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Résumé. On étudie les préfaisceaux sur des semicatégories enrichies dans un
quantalöıde: cela donne lieu à la notion de préfaisceau régulier. Une semi-
catégorie est régulière si tous les préfaisceaux représentables sont réguliers, et
ses préfaisceaux réguliers forment alors une (co)localistation essentielle de la
catégorie de tous ses préfaisceaux. La notion de semidistributeur régulier per-
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1 Introduction

In [Moens et al., 2002] the theory of regular modules on an R-algebra without unit,
for R a commutative ring, was generalized to a theory of regular presheaves on a
V-enriched semicategory, for V a symmetric monoidal closed base category. As a
monoidal category V is a one-object bicategory, it is natural to ask in how far in
the above the base V can be replaced by a bicategory W (thus necessarily loosing
symmetry of the tensor). Here we present such a theory of regular presheaves on a
Q-enriched semicategory, where now Q is any (small) quantaloid.

A quantaloid is a Sup-enriched category; it is thus in particular a bicategory.
There is a theory of categories enriched in a quantaloid Q, as particular case of
categories enriched in a bicategory. A presentation thereof is given in [Stubbe, 2004a]
which is our reference for all the basic notions and results concerning Q-categories
that we may need further on. A Q-semicategory is then simply a “Q-category
without unit-inequalities”.
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A presheaf on a Q-semicategory A is formally the same thing as a presheaf on the
free Q-category on A. Thus the presheaves on A constitute a Q-category PA. But
the behaviour of those presheaves on a semicategory is radically different from that of
presheaves on a category: although there is a Yoneda semifunctor A //PA, sending
an object to a representable presheaf, there is no “Yoneda lemma” for semicategories!
This leads us to consider two specific kinds of presheaves on a Q-semicategory: those
which are canonically the colimit of representable presheaves, that we call regular
presheaves, and those for which homming with a representable gives its value in the
representing object, that we call Yoneda presheaves. A semicategory for which all
representables are regular, is called a regular semicategory (and a semicategory for
which all representables are Yoneda, is a category). Our treatment of these matters
is sometimes different from [Moens et al., 2002]; but we recover their results (modulo
a translation from V-enrichment to Q-enrichement), so we use their terminology.

An important result is the following: regular presheaves on a regular Q-semicat-
egory A form a Q-category RA which is an essential (co)localisation of the category
PA of all presheaves on A; and the image of the ultimate right adjoint involved in
that (co)localisation is the Q-category YA of Yoneda presheaves on A. From there
on, and with a suitable notion of regular semidistributor between regular semicate-
gories, it is a matter of straightforwardly generalizing Q-category theory to obtain
an aspect of Morita equivalence for semicategories: for regular Q-semicategories A
and B, RA is equivalent to RB if and only if A and B are isomorphic in the quan-
taloid of regular semidistributors. That regular Q-semicategories are profoundly
different from Q-categories, is then exemplified by the fact that not every regular
Q-semicategory is Morita equivalent to a Q-category.

An inspiration for this work has been the search for a suitable notion of “sheaf
on a quantale (or quantaloid) Q”, generalizing sheaves on a locale Ω. Some have
suggested that the regular Q-semicategories should play this rôle [Van den Bossche,
1995; van der Plancke, 1997], for an Ω-set is indeed exactly the same thing as a
symmetric regular Ω-semicategory1. This is not entirely our opinion, even though
the regular presheaves on an Ω-set are precisely its Ω-subsets. We will present our
point of view on “(ordered) sheaves on a quantaloid” in [Stubbe, 2004b] for it is too
involved to include it here; but the results of the present study – in particular the
notions of regular semicategory, regular semidistributor and regular semifunctor –
are crucial for that further development.

Another interesting point of view on regular semicategories is the following: un-
derstanding a Q-semicategory as (a classification into Q of) a transitive relation on
a (Q-typed) set, the regularity of that semicategory comes down to the interpolation
property for that transitive relation. For example, a transitive relation ≺ on a set
A is a 2-enriched semicategory; its regularity would mean that for every a ≺ b in

1However those authors did not study “regularity” an sich, as we do here. Instead, based on

heuristic arguments they proposed an algebraic gadget called Q-set as generalization of Ω-set. But

it turns out that such a Q-set is precisely a regular Q-semicategory.
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A there is an x in A such that a ≺ x ≺ b. The way-below relation on a continuous
order is thus a regular 2-semicategory; moreover the (covariant) regular presheaves
on such a regular semicategory are its Scott-open subsets, and the (contravariant)
Yoneda presheaves the Scott-closed ones. This gives an understanding of the Q-
category RA of regular presheaves on a regular Q-semicategory as some kind of
Scott-topology on the objects of A.

Finally we should mention that the quantaloid of regular Q-semicategories and
regular distributors enjoys a universal property: it is the Cauchy completion of the
base quantaloid Q, i.e. it is its completion for absolute weighted (co)limits in the
(illegitimate) category of quantaloids and quantaloid homomorphisms. As this is
not the main theme of this paper, we have merely added some useful hints (with
references) in an appendix.

2 Semicategories, semidistributors and semifunctors

Throughout Q denotes a small quantaloid.

Definition 2.1 A Q-semicategory A consists of

- objects: a Q-typed set2 A0,
- hom-arrows: for all a, a′ ∈ A0, a Q-arrow A(a′, a) : ta // ta′,

satisfying

- composition-inequalities: for all a, a′, a′′ ∈ A0, A(a′′, a′) ◦ A(a′, a) ≤ A(a′′, a)
in Q.

Definition 2.2 For Q-semicategories A and B, a semidistributor Φ: A c // B is de-
termined by

- distributor-arrows: for all a ∈ A0, b ∈ B0, a Q-arrow Φ(b, a): ta // tb

satisfying

- action-inequalities: for all a, a′ ∈ A0 and b, b′ ∈ B0, Φ(b, a′)◦A(a′, a) ≤ Φ(b, a)
and B(b, b′) ◦ Φ(b′, a) ≤ Φ(b, a).

Definition 2.3 For Q-semicategories A and B, a semifunctor F : A // B is

- object-mapping: a map F : A0
// B0: a 7→ Fa

satisfying

- type-equalities: for all a ∈ A0, t(Fa) = ta,
- action-inequalities: for all a, a′ ∈ A0, A(a′, a) ≤ B(Fa′, Fa).

