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Subject
Date

To.

: Bourel Christophe christophe.bourel@univ-littoral.fr

: [personnels-Impa] Séminaire commun ADA-EMA le 15/12

: 5 December 2022 at 21:00

: personnels-Impa@Iiste.univ-littoral.fr, seminaires-Impa@Iiste.univ-littoral.fr

Bonjour a tous,

Nous avons le plaisir de vous annoncer la mise en place d'une nouvelle série d'exposés qui seront communs aux
deux équipes du LMPA. Ces séminaires seront de type colloquium et seront donnés uniquement par des collegues
du Laboratoire. L'objectif est que ces collegues puissent expliquer les idées et enjeux généraux de leur domaine de
recherche a tous les membres du LMPA.

Dans ce contexte, nous avons le plaisir de vous annoncer la tenue du premier séminaire ADA-EMA la semaine
prochaine le jeudi 15/12 en salle B014 a 14h.

Il sera donné par Isar Stubbe et aura pour titre :

Reculer pour mieux sauter: une yse logico: égorique du théoréme du point fixe.
Nous profiterons de ce séminaire pour organiser un "godter de Noél" en salle B014 & partir de 15h30.

Bonne journée a tous,
Christophe, Lucile, Nicolas et Pierre-Louis
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From: Carole Rosier Carole.Rosier@univ-littoral.fr &

Fwd: [p -Impa] publication et diffusion de la "synthése nationale et de prospective sur les mathématiques”
Date: 13 November 2022 at 18:43
To: ¥ Impa personr pa@Iiste.univ-littoral.fr

Bonsoir a toutes et a tous,

Ala veille des assises des mathématiques qui auront lieu du 14 au 16

novembre a la maison de I'Unesco a Paris, je vous encourage a télécharger le
document "Synthese nationale et de prospective sur les mathématiques" (lien ci-
dessous) qui donne en 3 volumes un panorama plus qu'intéressant de la
recherche en mathématiques francaise.

Bien a vous,
Carole
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1.2.4 L'UNITE DES
MATHEMATIQUES, A LA SOURCE
DE LEUR UNIVERSALITE

Une des grandes idées mathématiques du XX¢
siecle a été celle de structure, tres liée a I'idée
d'axiomatique: une structure?® est définie par
le systéeme d’axiomes correspondant. On fait
en général naitre le programme structuraliste
avec l'école d'algebre allemande des années
1920 pour se développer ensuite, en particulier
en France, avec la rédaction des « Eléments de
mathématique » du groupe Bourbaki.

28.Comme celle de groupe, d'espace vectoriel,
d'espace topologique, etc.



1.2.4 L'UNITE DES
MATHEMATIQUES, A LA SOURCE
DE LEUR UNIVERSALITE

Partons d'une figure emblématique
du programme général d'unification des
mathématiques, Alexandre Grothendieck.
Si les notions formalisées par Grothendieck
sont au cceur d'une partie importante des
mathématiques contemporaines, sa pensée,
ses intuitions inabouties et ses programmes
de recherche alimentent aujourd’hui encore de
nombreux travaux, en France et ailleurs. Une
partie de ses idées apparait dans son « Esquisse
d'un programme » en 1984, liant la topologie et
la théorie des catégories.



1.2.4 L'UNITE DES
MATHEMATIQUES, A LA SOURCE
DE LEUR UNIVERSALITE

Ce type d'aventure mathématique, intellectuelle
et scientifique, est a I'image de la richesse et de
imprévu des mathématiques contemporaines.
Ces développements, tant conceptuels que
pragmatiques, n'auraient certainement pas
été imaginés quelques décennies plus tot et
démontrent que les mathématiques ne peuvent
étre réduites a quelques idées applicatives ou
guelques calculs explicites a un temps t, au gré
de modes fluctuantes. C'est dans la rencontre
entre la diversité de leur spectre et de leur unité
profonde, gu'elles trouvent leur pleine mesure.



Alexander Grothendieck (1928-2014)

4 $lm~1

u[l_la orcélair;cipaleﬁahifeste é’travers
toute fnon oeuvre de' mathématicien a bien
été la quéte du “général”} Il est vrai que je

tefereapettre |'accent sur “lI‘unité”, plutét
qu-e-gl' “‘la généralité”. Mais ce sont la pour
moi deux aspects d’'une seule et méme quéte.
L'unité en représente |'aspect profond, et la
généralité, I'aspect superficiel."

(Récoltes et Semailles, 1986)
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Une idée de cadeau de fin d'année...

(Collection Tel, Gallimard; date de parution: 13-01-2022)



Bref—généraliser pour unifier—c'est

reculer pour mieux sauter.



