction Y ′A : A → ΦA of the
Yoneda embedding, and its left adjoint sup : ΦA → A, consider the composite functors

ΦA
(jA)

←

##

A

Y ′A
>>

F
// Φ(Ac)

ΦA
sup

  

Φ(Ac)

(jA)
→ ;;

G
// A

Then we have, for any x ∈ A0,

(G ◦ F )(x) = (sup ◦ (jA)→ ◦ (jA)← ◦ Y ′A)(x)

= sup
(
A(−, x) ◦ (jA)♮ ◦ (jA)♮

)
= sup(ΣA(−, x))
= sup(SA(x))
∼= x,

so G ◦ F ∼= 1A. Similarly, for any ϕ ∈ Φ(Ac),

(F ◦G)(ϕ) = ((jA)
← ◦ Y ′A ◦ sup ◦ (jA)→)(ϕ)
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= Y ′A

(
sup((jA)

→(ϕ))
)
◦ (jA)♮

= A
(
−, sup((jA)→(ϕ))

)
◦ A(jA−,−)

= A
(
jA−, sup((jA)→(ϕ))

)
= ϕ,

(the last equality follows from Proposition 6.1 (5)) and so G ◦ F = 1Φ(Ac) too. This gives
the required equivalence.

By Propositions 6.7 and 6.8 we can conclude that:

6.9. Theorem. Let Φ be a saturated class of presheaves on Cat(Q). Then a Q-category
A is Φ-cocomplete and Φ-algebraic if and only if A ≃ ΦB for some Q-category B.

If A is a skeletal Q-category, then the equivalence in the above Theorem is in fact an
isomorphism.

7. Conclusion and some further work

In this paper, we develop some basic concepts of continuous Q-categories. We mainly
proposed three kinds of saturated classes of presheaves. Not only are they proper general-
izations of the concept of ideals in domain theory but also they have different properties.
This may provide us an useful tool to develop a theory of dynamic domains. Up to now,
the concept of continuity in posets has undergone a series of generalizations, as indi-
cated in the following diagram. (Here the concepts of continuous posets, Z-continuous
posets and J-continuous quantale-enriched categories are in the sense of [14], [6] and [19],
respectively.)

Continuous posets

?

Z-continuous posets

?

Z-level

J-continuous quantale-enriched categories

?

Many-valued level

Φ-continuous quantaloid-enriched categories Many-typed and many-valued level

With the rapid development of related disciplines, there are many aspects of continuous
quantaloid-enriched categories that deserve further study:



IDEALS AND CONTINUITY FOR QUANTALOID-ENRICHED CATEGORIES 23

(1) Completely distributive quantaloid-enriched categories are developed in [52]. In
classic domain theory, we know that there exist close relations between the category
of continuous dcpos, the category of posets and the category of completely distributive
lattices. Thus, we can investigate categorical relations between continuous quantaloid-
enriched categories and some other structures such as completely distributive quantaloid-
enriched categories.

(2) Exponentiable functors between quantaloid-enriched categories are studied in [10].
Turning to the continuous setting, this problem seems to be more complicated. Thus, how
to characterize exponentiable functors between continuous quantaloid-enriched categories
is an interesting problem.

(3) A theory of quantaloid-enriched topological spaces was developed by Höhle in
[21], which forms a common framework for many-valued topology as well as for non-
commutative topology. This may give us an inspiration to study the topological aspects
of continuous quantaloid-enriched categories.

Domain theory is also studied in the framework of order-enriched categories, based on
the concept of Kock-Zöberlein monads, by Hofmann and Sousa [17]. These works can be
viewed as generalizations of Domain Theory to categorical levels in different directions
and they may provide inspirations to each other.
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