2A Q-typed set X is an object of the slice category Set/Q0 of sets over the object-set of Q. In

other terms, such is a set X to every element of which is associated an object of Q: for every x ∈ X
there is a tx in Q (which is called the type of x in Q). The notation with a “t” for the types of

elements in a Q-typed set is generic: even for two different Q-typed sets X and Y , the type of

x ∈ X is written tx and that of y ∈ Y is ty.
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A Q-semicategory is precisely a “Q-category without unit-inequalities”: indeed,
take the data and axioms for a Q-semicategory A and add the requirement that

- unit-inequalitities: for all a ∈ A0, 1ta ≤ A(a, a),
and one has the definition of “Q-category”. Consequently, any Q-category is a
Q-semicategory (but the converse is obviously false).

When A and B are Q-categories, then a semidistributor from A to B is a distribu-
tor, and a semifunctor from A to B is a functor. The reason is that neither a distrib-
utor nor a functor between Q-categories make any reference to the unit-inequalities
in its domain and codomain; this is ultimately a consequence of the base quantaloid
Q being locally ordered. The use of the words “semidistributor” and “semifunctor”
is meant to stress that domain and codomain may be Q-semicategories instead of
categories.

Example 2.4 Let 2 denote the two-element Boolean algebra; regard it as a one-
object quantaloid. A 2-semicategory A is a set A = A0 with a transitive binary
relation ≺ defined as a ≺ b ⇐⇒ A(a, b) = 1. So, for example, any strict order
is a 2-semicategory (but not a 2-category). A semifunctor F : A // B between 2-
semicategories is then a relation-preserving map A0

// B0:x 7→ Fx (x ≺ y implies
Fx ≺ Fy); and a semidistributor Φ: A c // B is a relation Φ ⊆ B0 × A0 which is
“up-closed” in A and “down-closed” in B.

Example 2.5 The objects of the topos Sh(Ω) of sheaves on a locale Ω may be
described as Ω-sets: such is a set A together with a map [· = ·]:A×A // Ω satisfying
axioms that say precisely that A, with A0 = A and A(a, b) = [a = b], is a symmetric
Ω-semicategory, with Ω viewed as one-object quantaloid. (“Symmetry” obviously
means that A(a, b) = A(b, a) for all a, b ∈ A0).

Clearly semifunctors can be composed by composing the object-mappings, and
the identity object-mapping is the identity semifunctor for this composition, pre-
cisely as was the case for functors.

Proposition 2.6 Q-semicategories and semifunctors form a category SCat(Q), of
which Cat(Q) is a full subcategory.

Every Q-semicategory A determines a Q-category A in the following way:
- objects: (A)0 = A0 as Q-typed sets,

- hom-arrows: for a, a′ ∈ (A)0, A(a′, a) =

{
A(a′, a) if a′ 6= a,

A(a, a)
∨

1ta if a′ = a.

The inclusion semifunctor iA: A // A: a 7→ a displays A as free Q-category on the
Q-semicategory A, as the following is a trivial fact.

Proposition 2.7 For a Q-semicategory A and a Q-category C, a type-preserving
object-mapping F : A0

// C0:A 7→ Fa determines a semifunctor F : A // C if and
only if it determines a functor F : A // C.
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Explicitly, for every semicategory A and category C,

Cat(Q)(A,C) = SCat(Q)(A,C), (1)

so there is an adjuction (−) a i:Cat(Q)
oo

// SCat(Q) displaying Q-categories and
functors as a full reflective subcategory of Q-semicategories and semifunctors.

As for semidistributors, for two Q-semicategories A and B, denote Distrib(A,B)
for the set of semidistributors with domain A and codomain B. The proof of the
following is straightforward.

Proposition 2.8 For any two Q-semicategories A and B, a collection of Q-arrows
Φ(b, a): ta // tb, for a ∈ A0 and b ∈ B0, determines a semidistributor Φ: A c // B
between semicategories if and only if it determines a distributor Φ: A c // B between
categories.

That is to say, for all Q-semicategories A and B,

Distrib(A,B) = Dist(Q)(A,B). (2)

The right hand side of (2) is a sup-lattice: namely a hom-object of the quantaloid
Dist(Q) of Q-categories and distributors. Therefore the left hand side is a sup-lattice
too: for semidistributors (Φi: A c // B)i∈I the supremum

∨
i Φi: A c // B has elements

(
∨
i

Φi)(b, a) =
∨
i

Φi(b, a) for a ∈ A0 and b ∈ B0. (3)

(That is to say,
∨

i Φi is the semidistributor corresponding through (2) to the sup-
remum of the distributors Φi: A c // B between the free categories.)

Further, (2) also suggests a “composition law” for semidistributors: given se-
midistributors Φ: A c // B and Ψ: B c // C, let the “composite” Ψ ⊗ Φ: A c // C have
distributor-arrows(

Ψ⊗ Φ
)
(c, a) =

∨
b∈B0

Ψ(c, b) ◦ Φ(b, a) for a ∈ A0 and c ∈ C0. (4)

(So Ψ⊗Φ corresponds through (2) to the composition in Dist(Q) of Φ: A c // B with
Ψ: B c // C.)

Surely the “composition” in (4) distributes over the suprema in (3). But the
sup-lattices of semidistributors between semicategories are not the hom-objects of
some “quantaloid of all semicategories and semidistributors” (and therefore we’ve
put the word “composition” in the previous paragraph between inverted commas):
even though any Q-semicategory A still determines a semidistributor A: A c // A,
with distributor-arrows

A(a′, a): ta // ta′ for a, a′ ∈ A0, (5)

this endo-semidistributor is in general not the identity for the “composition” in (4)!
(The definition of ‘regular semicategory’ and ‘regular semidistributor’ fix precisely
this problem—see especially section 4.)

5



3 Presheaves on a semicategory

Contravariant presheaves

Recall that, given a Q-category C, a contravariant presheaf of type X on C is a
distributor with domain3 ∗X and codomain C. Those presheaves are the objects of a
new Q-category PC. The hom-arrow PC(ψ, φ):X // Y between objects φ: ∗X

c // C
to ψ: ∗Y

c // C is (the single element of) the lifting [ψ, φ] in the quantaloid Dist(Q);
explicitly, PA(ψ, φ) =

∧
c∈C[ψ(c), φ(c)] (an infimum of liftings in Q). All this now

motivates the following.

