The category of *k***-groups**

Gábor Lukács

lukacs@cc.umanitoba.ca

University of Manitoba Winnipeg, Manitoba, Canada

Preliminaries

- Since $T_0 \Leftrightarrow T_{3\frac{1}{2}}$ in Grp(Top), all topological groups and spaces are assumed to be at least T_2 .
- $f: X \to Y$ is *k*-cts if $f_{|K}$ is cts for every compact $K \subseteq X$.
- X is a k-space if k-cts = cts on X.
- kHaus is a coreflective subcategory of Haus.
- If $f: X \to Y$ is a bijection that induces a bijection between the compact subsets, then $kX \cong kY$.
- kHaus is cartesian closed (Brown, 1964).
- $[X,Y] = k\mathscr{C}(X,Y)$ (\mathscr{C} compact-open topology).

Noble (1970)

- $G \in Grp(Haus)$ is a *k*-group if *k*-cts = cts for group homomorphisms $\varphi: G \to H$.
- Not every k-group is a k-space. [ev: $C(G, \mathbb{R}) \times G \to \mathbb{R}$ is cts only if G is LC.]
- kGrp is a coreflective subcategory of Grp(Haus).
- kgG has the finest group topology whose compact sets coincide with those in G.
- If $\{G_{\alpha}\}_{\alpha \in I}$ are k-groups, then so is $\prod_{\alpha \in I}^{\text{Grp(Haus)}}$
- $\lim_{Grp(Haus)} \neq k_g \lim_{Grp(Haus)} = \lim_{kGrp}$

 G_{α}

Free topological groups

- Both $U: Grp(Haus) \longrightarrow Tych$ and $U: Ab(Haus) \longrightarrow Tych$ have left adjoints:
 - $F: \operatorname{Tych} \to \operatorname{Grp}(\operatorname{Haus});$
 - $A : \mathsf{Tych} \to \mathsf{Ab}(\mathsf{Haus}).$
 - X generates F(X) and A(X) algebraically.
 - Units $X \to F(X)$ and $X \to A(X)$ are closed embs.
 - Counits $F(G) \rightarrow G$ and $A(E) \rightarrow E$ are quotients.
- $U: kGrp \longrightarrow Tych$ has no left adjoint. [No pres. of lim.]

What is the "right" forgetful functor for *k*-groups?

k_R -spaces

- X is a k_R -space if k-cts = cts for $f: X \to \mathbb{R}$.
- X is a k_R -space \Leftrightarrow k-cts = cts for $f: X \to Z$ with $Z \in Tych$.

GL (2002):

- k_RHaus is coreflective in Haus.
- $k_R Z \in Tych$ for $Z \in Tych$.
- k_RTych is coreflective in Tych.
- k_RTych is cartesian closed.
- k_RTych is equivalent to a (full) epireflective subcategory of kHaus.

k_R -spaces

(The dashed arrows are right adjoints.)

Free *k***-groups**

- $\ \, \bullet \ \, \mathsf{k}_\mathsf{R}\mathsf{k}_\mathsf{g}=\mathsf{k}_\mathsf{R}.$
- k_RU : kGrp $\longrightarrow k_R$ Tych preserves limits.

Theorem. (GL, 2004) If $X \in k_R$ Tych, then $F(X), A(X) \in k$ Grp.

- $F_{|k_RTych}$ is left adjoint to $k_RU: kGrp \longrightarrow k_RTych$.
- $A_{|k_R}Tych}$ is left adjoint to k_RU : kAb $\longrightarrow k_RTych$.
- G is an [abelian] k-group if and only if G is a quotient of F(X) [A(X)], where X is a Tychonoff k_R -space.

Free *k***-groups**

(The dashed arrows are right adjoints.)

Tensor product of abelian *k***-groups**

Let $B, C \in kAb$, and consider the following subgroup of $A(k_R(B \times C))$:

 $R(B,C) = \langle (b_1+b_2,c) - (b_1,c) - (b_2,c), (b,c_1+c_2) - (b,c_1) - (b,c_2) \rangle$

We put $B \otimes_{\mathsf{k}} C \stackrel{def}{=} A(\mathsf{k}_{\mathsf{R}}(B \times C))/\overline{R(B,C)}$.

Theorem. (GL, 2004/8) There are bijections

 $\mathsf{kAb}(B \otimes_{\mathsf{k}} C, D) \longleftrightarrow \mathsf{kBil}(B \times C, D) \longleftrightarrow \mathsf{kAb}(B, \mathsf{k_g}\mathscr{H}(C, D))$

that are natural in $B, C, D \in \mathsf{kAb}$. [$\mathscr{H} = \mathsf{cts} \text{ homo.} \subseteq \mathscr{C}$.]

Tensor product of abelian *k***-groups**

Theorem. (GL, 2004/8) There are bijections

 $\mathsf{kAb}(B \otimes_{\mathsf{k}} C, D) \longleftrightarrow \mathsf{kBil}(B \times C, D) \longleftrightarrow \mathsf{kAb}(B, \mathsf{k_g}\mathscr{H}(C, D))$

that are natural in $B, C, D \in \mathsf{kAb}$. [$\mathscr{H} = \mathsf{cts} \text{ homo.} \subseteq \mathscr{C}$.]

Theorem. (GL, 2007/8) $k_{g}\mathscr{H}(B, k_{g}\mathscr{H}(C, D)) \cong k_{g}\mathscr{B}(B \times_{k_{R}} C, D) \cong k_{g}\mathscr{H}(C, k_{g}\mathscr{H}(B, D))$ naturally in $B, C, D \in kAb$.

Tensor product of abelian *k***-groups**

Theorem. (GL, 2004/8) There are bijections

 $\mathsf{kAb}(B \otimes_{\mathsf{k}} C, D) \longleftrightarrow \mathsf{kBil}(B \times C, D) \longleftrightarrow \mathsf{kAb}(B, \mathsf{k_g}\mathscr{H}(C, D))$

that are natural in $B, C, D \in \mathsf{kAb}$. [$\mathscr{H} = \mathsf{cts} \text{ homo.} \subseteq \mathscr{C}$.]

Theorem. (GL, 2007/8) $k_{g}\mathscr{H}(B, k_{g}\mathscr{H}(C, D)) \cong k_{g}\mathscr{B}(B \times_{k_{R}} C, D) \cong k_{g}\mathscr{H}(C, k_{g}\mathscr{H}(B, D))$ naturally in $B, C, D \in kAb$.

Question. (Easy?) Is this enough to conclude that \otimes_k is: Associative? Coherent? Makes kAb monoidal closed?

Question. Is $k_g \mathscr{H}(B \otimes_k C, D) \cong k_g \mathscr{H}(B, k_g \mathscr{H}(C, D))$?

Pros and cons

Cons:

- *k*-groups are not closed under the formation of closed subgroups.
- Put $T = \mathbb{R}/\mathbb{Z}$, and consider the dual $G' = k_g \mathscr{H}(G, T)$.
 Although the evaluation *G* → *G''* is continuous, it need not be a topological isomorphism.
- Thus, kAb is not *-autonomous with respect to this structure. (Michael Barr's proposed structure is!)

Pros and cons

Pros:

- kAb contains all metrizable abelian and LCA groups as well as their arbitrary products.
- kAb is closed under the formation of open subgroups, quotients, and coproducts (in Ab(Haus)).
- Solution Solution States and S
- If B and C are LCA, then k-cts bilinear maps $B \times C \rightarrow D$ coincide with the cts bilinear ones.
- G'' is precisely the k_g -ification of the Binz-Butzmann dual of G (cf. convergence groups).