Une analyse logico-catégorique

du théoréme du point fixe



Fréchet: Metric spaces (1906)

SUR QUELQUES POINTS DU CALCUL FONCTIONNEL;
Par M. Maurice Fréchet (Paris) *).

*) These présentée 4 la Faculté des Sciences de Paris pour obtenir le grade de Docteur &s Sciences.

Adunanza del 2 aprile 1906.

49. Introduction de I'écart, — Lorsque nous appliquerons les résultats généraux de la
PreMIERE PARTIE 4 des exemples concrets, nous reconnaitrons d’abord que, dans chaque
cas, on peut faire correspondre 4 tout couple d’éléments 4, B un nombre (4, B) o,
que nous appellerons Vécart des deux éléments et qui jouit des deux propriétés suivantes:
a) Lécart (4, B) n’est nul que si 4 et B sont identiques. ) Si 4, B, C, sont trois
¢léments quelconques, on a toujours (4, B) £ (4, C) 4 (C, B).

]

discerner si deux d’entre eux sont ou non identiques et tels, de plus, qud deux quel-
conques d’entre eux 4, B, on puisse faire correspondre un nombre (4, B)=(B, 4) o0

Maurice Fréchet
(1878 — 1973)



Banach: Fixpoint theorem (1922)

-
rs

Stefan Banach
(1892-1945)

Sur les opérations dans les ensembles abstraits et leur application
aux équations intégrales*
publié dans Fund. Math. 3 (1922), p. 133-181.

§ 2. TuEOREME 6. Si
1° U(X) est une opération continue dans E, le contre-domaine de U(X)
étant contenu dans E;
2° Il existe un nombre 0 <M < 1 qui pour tout X' et X" remplit
Pinégalité
ITX)-UX) < M- X'=X"],

il existe un élément X tel que X = U(X).
Démonstration. Y désignant un élément choisi d’'une fagon arbitraire,
soit {X,} une suite qui satisfait aux conditions:

X, =Y etpour tout n X,,; = U(X,).
Nous allons démontrer que la suite {X,} converge suivant la norme

vers un certain €lément X.

* Thése présentée en juin 1920 4 I'Université de Léopol pour obtenir le grade de
docteur en philosophie.



Lawvere: Metric spaces are categories (1973)

Bill Lawvere
(1937-...)

METRIC SPACES, GENERALIZED LOGIC,
AND CLOSED CATEGORIES

(Conferenza tenuta il 30 marzo 1973)*

By taking account of a certain natural generalization of cate-
gory theory within itself, namely the consideration of strong cate-
gories whose hom-functors take their values in a given « closed
category » <V (not necessarily in the category S of abstract sets),
we will show below that it is possible to regard a metric space as a
(strong) category and that moreover by specializing the constructions
and theorems of general category theory we can deduce a large part
of general metric space theory.



Alors, le théoréme du point fixe, est-il un
cas particulier d'un théoréme général
en théorie des catégories?!
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Enriched categories (1
A partially ordered set (X, <) is
S

on X
such that, for all z,y,z € X,

a binary relation

if t <yandy<zthenz <z,

r <,

if t <yandy<azthenz=y.

A metric space (X,d) is
a functiond: X x X - R
such that, for all z,y,z € X,

d(z,y) >0,

d(z,y) + d(y, z) = d(z, 2),
0>d(z,z),

d(x,y) = d(y, 2),

if d(z,y) =0 then z = y.
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Both these ordered monoids are residuated complete lattices:

uN\v w u—+v

< w
v < (v=w) u

max{—v + w, 0}

VIV
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An ordered set (X, <) is
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ut+v > w
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That is to say, ({0,1}, <,A, 1) and ([0, o0], >, +,0) are examples of quantales; and
(partially) ordered sets, resp. (generalized) metric spaces, are quantale-enriched categories.
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a function A: Ay X Ao — Q: (z,y) — A(z,y)
assigning a “hom” to each pair of “objects”, such that

Az, y) o Ay, z) < A(z, 2) for any z, vy, z,
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A Q-functor F': A — B is

a function F': Ag — By
such that
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(Small) Q-categories and Q-functors form a (large) category Cat(Q) in the obvious way.
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Q-categories and Q-functors form a category Cat(Q).

For @ = ({0,1},V, A, 1): ordered sets and monotone maps.
Alz,y)=1ifz <y, 0ifx Ly.

For @ = ([0, 0], A\, +,0): (generalized) metric spaces and non-expansive maps.
A(z,y) = d(z,y) is the distance from z to y.