Definition 3.1 A contravariant presheaf of type X on a Q-semicategory A is a
semidistributor from ∗X into A.

Proposition 3.2 The contravariant presheaves on a Q-semicategory A form a Q-
category4 PA with:

- objects: the Q-typed set of contravariant presheaves on A,
- hom-arrows: for φ: ∗X

c // A and ψ: ∗Y
c // A, PA(ψ, φ) =

∧
a∈A0

[ψ(a), φ(a)].
This Q-category PA is equivalent to the Q-category PA of presheaves on the free
Q-category A.

Proof : The point is that a presheaf φ: ∗X
c // A on a Q-semicategory A may by

(2) be viewed as a presheaf φ: ∗X
c // A on the free category A, and vice versa; so

the objects of PA and PA are the same. Viewing two semidistributors φ: ∗X
c // A

and ψ: ∗Y
c // A as distributors φ: ∗X

c // A and ψ: ∗Y
c // A, the Q-arrows PA(ψ, φ)

and PA(ψ, φ) are equal. So PA = PA, which proves in particular that PA is a
Q-category. 2

It may thus seem that the notion of “presheaf on a semicategory” reduces entirely
to that of “presheaf on a category”. But the notion of presheaf presented in 3.1 is
not the interesting one in the theory of Q-semicategories: the presheaf category
PA says a lot about the free category A, but very little about the semicategory A
(see 3.11 for a clear example)! Our reason for introducing the Q-category PA of all
presheaves on a semicategory A, is that (it exists anyway and) it allows us to analyze
precisely how a particular essential (co)localization of PA contains those presheaves
which are indeed the pertinent ones in the study of Q-semicategories (see 3.4, 3.7
and 3.12 further on).

Recall that the Q-category PC of contravariant presheaves on a Q-category C
classifies distributors with codomain C: for every Q-category D, Dist(Q)(D,C) ∼=
Cat(Q)(D,PC). Explicitly, a distributor Φ: D c // C determines the functor

FΦ: D //PC: d 7→
(
Φ(−, d): ∗td

c // C
)
.

3For an object X of Q we denote ∗X for the Q-category with one object and hom-arrow 1X .
4There can be no notational confusion concerning the category of presheaves on a Q-category

C, because the presheaves on C-as-semicategory are the presheaves on C-as-category.
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Using (1) and (2), and the fact that PA = PA, it follows that for Q-semicategories
A and B,

Distrib(B,A) = Dist(Q)(B,A) ∼= Cat(Q)(B,PA) = SCat(Q)(B,PA).

So the presheaf category PA classifies semidistributors with codomain A: such a
semidistributor Φ: B c // A is sent to the semifunctor

FΦ: B //PA: b 7→
(
Φ(−, b): ∗tb

c // A
)
.

In particular does, for any Q-semicategory A, the semidistributor A: A c // A induce
the semifunctor

YA: A //PA: a 7→
(
A(−, a): ∗ta

c // A
)
;

it is the Yoneda semifunctor for A. An object in the image of YA is a representable
contravariant presheaf.

A word of caution is in order here. By the universal property of the free category
A, to the Yoneda semifunctor YA: A //PA corresponds a functor YA: A //PA. On
the other hand, there is the Yoneda embedding YA: A //PA for the Q-category A.
The functors YA and YA are very different!

Example 3.3 Considering a strict order (A,<) as a 2-semicategory A, the free 2-
category A is the (reflexive) order (A,≤) defined as a ≤ b if and only if a < b or
a = b. A presheaf on A is by definition a presheaf on A, that is, a downset of (A,≤).
The Yoneda semifunctor YA: A //PA sends an element a ∈ A to the strict principal
downset ���� a = {x ∈ A | x < a}, hence so does the functor YA: A //PA. The Yoneda
embedding YA: A //PA on the other hand sends an element a ∈ A to the principal
downset �� a = {x ∈ A | x ≤ a}.

Yoneda presheaves

For presheaves on a Q-category C the “Yoneda lemma” holds: for any φ ∈ (PC)0
and c ∈ C0, YC: C //PC satisfies PC(YCc, φ) = φ(c). As a consequence, the Yoneda
embedding YC: C //PC is a fully faithful functor: C(c′, c) = PC(YCc

′, YCc) for all
c, c′ ∈ C0.

For a Q-semicategory A, the Yoneda semifunctor YA: A //PA cannot be fully
faithful unless A is a category (because its codomain is a category). So the “Yoneda
lemma” does not hold in general for presheaves on A. Therefore, those presheaves
for which the Yoneda lemma happens to hold, deserve some special attention.

Definition 3.4 A contravariant Yoneda presheaf on a Q-semicategory A is a φ ∈
PA satisfying, for all a ∈ A0,

φ(a) =
∧

a∈A0

[A(a, x), φ(x)]. (6)
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The hom-arrows in PA being what they are, this definition thus says that φ(a) =
PA(YAa, φ) for a Yoneda presheaf. In other terms, considering the Q-semicategory
A as endo-distributor on the free Q-category A, a contravariant presheaf φ: ∗A

c // A
on A is Yoneda if and only if [A, φ] = φ in the quantaloid Dist(Q).

We will denote YA for the full subcategory of PA determined by the Yoneda
presheaves on A.

Proposition 3.5 A Q-semicategory A is a category if and only if all representable
contravariant presheaves on A are Yoneda presheaves.

Proof : For the non-trivial implication note that a representable YAa being Yoneda
implies that A(a, a) = (YAa)(a) = PA(YAa, YAa) ≥ 1ta, because PA is a Q-category.
So when all representables are Yoneda, then A is in fact a category. 2

Example 3.6 Take again a strict order (A,<) viewed as 2-semicategory A. A
presheaf on A, i.e. a downset D ⊆ A of the free order (A,≤), is Yoneda if and only
if a ∈ D ⇐⇒ ���� a ⊆ D.

