Free models of enriched T-algebraic theories computed as Kan extensions

Nicolas Tabareau joint work with Paul-André Melliès

PPS (Preuves Programmations Systèmes) PARIS, FRANCE

Category Theory 2008

Let k denote a commutative ring. To every k-module A is associated the tensor algebra

$$TA = \bigoplus_{n \in \mathbb{N}} A^{\otimes n}$$

computed as infinite sum of tensorial powers.

Furthermore, this construction is functorial

$$T : k-Mod \longrightarrow k-Alg$$

k-algebra as monoid

Recall that a k-algebra M is defined as a k-module equipped with two morphisms,

$$k \xrightarrow{e} M \xleftarrow{m} M \otimes M$$

called unit and multiplication, making the diagrams below commute:

k-algebra as monoid

Recall that a k-algebra M is defined as a k-module equipped with two morphisms,

$$k \xrightarrow{e} M \xleftarrow{m} M \otimes M$$

called unit and multiplication, making the diagrams below commute:

The tensor algebra as a free monoid

k-algebra = monoid object in the category k-Mod

(k-Mod seen as a monoidal category equipped with the familiar tensor product \otimes of k-modules)

The k-algebra TA is the free monoid object in the category k-Mod

A basic problem in algebra

A k-bialgebra H is a k-module equipped with a k-algebra and a k-cogebra structure, making the bialgebra's compatibility diagrams commute:

There exists (in general) no free k-bialgebra for a given k-module [Loday]

That is, the forgetful functor

does not have a left adjoint.

We want to understand more conceptually what distinguishes

- the forgetful functor U_{Alg} which has a left adjoint
- from the forgetful functor U_{Big} which does not have a left adjoint.

Algebraic theories

An algebraic theory is a category L with finite productsobjects

• categorical product provided by

 $m_1+\ldots+m_k$.

An L-model A in a Cartesian category $(\mathbb{C}, \times, \mathbf{1})$ is a finite-product preserving functor $A : \mathbb{L} \to \mathbb{C}$

$$A[m_1 + \ldots + m_k] \longrightarrow A[m_1] \times \ldots \times A[m_k]$$

 \bullet trivial theory: $\mathbb{L},$ the free category with finite product generated by the category with one object

 $\mathsf{Model}(\mathbb{L},\mathbb{C})\cong\mathbb{C}$

theory of monoids: M, the category whose *n*-ary operations are the finite words (of arbitrary length) built on an alphabet [n] = {1,...,n} of n letters

$$\mathsf{Model}(\mathbb{L},\mathbb{C})\cong \mathit{Mon}(\mathbb{C})$$

Any finite-product preserving morphism $f : \mathbb{L}_1 \to \mathbb{L}_2$ defines a forgetful functor by precomposition

$$U_f$$
 : Model(\mathbb{L}_2, \mathbb{C}) \longrightarrow Model(\mathbb{L}_1, \mathbb{C}).

When \mathbb{C} is Cartesian closed and has all small colimits (e.g. Set),

free model $F_f(A)$ of $A : \mathbb{L}_1 \to \mathbb{C}$ along f =left Kan extension

The construction is functorial

For example, the free monoid in Set is computed as

$$A^* \quad = \quad \coprod_{n \in \mathbb{N}} A^{\times n}.$$

The construction is functorial

For example, the free monoid in Set is computed as

$$A^* = \prod_{n \in \mathbb{N}} A^{\times n}.$$

The magic comes from the fact that the Kan extension always preserves finite product if A and f do.

The construction is functorial

For example, the free monoid in Set is computed as

$$A^* = \prod_{n \in \mathbb{N}} A^{\times n}.$$

The magic comes from the fact that the Kan extension always preserves finite product if A and f do.