For Q = ([0,1],V/, *,1): “fuzzy” orders and “fuzzy” monotone maps.
A(z,y) =[x < y] is the extent to which z <y holds.

For Q@ = (A, V/, *,¢e): (generalized) probabilistic metric spaces.
A(z,y)(t) is the probability that the distance from z to y is strictly below t.

There are many more examples—notably in sheaf theory, non-commutative topology,
monoidal topology, domain theory, quantum computing, automata theory...
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Enriched categories (4)

Make the “logic” @ part of the “algebra” Cat(Q).

Study common features of all Cat(Q).

Study the specifics of each Cat(Q).

Compare Cat(Q)'s, using general category theory (functors etc.).
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Let (X,d) be a ¢ me acgategory

Let f : X — X be al(contraction™Nd(fz, fy) < k- d(z,y) for some (| < k <
(Note that f is a fortiori non-expansive.)
For any z € X,
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. (s}
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- infer from non-expansiveness that fz* = z*:
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Bénabou: Distributors (= profunctors = modules) (1973)

LES DISTRIBUTEURS
d'aprés le cours de “Questions spéciales de mathématique”

par )
J. BENABOU nedige pen Jean-Roger ROTISIH

Rapport n® 33, janvier 1973
Séminaires de Matk atique Pure

Nous supposerons maintenant que % est un cosmos c'est-a-dire une

catégorie multiplicative symétrique fermée complédte & gauche et

& droite.

Une flache de & vers® , appelée un distributeur, est un
U -bifoncteur vers % , contravariant en® et covariant en @-

4.3. Proposition.

0ist(%) est une bicatigorie fermie.

Jean Bénabou
(1932-2022)



Street: Absolute weights (1983)

CAHIERS DE TOPOLOGIE Vol. XXIV -4 (1983 )
ET GEOMETRIE DIFFERENTIELLE

ABSOLUTE COLIMITS IN ENRICHED CATEGORIES
by Ross STREET

What is it about an indexing type ¢ that ensures thatevery colimit
indexed by ¢ is preserved by all functors ? The present short note answers
this question in the context of enriched categories. Appropriate references
are listed at the end of the paper. The base for enrichment can be a bicat-
egory W although the reader may take it to be a symmetric monoidal closed
~ category should this be more commodious. We use the term module for what

“ others have called bimodule, profunctor, distributor.

THEOREM. Every colimit weighted by $ is absolute if and only if ¢ has
Ross Street a right adjoint in the bicategory of modules.
(1945 - ...)

The above gives another characterization of the Cauchy comple-
tion of an enriched category as consisting of the weightings (indexing
types) for absolute colimits. Hence a category is Cauchy complete if and

only if it admits all absolute colimits.
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asubset RC Bx A

such that
b <bRa<ad impliest’ R a for any four such elements.

Two ideal relations R: A—e> B and S: B —e-+C compose by the formula
(c,a) € SoR <= 3be€ B:(c,b) € Sand (b,a) € R.
The units for this composition are:
As: A—o3 A with elements Ay = {(a,a’) | a < a’ € A} (the “inequality” relation).

Every monotone function f: A — B determines a left adjoint relation (the “graph” of f):

Gy
—e— - Gr={(b,a) | b< fa} . Aas CGT oGy
A B defined by { o — {(a,b) | fa < b} satisfy GroGl C AL
Gf ’ . f

Conversely, every left adjoint ideal relation is the graph of a (essentially unique) monotone
function:

R _
if A ; B satisfies { 2’2%521; then { ?;g}c for some f: A — B.



Distributors (3)

A ideal relation R: A—e+ B between ordered sets (A, <) and (B, <) is
asubset RC Bx A

such that
b <bRa<d impliest R a for any four such elements.

Two ideal relations R: A—e> B and S: B —e~+C compose by the formula
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A Q-distributor ®: A —o+B between two Q-categories A and B is
a Q-valued matrix ®: By x Ag — Q: (b,a) — ®(b,a)

such that
B(V',b) o ®(b,a) o A(a,a’) < ®(b,a’) for any four objects.

Two Q-distributors ®: A—e+B and ¥: B—e+>C compose by the formula
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(And then @ is the graph of an essentially unique F'.)
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A distributor ®: A —e+B is representable if it is the graph of a functor F': A — B:
®(b,a) =B(b, Fa) for all b € Bg,a € Ao.

(And then @ is the graph of an essentially unique F'.)

A category C is Cauchy-complete if any left adjoint distributor into C is representable.

Any sequence (z,)nen in a Q-category C determines a pair of distributors

{ ¢(y) = VNEN /\nzN (C(y,xn)

1, 2 C with elements
o ! Y() = Vyen /\nZN C(an,y)

¥

A sequence (z)nen in C is Cauchy if ¢ is left adjoint to .