Regular presheaves

Every contravariant presheaf on a Q-category C is canonicially a “colimit of repre-
sentables”: for φ ∈ PC, colim(φ, YC) = φ. In words: the φ-weighted colimit of the
Yoneda embedding YC: C //PC equals φ.

Consider now a Q-semicategory A, its Yoneda semifunctor YA: A //PA, and a
contravariant presheaf φ ∈ PA. We may view φ as distributor into the free Q-
category A and consider the φ-weighted colimit of YA: A //PA:

A
YA // PA

∗X

cφ
OO

colim(φ, YA)

==

This colimit surely exists, since PA is a cocomplete Q-category (PA = PA is the
free cocompletion of the free Q-category A), but it is in general different from (the
constant functor pointing at) φ! Namely, with the techniques for calculating colimits
in presheaf categories it is easily seen that colim(φ, YA) = A ⊗ φ. Therefore the
following definition is called for.

Definition 3.7 A regular contravariant presheaf on a Q-semicategory A is a con-
travariant presheaf φ ∈ PA satisfying, for all a ∈ A0,

φ(a) =
∨

x∈A0

A(a, x) ◦ φ(x). (7)
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That is to say, φ is a regular presheaf on A if and only if φ = A⊗φ in Dist(Q), with
A viewed as endo-distributor on A, and φ as distributor into A.

By RA we denote the full subcategory of PA determined by the regular pre-
sheaves. The following must be compared with 3.5.

Definition 3.8 A Q-semicategory A is regular when all representable presheaves on
A are regular presheaves.

Using (7) this may be put as follows: A is a regular semicategory if and only if

A(a′, a) =
∨

x∈A0

A(a′, x) ◦ A(x, a). (8)

Every Q-category is a regular semicategory, but the converse is not true. And
neither is every Q-semicategory regular. So the notion ‘regular Q-semicategory’ is
strictly weaker than ‘Q-category’, but still exactly strong enough to allow for an
interesting notion of “presheaf which is canonically the colimit of representables”.

Example 3.9 For a presheaf on a strict order (A,<), i.e. a downset D of the free
order (A,≤), regularity means that, if d ∈ D then there exists some d′ ∈ D such
that d < d′. (In other terms, we ask that D =

⋃
{ ���� d | d ∈ D}.) So, given a ∈ A, the

representable ���� a is regular if and only if for every x < a there exist a y such that
x < y < a. Regularity of (A,<) thus means that between every x < z there lies a y.

Example 3.10 More generally, every continous order (A,≤) with associated way-
below relation � determines a regular 2-category A by A0 = A and A(a, b) = 1 ⇐⇒
a � b. Indeed, way-below satisfies the “interpolation property” [Gierz et al., 1980]
which says that, if x� z then x� y � z for some y.

Example 3.11 An Ω-set (A, [· = ·]) is, viewed as Ω-semicategory A, regular: this
is due to symmetry of A(−,−) = [· = ·]. An Ω-subset of (A, [· = ·]) is precisely
the same thing as a regular presheaf on A; so RA is the locale of subobjects of A.
In this framework, a representable presheaf has also been called a “singleton”; and
regularity has been interpreted as “every subset is the union of its points”. Note
that non-regular presheaves are definitely not called for in the theory of Ω-sets. Take
for example the Ω-set ({∗}, [∗ = ∗] = u) with u ∈ Ω which is different from the top
element. Then the (not necessarily regular) presheaves on this Ω-set are formally
equal to the Ω-subsets of the Ω-set ({∗}, [∗ = ∗] = >). So amongst the “parts” of
an element ∗ defined on u ∈ Ω would be a global element! The regularity condition
on the presheaves excludes such anomalies.

Unity and identity of adjointly opposites

In a sense, the requirement for a presheaf φ on a Q-semicategory A to be regular is
“adjoint” to the requirement for it to be Yoneda—compare (6) and (7). This can
be made precise.
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Theorem 3.12 For a regular Q-semicategory A, the functors5

i:RA //PA:φ 7→ φ, j:PA //RA:ψ 7→ A⊗ ψ, k:RA //PA: θ 7→ [A, θ]

constitute adjunctions i a j a k in Cat(Q). Moreover, i and k are fully faithful, and
the image of k is precisely YA.

Proof : It is quite straightforward that i, j and k are well-defined functors: this
depends on obvious calculations with compositions and liftings in the quantaloid
Dist(Q). As for the adjunctions:

- i a j means that, for all φ ∈ RA and all ψ ∈ PA, PA(iφ, ψ) = RA(φ, jψ)
in Q, or equivalently [φ, ψ] = [φ,A ⊗ ψ] in Dist(Q). Using regularity of φ we
have [φ,A ⊗ ψ] = [A ⊗ φ,A ⊗ ψ], and reckoning that A ≤ A it follows that
A⊗ ψ ≤ ψ. So the two inequalities

[φ, ψ] ≤ [A⊗ φ,A⊗ ψ] and [φ,A⊗ ψ] ≤ [φ, ψ],

hold (by obvious properties of liftings in any quantaloid, thus also in Dist(Q))
and prove the claim.

- j a k means that, for all ψ ∈ PA and all θ ∈ RA, RA(jψ, θ) = PA(ψ, kθ) in
Q, or equivalently [A ⊗ ψ, θ] = [ψ, [A, θ]] in Dist(Q). This identity is valid in
any quantaloid thus also in Dist(Q).

The fully faithfulness of (the full inclusion) i is trivial; and that of k thus follows
from the adjunctions. To see that k(RA) = YA, we need to show that φ ∈ YA if
and only if there exists a ψ ∈ RA such that φ = kψ. Note first that kψ = [A, ψ] =
RA(YA−, ψ). Now if φ ∈ YA then

φ = PA(YA−, φ) = PA(i(YA−), φ) = RA(YA−, jφ) = k(j(φ))

so φ = k(j(φ)) for j(φ) ∈ RA. Conversely, if φ = k(ψ) for some ψ ∈ RA then

PA(YA−, φ) = PA(YA−, k(ψ)) = RA(j(YA−), ψ) = RA(YA−, ψ) = k(ψ) = φ

so φ ∈ YA. We used that j ◦ YA = YA, i.e. that A is regular. 2

As a result the Q-category RA is cocomplete, and colimits in RA are calculated “as
in PA”: for a weighted diagram

D cΘ // C F // RA

the Θ-weighted colimit of F is the functor

colim(Θ, F ): D //RA: d 7→ ΦF ⊗Θ(−, d), (9)

where ΦF : C c // A has elements ΦF (a, c) = (Fc)(a). (Indeed, this is how the colimit
of i ◦ F would be calculated in PA.) Further, the corestriction of the fully faithful
functor k:RA //PA to its image gives an equivalence RA ' YA (whose inverse
equivalence is a restriction of j). So also YA is cocomplete.

5We view a given Q-semicategory A as endo-distributor on the free Q-category A, and the

presheaves on A as presheaves on A, so that compositions like A ⊗ ψ and liftings like [A, θ] (make

sense and) are calculated in Dist(Q).
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Alternative description of regularity

Regular presheaves and regular semicategories were first studied as such in the V-
enriched case by [Moens et al., 2002]. But their definition for ‘regular presheaf on a
V-semicategory’ is different from – but equivalent to – ours (modulo a “translation”
from V-enriched structures to Q-enriched structures): basically because they use the
notion of “weighted colimit of a diagram without units”.

A semidistributor Φ: B c // A between Q-semicategories together with a semifunc-
tor F : A // C with codomain a Q-category6 constitute a weighted diagram without
units in the Q-category C. Due to (1) and (2) there is a corresponding weighted
diagram “with freely added units”, with weight Φ: A c // B and functor F : A // C;
this diagram may or may not have a weighted colimit in the usual sense. Now, by
definition, the Φ-weighted colimit of F is the semifunctor colim(Φ, F ): B // C for
which, by the universal property of B,

colim(Φ, F ) = colim(Φ, F ). (10)

The following proposition states the universal property of such a colimit on a
weighted diagram without units, without reference to the free categories; this was
taken in [Moens et al., 2002] as definition.

Proposition 3.13 Given a semidistributor Φ: A c // B between Q-semicategories to-
gether with a semifunctor F : B // C into a Q-category, a semifunctor G: A // C is
the Φ-weighted colimit of F if and only if, for all a ∈ A0 and c ∈ C0,

C(Ga, c) =
∧

b∈B0

[
Φ(b, c),C(Fb, c)

]
,

the liftings on the right hand side being calculated in the base quantaloid Q.

Proof : Making (10) explicit, G is the Φ-weighted colimit of F if and only if G is the
Φ-weighted colimit of F , that is to say, C(G−,−) = [Φ,C(F−,−)] in Dist(Q). As
object-mappings G and G, resp. F and F , are identical; together with the explicit
formula relating liftings in Dist(Q) to liftings in Q, this gives the result. 2

For anyQ-semicategory A and φ ∈ PA we may now consider the weighted colimit
of the diagram without units

A
YA // PA

∗X

φ c
OO

colim(φ, YA)

==

6It is essential to consider a category C (whereas A and B may be semicategories) for application

of the universal property of free Q-categories further on.
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Trivially the presheaf φ is regular in the sense of 3.7 – i.e. equal to φ-weighted colimit
of YA: A //PA – if and only if it is the φ-weighted colimit of YA: A //PA. By 3.13
we get the following characterization in terms of liftings in Q, which was taken as
definition of ‘regular presheaf on a semicategory’ in [Moens et al., 2002].

Proposition 3.14 A presheaf φ ∈ PA on a Q-semicategory A is regular if and only
if, for every ψ ∈ PA,

PA(φ, ψ) =
∧

a∈A0

[
φ(a),PA(YAa, ψ)

]
.

Covariant presheaves

Dualizing the theory of contravariant presheaves gives the theory of covariant pre-
sheaves. Recalling that, for aQ-category C, theQ-category of covariant presheaves is
denoted P†C, we denote the Q-category of covariant presheaves on a Q-semicategory
A as P†A. It is straightforward to define Yoneda and regular covariant presheaves;
the respective full subcategories of P†A are naturally denoted as Y†A and R†A.
A Q-semicategory A is a Q-category if and only if all representable covariant pre-
sheaves are Yoneda (compare with 3.5); and A is a regular Q-semicategory if and
only if all representable covariant presheaves are regular (compare with 3.8). That is
to say, it comes to the same thing to ask for either the contravariant or the covariant
presheaves to be Yoneda, resp. regular.

Example 3.15 Let (A,≤) be a continuous order; denote A for the regular 2-
semicategory whose hom-arrows classify the way-below relation. A covariant reg-
ular presheaf on A is the same thing as a Scott-open subset of A, and a con-
travariant Yoneda presheaf is the same thing as a Scott-closed subset; this requires
some straightforward calculations with the way-below relation. In particular, the 2-
category R†A is the Scott-topology on A (i.e. the collection of Scott-opens of (A,≤)
ordered by inclusion).

4 Regular semidistributors, Morita equivalence

Calculus of regular semidistributors

Generalizing (7) and (8) we define a ‘regular semidistributor’ as follows.

Definition 4.1 A semidistributor Φ: A c // B between Q-semicategories is regular if,
for all a ∈ A0 and b ∈ B0,∨

x∈A0

Φ(b, x) ◦ A(x, a) = Φ(b, a) =
∨

y∈B0

B(b, y) ◦ Φ(y, a).
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When viewing the semidistributor Φ: A c // B as distributor Φ: A c // B, and both A
and B as endo-distributors on the respective free categories A and B, this definition
says that B⊗ Φ = Φ = Φ⊗ A in Dist(Q).

It follows straightforwardly that, for a Q-semicategory A,

- a semidistributor φ: ∗X
c // A is a regular presheaf on A (in the sense of 3.7) if

and only if it is a regular semidistributor (in the sense of 4.1),
- A is a regular Q-semicategory (in the sense of 3.8) if and only if the semidis-

tributor A: A c // A is regular (in the sense of 4.1).

So there can be no confusion when we use the word ‘regular’ !
As mentioned before, Q-semicategories and semidistributors do not form a quan-

taloid, the problem being that “a semicategory A is not the identity semidistributor
on itself”. The notions of regular semicategory and regular semidistributor solve
that problem.

Proposition 4.2 Regular Q-semicategories are the objects, and regular semidistrib-
utors the arrows, of a quantaloid RSDist(Q) in which local suprema are as in (3),
composition is as in (4), and identities are as in (5). It contains Dist(Q) as full
subquantaloid.