Whence: in a Cauchy-complete category C all Cauchy sequences “converge”.
“Categorical” Cauchy-completeness is stronger than “sequential” Cauchy-completenes.
(For (probabilistic) metric spaces orders, these are equivalent notions.)

Cauchy-completeness is important in many areas, e.g. sheaf theory (gluing condition),
module theory (finitely generated projective modules, Morita equivalence),
set theory (axiom of choice), general categories (Karoubi envelope), and more.



Borceux: Cauchy completion (1986)

Francis Borceux
(1948 - ...)

CAHIERS DE TOPOLOGIE Vol. XXVII-2 (1986)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

CAUCHY COMPLETION IN CATEGORY THEORY
by Francis BORCEUX and Dominique DEJEAN

This paper is to be considered as a survey article presenting an
original and unified treatment of various results, scattered in the litte-
rature. The reason for such a work is the grewing importance of every-
thing concerned with the splitting of idempotents and the lack of a
reference text on the subject. Most of the work devoted to Cauchy
completion has been developped in the sophisticated context of bicateg-
ories : it's our decision to focuse on direct proofs in the context of
classical category theory.

Theorem 2. The following conditions are equivalent on a small category C.

(1) C is Cauchy complete.

(2) A distributor 1 -e—~ C has a right adjoint iff it is a functor.

(3) For every small category A a distributor A—e— C has a
right adjoint iff it is a functor.

Example 3. When V is the category R, defined by F.W. Lawvere (cf.
[9) the Cauchy completion of a metric space is its usual completion
using Cauchy sequences.



Banach: Fixpoint theorem (modern version)

Let f: X — X be a(contraction™~d(fz, fy) < k- d(z,y) for some ( < k <
(Note that f is a fortiori non-expansive.)
For any z € X,
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A~

limd(f"z, f"z) =0

- infer from completeness that the sequenc@ to x*: 0

"N

limd(y, f"z) = d(y,z")

- infer from non-expansiveness that fz* = z*:

NN

0 =d(z*,z*) = limd(z*, f*z) > limd(fz*, f"t'z) = d(fz*,z")

Infer from contractivity that the fixpoint is unique:
[ava 4

fz" =z* fy* =y" = d(z",y") =d(fz", fy*) < k-d(z*,y") = d(z",y") = 0.
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A fixpoint theorem for ()-categories
(based on article with A. Benkhadra, to appear in the Cahiers)
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If there is an © € Cq such that (F"x)nen is Cauchy, then F has a fixpoint.
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Proposition
Suppose that F': C — C is a Q-functor on a Cauchy complete C.
If there is an © € Cq such that (F"x)nen is Cauchy, then F has a fixpoint.

Indeed,
(6(1) = Viver A Cly, F'))
<¢ ) VNGN/\n>N (F x,y)

= \/ /\ (y, F"z) = C(y,z") for some z*
NeNn>N

v€Co  are adjoint

(F"x)nen is Cauchy = {

y€Co

and then

C(Fz™,z" \/ /\(CFx F"z) \/ /\(C(:c*,anla:):C(x*,x*)zl.

NENn>N NENg n>N
Similarly (using 1) one gets C(z*, Fa*) > 1

Having both 1 < C(z*, Fz*) and 1 < C(Fz*,z") means that Fz* 2 z* in C.
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p(t) =t implies that either t =0 or 1 < ¢.
C(Fz, Fy) > ¢(C(z,y)) for any z,y € Co.
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Definition
Say that ¢: @ — @ is a control function and F': Co — Cy is a -contraction, if
p(t) >tforallt e,
p(t) =t implies that either t =0 or 1 < ¢.
C(Fz, Fy) > ¢(C(z,y)) for any z,y € Co.
The “Banach case” for metric spaces: for
@: [0,00] = [0,00]: t—> k-t forsome0< k<1
it is easily verified (recalling that [0, co] comes with opposite order) that
k-t<t,
k-t =t implies that either t = co or t = 0,

so a function f: X — X on a (generalized) metric space (X, d) is a ¢-contraction if
d(fz, fy) < k- d(z,y) for any z,y € X.

There are other non-trivial examples, e.g. for probabilistic metric spaces:

fo<t<oo

define p: A — A by o(u)(t) :{ é(“(t)ﬂ) 10
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Definition

Say that ¢: @ — @ is a control function and F': Co — Cy is a -contraction, if
p(t) >tforallt e,
p(t) =t implies that either t =0 or 1 < ¢.
C(Fz, Fy) > ¢(C(z,y)) for any z,y € Co.