Proof : It is straightforward that RSDist(Q) is a quantaloid: the condition in 4.1
says that, for a regular semidistibutor Φ: A c // B between regular Q-semicategories,
the endo-semidistributors A: A c // A and B: B c // B are identities for the composition
law in (4). That Dist(Q) is a full subquantaloid, follows from previous remarks, plus
the fact that composition of distributors between categories is not different from
composition of (regular) semidistributors between (regular) semicategories. 2

The appendix contains a more elegant argument: RSDist(Q) is the universal split-
idempotent completion of Matr(Q) in QUANT, that is to say, it is the Cauchy com-
pletion of Q in QUANT.

Example 4.3 Viewing Ω-sets (A, [· = ·]) and (B, [· = ·]) as regular Ω-semicategories
A and B, a morphism of Ω-sets is precisely a left adjoint regular semidistributor.
That is to say, the topos of sheaves on a locale Ω may be described (up to equivalence)
as: objects are symmetric regular Ω-semicategories, and arrows are left adjoint
regular semidistributors.

Given the formula for liftings in RSDist(Q) (see the appendix), we can give a use-
ful alternative description of (the hom-arrows in) the category of regular presheaves
on a regular Q-semicategory.

Corollary 4.4 For a regular Q-semicategory A, the category RA of regular con-
travariant presheaves may be described as:

- objects: an object of type X ∈ Q is a regular semidistributor φ: ∗X
c // A,
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- hom-arrows: for regular semidistributors φ: ∗X
c // A and ψ: ∗Y

c // A, RA(ψ, φ)
is (the single element of) the lifting [ψ, φ] in the quantaloid RSDist(Q).

Proof : Let us, for the sake of clarity, write R1A for the Q-category defined in the
statement of this proposition, and R2A for the Q-category of regular presheaves on
A, as defined previously (as full subcategory of PA). Then, by the remarks following
4.1, (R1A)0 = (R2A)0 as Q-typed object-sets. That the hom-arrows coincide too,
follows from (13) in the appendix: let φ and ψ denote two regular presheaves on
A, so we may either view them as distributors φ: ∗X

c // A and ψ: ∗Y
c // B satisfying

A ⊗ φ = φ and A ⊗ ψ = ψ, or we may view them as regular semidistributors
φ: ∗X

c // A and ψ: ∗Y
c // A. Since ∗X and ∗Y are categories we have that

R1A(ψ, φ) = [ψ, φ]RSDist(Q) = [ψ, φ]Dist(Q) = R2A(ψ, φ).

So R1A = R2A as claimed. 2

An aspect of Morita equivalence

Consider a regular semidistributor between regular Q-semicategories, like Φ: A c // B.
To the associated distributor Φ: A c // B corresponds a functor FΦ: A //PB (by the
classifying property of PB = PB) which actually lands in RB: every FΦ(a) =
Φ(−, a) is a regular presheaf on B. Since RB is a cocomplete Q-category, the left
Kan extension of FΦ: A //RB along YA: A //RA, denoted 〈FΦ, YA〉:RA //RB,
exists and is pointwise; so 〈FΦ, YA〉(φ) = colim(φ, FΦ). But with (9), and using the
description of RA and RB as in 4.4, a practical explicit description of 〈FΦ, YA〉 can
be given:

〈FΦ, YA〉:RA //RB:φ 7→ Φ⊗ φ,

the right hand side being simply a composition of arrows in RSDist(Q). The following
proposition is then really a generalization of what is known for distributors between
Q-categories.

Proposition 4.5 For any quantaloid Q,

RSDist(Q) // Cocont(Q):
(
Φ: A c // B

)
7→

(
Φ⊗−:RA //RB

)
(11)

is a 2-functor which is locally an equivalence.

Proof : First observe that, for any regular semidistributor Φ: A c // B between regular
semicategories, the functor RA //RB: θ 7→ Φ ⊗ θ has a right adjoint in Cat(Q),
namely RB //RA:ψ 7→ [Φ, ψ] (the lifting being calculated in RSDist(Q)). Since
furthermore the action in (11) is determined by composition of arrows in RSDist(Q),
it is then obviously a well-defined 2-functor. This 2-functor (between locally ordered
categories) reflects the local order: if Φ,Ψ: A c //c // B in RSDist(Q) satisfy Φ⊗θ ≤ Ψ⊗θ
for all θ ∈ RA then in particular

Φ(−, a) = Φ⊗ A(−, a) ≤ Ψ⊗ A(−, a) = Ψ(−, a)
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for any a ∈ A0 so Φ ≤ Ψ in RSDist(Q). Finally we must see that (11) is locally
surjective. Given a cocontinuous functor F :RA //RB, putting

Φ(b, a) = F (YAa)(b) for a ∈ A0, b ∈ B0

defines a regular semidistributor from A to B: on the one hand B⊗ Φ = Φ because
every Φ(−, a) = F (YAa) is a regular presheaf on B, so Φ is regular in B; on the other
hand

Φ⊗ A(−, a) = colim(YAa, F ◦ YA) = F ◦ colim(YAa, YA) = F (YAa) = Φ(−, a),

so Φ is also regular in A. (Note the use of regularity of A, and the calculation of
colimits in RB cf. (9)!) This regular semidistributor Φ: A c // B satisfies, for θ ∈ RA,

Φ⊗ θ = colim(θ, F ◦ YA) = F ◦ colim(θ, YA) = F (θ)

so F is the image of Φ under (11). 2

Recalling that cocomplete Q-categories are equivalent in Cat(Q) if and only if they
are equivalent in Cocont(Q), and recalling that RA and YA are equivalent, we may
record the following corollary (where the dual to 3.12 and 4.5 are assumed).

Corollary 4.6 For regular Q-semicategories A and B, the following are equivalent:

1. A ∼= B in RSDist(Q),

2. RA ' RB in Cat(Q),

3. R†A ' R†B in Cat(Q),

4. YA ' YB in Cat(Q),

5. Y†A ' Y†B in Cat(Q).

When in the above A and B happen to be Q-categories, then RA = YA = PA and
R†A = Y†A = P†A, and likewise for B, so that the stated equivalence is an aspect
of the Morita equivalence of Q-categories. Therefore, two regular Q-semicategories
A and B can be called Morita equivalent if the equivalent conditions in 4.6 hold7.
In general it is not true that every regular Q-semicategory is Morita equivalent to
a Q-category, which makes the theory of regular Q-semicategories a subject that is
really different from the theory of Q-categories.

7Morita equivalence for Q-categories also means that the categories have equivalent Cauchy

completions; but this result is simply impossible in the theory of regular Q-semicategories: in

general such semicategories do not have a Cauchy completion (in a suitable sense of the word). For

a study of those Q-semicategories that do admit a Cauchy completion, we refer to [Stubbe, 2004b],

for the matter is too involved to include it here.
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Example 4.7 Let 3 denote the three-element chain 0 < e < 1 viewed as quantaloid
with one object. Let A be the 3-semicategory with one object ∗ and hom-arrow
A(∗, ∗) = e: since e ∧ e = e, this semicategory is regular. The 3-category RA of
regular contravariant presheaves has two (non-isomorphic) objects, 0 and e. The
(only) 3-category C with one object necessarily has C(∗, ∗) = 1, and there are three
(non-isomorphic) presheaves on C: 0, e and 1. There can be no equivalence between
RA and PC, so A and C are not Morita equivalent. Considering a 3-category with
more objects only increases the number of presheaves on it, and makes it even more
impossible for such a category to be Morita equivalent to A.

5 Regular semifunctors

Any functor between Q-categories induces an adjoint pair of distributors; this is a
simple but crucial fact for the development of Q-category theory. For Q-semicat-
egories things are a little bit more involved: only “regular semifunctors” between
regular semicategories do the trick.

Inducing adjoints

A semifunctor F : A // B between regular Q-semicategories determines semidistrib-
utors B(−, F−): A c // B and B(F−,−): B c // A, whose distributor-arrows are respec-
tively

B(b, Fa): ta // tb and B(Fa, b): tb // ta, for a ∈ A0 and b ∈ B0.

But these semidistributors needn’t be regular! And when they are not regular, they
are not arrows in a suitable bicategory – in casu RSDist(Q) – and so they cannot be
“adjoint”! The following definition is thus called for.

Definition 5.1 A semifunctor F : A // B between Q-semicategories is regular when
both semidistributors B(−, F−): A c // B and B(F−,−): B c // A are regular.

If A and B are regular Q-semicategories, then B(−, F−) and B(F−,−) are arrows
in RSDist(Q).

Proposition 5.2 Regular Q-semicategories are the objects, and regular semifunc-
tors the arrows, of a (non-full) subcategory RSCat(Q) of SCat(Q). It contains Cat(Q)
as full subcategory.

Proof : The identity semifunctor 1A: A // A on a Q-semicategory is regular if and
only if the semicategory itself is regular. If F : A // B and G: B // C are reg-
ular semifunctors between regular Q-semicategories, then B(−, F−): A c // B and
C(−, G−): B c // C are arrows in RSDist(Q). Composition of these RSDist(Q)-arrows
gives C(−, G ◦F−), with composition of semifunctors in SCat(Q)—so the latter is a
regular semidistributor. Similar for C(G ◦F−,−). So G ◦F , computed in SCat(Q),
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is a regular semifunctor. This proves that RSCat(Q) is a subcategory of SCat(Q);
that Cat(Q) is a full subcategory of RSCat(Q) is straightforward. 2

Proposition 5.3 A regular semifunctor F : A // B between regular Q-semicatego-
ries determines an adjoint pair B(−, F−) a B(F−,−) in RSDist(Q). Actually,

RSCat(Q) // RSDist(Q):
(
F : A // B

)
7→

(
B(−, F−): A c // B

)
(12)

is functorial. (And F 7→ B(F−,−) is contravariantly functorial.)

Proof : The adjunction’s unit inequality B(F−,−) ⊗ B(−, F−) = B(F−, F−) ≥ A
holds by regularity of B and the action-inequality for F ; the co-unit inequality
B(−, F−)⊗B(F−,−) ≤ B(−,−)⊗B(−,−) = B follows from F (A0) ⊆ B0 – using the
explicit expression for composition in RSDist(Q), cf. (4) – and once again regularity
of B.

For the functoriality of (12), we must verify that 1A: A // A is sent to A: A c // A,
and for F : A // B and G: B // C, that C(−, G ◦ F−) = C(−, G−)⊗B(−, F−). But
this was already contained in the proof of 5.2, so we need not repeat it here. 2

RSCat(Q) now inherits local structure from RSDist(Q). This makes RSCat(Q) a
locally ordered 2-category, and the functor in (12) is then a 2-functor. Moreover the
diagram

RSCat(Q) // RSDist(Q)

Cat(Q) //

OO

Dist(Q)

OO

of 2-categories and 2-functors commutes: the horizontal arrows say that “every
regular semifunctor (functor) induces an adjoint pair of regular semidistributors
(distributors)”, and the vertical ones are full embeddings.

Inadequacy of regular semifunctors

For the theory of regular Q-semicategories, 5.3 is of much importance: it will be
the starting point when we look into a theory of “Cauchy completable” semicatego-
ries [Stubbe, 2004b]. But some (counter)examples indicate that not all interesting
“morphisms between (regular) Q-semicategories” are regular semifunctors.

Example 5.4 For the regular 3-semicategory A described in 4.7, the Yoneda semi-
functor YA: A //RA is not regular: neither RA(−, YA−) nor RA(YA−,−) is a regu-
lar semidistributor. And neither is the semifunctor iA: A // A into its free category
is regular; again neither A(−, iA−) nor A(iA−,−) is regular.
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Example 5.5 Let (A,≤) and (B,≤) be continuous orders; one of the many equiva-
lent ways of saying that a map f :A //B is Scott-continuous, is to ask that b� fa

in B if and only if there exists an x ∈ A such that b � fx and x � a. Taking A
and B to be the regular 2-semicategories associated with the way-below relations on
A and B, this says that A0

// B0: a 7→ fa is an object-mapping for which B(−, f−)
is a regular distributor from A to B. But it doesn’t say that this object-mapping is
a semifunctor (i.e. a � a′ doesn’t imply fa � fa′, even though x ≤ y does imply
fx ≤ fy), and not does it say that B(f−,−) is a regular distributor!