A @-contraction F is always a Q-functor (so the previous Proposition applies).

Now suppose that F'z* = z* and Fy* & y*, then
C(z",y") = C(Fz", Fy") > ¢(C(z",y")) > C(z", y")

so either C(z*,y*) =0 or 1 < C(z",y"). Permuting =™ and y*, one gets one of four
possibilities:

C(:c*, )=0 C(z*,y")>1
or { >1 or { Cly 2" > 1

Proposition
If C is symmetric, then any two fixpoints of a @-contraction are either isomorphic or in
different summands of C.

If C has no zero-homs, then any two fixpoints of a p-contraction are always isomorphic.
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Proposition

Suppose that F': C — C is a p-contraction on a QQ-category.

Suppose that Q is a continuous lattice and ¢: Q — Q is a lower-semicontinuous function.
For any © € Cq such that C(Fz,z) # 0 # C(z, F'z), the sequence (F"x)nen is Cauchy.
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These conditions are met by the previously men-
tioned examples—in particular the “Banach” case.
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Proposition

Suppose that F': C — C is a p-contraction on a QQ-category.
Suppose that Q is a continuous lattice and ¢: Q — Q is a lower-semicontinuous function.
For any © € Cq such that C(Fz,xz) # 0 # C(z, Fz), the sequence (F" )} is Cauchy.

(order and)

irected suprema ;
directed suprema.

commute with
arbitrary infima.

These conditions are met by the previously men-
tioned examples—in particular the “Banach” case.

(The theorem holds under weaker conditions, but it
makes the statement more technically involved, so
skipped here for convenience.)
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Proposition

Suppose that F': C — C is a p-contraction on a Q-category.
Suppose that Q is a continuous lattice and ¢: Q — Q is a lower-semicontinuous function.
For any x € Cq such that C(Fz,z) # 0 # C(z, Fz), the sequence (F"z)nen is Cauchy.
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Theorem
Suppose that F': C — C is a p-contraction on a Cauchy complete Q-category.
Suppose that Q) is a continuous lattice and p: Q — Q is a lower-semicontinuous function.

If there exists an x € Cq such that C(Fz,x) # 0 # C(z, Fz), then F has a fixpoint.

If C is symmetric, then any two fixpoints of F' are either isomorphic or in different
summands of C; if C has no zero-homs, then any two fixpoints of F' are isomorphic.
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Theorem

Suppose that F': C — C is a p-contraction on a Cauchy complete Q-category.

Suppose that Q) is a continuous lattice and p: Q — Q is a lower-semicontinuous function.
If there exists an x € Cq such that C(Fz,x) # 0 # C(z, Fz), then F has a fixpoint.

If C is symmetric, then any two fixpoints of F' are either isomorphic or in different
summands of C; if C has no zero-homs, then any two fixpoints of F' are isomorphic.

Examples:
Q = ({0,1},\/, A, 1): the theorem trivializes for ordered sets.
Q = ([0,00], A\, +,0): a generalized Banach fixpoint theorem for generalized metric
spaces, allowing for non-linear contractions (see also (Boyd and Wong, 1969)).
Q = ([0,1],V, *,1): a new fixpoint theorem for fuzzy orders, to be compared with e.g.
(Coppola et al., 2008).
Q = (A,V,*,e): a new fixpoint theorem for probabilistic metric spaces, encompassing
certain known results (Hadzi¢ and Pap, 2001).



Take-away message: an equilibrum of three

To formulate a fixpoint theorem for a p-contraction F: C — C on a Q-category,

C must be F must be

sufficiently <—— sufficiently
contractive

N/

Q@ must be
sufficiently
continuous

complete

Our theorem captures known examples and produces new results. Yet, the literature
abounds with fixpoint theorems. Further study is necessary!



Closing remark from Fréchet (1906):

SUR QUELQUES POINTS DU CALCUL FONCTIONNEL;

Par M. Maurice Fréchet (Paris) *).

Adunanza del 22 aprile 1906.

Il fallait d’abord voir comment transformer les énoncés des théorémes pour qu’ils
conservent un sens dans le cas général. Il fallait ensuite, soit transcrire les démonstra-
tions dans un langage plus général, soit, lorsque cela n’était pas possible, donner des
démonstrations nouvelles et plus générales. Il sest trouvé que les démonstrations que
nous avons ainsi obtenues sont souvent aussi simples, et quelquefois méme plus sim-
ples, que les démonstrations particulieres qu’elles remplagaient. Cela tient sans doute
ce que la position de la question obligeait 4 ne faire usage que de ses particularités
vraiment essentielles.
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