6 Appendix: Calculus of regular semidistributors

Splitting idempotents

For any category C , the following defines a new category Idm(C ) of “idempotents in
C ” [Freyd, 1964]:

- objects: are all the idempotents A
e

���ww , B
f

���ww , C
g

���ww , ... in C ;
- arrows: an Idm(C )-arrow b: e c // f between idempotents A

e
���ww and B

f
���ww is a C -

arrow b:A //B such that b ◦ e = b = f ◦ b;
- composition: the composition of b: e c // f and c: f c // g is written c⊗ b: e c // g

computed as c⊗ b = c ◦ b in C ;
- identity: on an idempotent A

e
���ww , e: e c // e itself is the identity.

The category C can be embedded in Idm(C ) by sending f :A //B to f : 1A
c // 1B;

let us write this as kC : C // Idm(C ). This embedding is full, and it is an equiv-
alence if and only if all idempotents in C split. All idempotents in Idm(C ) split
(so “taking idempotents” is an idempotent procedure); in fact, kC is the universal
split-idempotent completion of C in CAT. Further it is straightforward that, if a
category C admits (co)products, then so does the category Idm(C ).

Taking C to be (the underlying category of) a (possibly large) quantaloid Q in
the above, it is quite obvious that Idm(Q) is a quantaloid too: arrows in Idm(Q)
are ordered as they are ordered in Q, and so the embedding kQ:Q // Idm(Q) is a
quantaloid homomorphism. Precisely, Q // Idm(Q) is the universal split-idempotent
completion of Q in QUANT. ([Koslowski, 1997] studies the splitting of “idempolads”
in more general bicategories, of which Idm(Q) is a particularly simple example.)

As any quantaloid, Idm(Q) is closed. For example, for b: e c // f and c: g c // f ,
the lifting of b through c in Idm(Q) can be calculated as

[c, b]Idm(Q) = g ◦ [c, b]Q ◦ e,

the composition and lifting on the right hand being calculated in Q. (One verifies
that the expression on the right hand equals

∨
{d: e c // g in Idm(Q) | c ⊗ d ≤ b}.)

There is a similar formula for extensions.
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Adding direct sums

Two other universal constructions on a quantaloid Q play an important rôle: the
quantaloid Matr(Q) of “matrices with elements in Q”, for which iQ:Q // Matr(Q) is
the direct-sum completion of Q in QUANT, and the quantaloid Mnd(Q) of “monads
and bimodules in Q”, for which jQ:Q // Mnd(Q) is the split-monad completion of
Q in QUANT. For details we refer to [Carboni et al., 1987], or the appendix of
[Stubbe, 2004a].

It is then quite obvious that Mnd(Q) is fully embedded in Idm(Q) (“all monads
in a quantaloid are idempotent”), and if kQ:Q // Idm(Q) is an equivalence then so
is jQ:Q // Mnd(Q) (“if all idempotents split, then surely monads split”). Further,
Idm(Matr(Q)) has all direct sums, because Matr(Q) does so.

It is but an observation that, precisely like Dist(Q) = Mnd(Matr(Q)), we have
RSDist(Q) = Idm(Matr(Q)). In words: regular Q-semicategories are exactly idem-
potent matrices with elements in Q, and regular distributors between such semicat-
egories are exactly matrices that are compatible with those idempotent matrices;
this is really the content of (8) and 4.1. This proves thus that RSDist(Q) is a quan-
taloid in which Dist(Q) is fully embedded. And it says that the full embedding
Q // RSDist(Q), sending an arrow f :A //B onto (f): ∗A

c // ∗B, is the universal
direct-sum-and-split-idempotent completion of Q in QUANT.

Note in particular that for regular semidistributors Φ: A c // B and Ψ: C c // B, the
lifting of Φ through Ψ may be calculated as

[Ψ,Φ]RSDist(Q) = C ◦ [Ψ,Φ]Matr(Q) ◦ A,

the right hand side being calculated in Matr(Q). But, regarding Φ and Ψ as distrib-
utors between free Q-categories, like Φ: A c // B and Ψ: C c // B, also

C ◦ [Ψ,Φ]Matr(Q) ◦ A = C⊗ [Ψ,Φ]Dist(Q) ⊗ A,

holds: because lifting and composition in Dist(Q) are calculated “as in Matr(Q)”!
So, given regular semidistributors Φ: A c // B and Ψ: C c // B we know that

[Ψ,Φ]RSDist(Q) = C⊗ [Ψ,Φ]Dist(Q) ⊗ A,

where on the right hand Φ and Ψ are regarded as distributors between categories,
Φ: A c // B and Ψ: C c // B. If now A and C happen to be Q-categories, then A = A
and C = C so the above reduces to

[Ψ,Φ]RSDist(Q) = [Ψ,Φ]Dist(Q). (13)

This is useful in the proof of 4.4.
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Cauchy completion of a quantaloid

It is well known that, for a small category C , kC : C // Idm(C ) is the Cauchy comple-
tion of C in CAT, meaning (amongst other things) that it is the universal completion
for absolute (co)limits, i.e. those (co)limits that are preserved by any functor.

For a small quantaloid Q, the split-idempotent completion kQ:Q // Idm(Q) is
not its Cauchy completion in QUANT, since Idm(Q) is not Cauchy complete in
QUANT: surely the splitting of idempotents is a necessary condition (any such
splitting is a (co)equalizer preserved by any quantaloid homomorphism), but – for
example – also direct sums in a quantaloid are absolute, so a Cauchy complete quan-
taloid must necessarily admit these too. But note that the quantaloid Idm(Matr(Q))
has all direct sums and that all of its idempotents split, so that the embedding
Q // Idm(Matr(Q)) is a universal construction in QUANT adding to Q all absolute
(co)equalizers and all absolute (co)products. Indeed, it is the Cauchy completion of
Q in QUANT. Although this presentation is slightly different from that in [Van der
Plancke, 1997], a proof is given by the elementary calculations on pp. 67–71 of that
work.

All this implies that, for a small quantaloid Q, Q // RSDist(Q) is its Cauchy
completion in QUANT.
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