The analogy with the tensor algebra is striking

 \Rightarrow adapt algebraic theory to linear theory

Cartesian category \longrightarrow monoidal category

finite-product preserving functor \longrightarrow monoidal functor

Tabareau, Melliès (PPS)

• trivial PRO: $\mathbb{N}=$ the free monoidal category generated by the category with one object:

 $MonCat(\mathbb{N})(\mathbb{C}) \cong \mathbb{C}$

• PRO of monoids: $\Delta =$ the category of augmented simplices

 $MonCat(\Delta)(\mathbb{C}) \cong Mon(\mathbb{C})$

Let f be the unique monoidal functor from $\mathbb N$ to Δ that sends $1\mapsto 1$

When $\mathbb{C} = k$ -Mod, the Kan extension is

$$\operatorname{Lan}_f A$$
 : $p \mapsto \bigoplus_{n \in \mathbb{N}} \Delta(n, p) \otimes A^{\otimes n}$

where the k-module $\Delta(n, p) \otimes A^{\otimes n}$ means the direct sum of as many copies of the k-module $A^{\otimes n}$ as there are elements in the hom-set $\Delta(n, p)$.

$$\operatorname{Lan}_f A(1) = TA$$

Let f be the unique monoidal functor from $\mathbb N$ to Δ that sends $1\mapsto 1$

When $\mathbb{C} = k$ -Mod, the Kan extension is

$$\operatorname{Lan}_f A$$
 : $p \mapsto \bigoplus_{n \in \mathbb{N}} \Delta(n, p) \otimes A^{\otimes n}$

where the k-module $\Delta(n, p) \otimes A^{\otimes n}$ means the direct sum of as many copies of the k-module $A^{\otimes n}$ as there are elements in the hom-set $\Delta(n, p)$.

$$\operatorname{Lan}_f A(1) = TA$$

Unfortunately, the Kan extension in Cat is not always a Kan extension in *MonCat*.

When is the left Kan extension of a monoidal functor A

along a monoidal functor f, a monoidal left Kan extension?

Given a pseudo-monad T on Cat, define the 2-category Cat^{T}

- T-algebraic category = pseudo-algebra of the pseudo-monad T,
- *T*-algebraic functor = pseudo-algebra pseudo-functor,
- *T*-algebraic natural transformation = pseudo-algebra natural transformation.
- A *T*-algebraic theory is then a small *T*-algebraic category

Examples of T-algebraic theories

T-algebraic theories	$T\mathbb{A}$
algebraic theories	free category with finite products
linear theories	free monoidal category
symmetric theories	free symmetric monoidal category
braided theories	free braided monoidal category
projective sketches	free category with finite limits

Algebraic distributors at work [Benabou]

The bicategory of distributors consists in

- Categories as 0-cells
- Functors from

as 1-cells, noted

 $\mathbb{A} \times \mathbb{B}^{\mathsf{op}} \longrightarrow Set$ $\mathbb{A} \longrightarrow \mathbb{B}$

• Natural transformations as 2-cells

Right adjoint and Kan extension

Every functor $f : \mathbb{A} \longrightarrow \mathbb{B}$ gives rise to a distributor

$$f_* : \mathbb{A} \longrightarrow \mathbb{B}$$

which as a right adjoint

$$f^*: \mathbb{B} \longrightarrow \mathbb{A}$$

Right adjoint and Kan extension

The Kan extension of a functor f along a functor j is obtained by

- first composing g_* and f^*
- then taking the representative $\operatorname{Lan}_f(g)$ of $g_* \circ f^*$

$$\mathsf{Dist}(g_* \circ f^*, h_*) \cong \mathsf{Cat}(\mathsf{Lan}_f(g), h)$$

The two ingredients of the recipe

Ingredient n°1:

the adjunction $f_* \dashv f^*$ is *T*-algebraic

Ingredient n°2:

the T-algebraic distributor $g_* \circ f^* : \mathbb{A} \longrightarrow \mathbb{C}$ is represented by a T-algebraic functor

The two ingredients of the recipe

Ingredient n°1:

the adjunction $f_* \dashv f^*$ is *T*-algebraic

$$\rightarrow$$
 operadicity

Ingredient n°2:

the T-algebraic distributor $g_* \circ f^* : \mathbb{A} \longrightarrow \mathbb{C}$ is represented by a T-algebraic functor

as the required algebraic colimits

Proarrow equipment [Wood]

A proarrow equipment is a formalisation of the homomorphism of bicategories between Cat and Dist. It consists in a homomorphism of bicategories

$$(-)_*:\mathcal{K}
ightarrow \mathcal{M}$$

satisfying the three axioms:

O The object of *M* are those of *K* and (−)_{*} is the identity on objects.
O(−)_{*} is locally fully faithful, ie.

$$\mathcal{K}(f,g)\cong \mathcal{M}(f_*,g_*)$$

③ For every arrow f in \mathcal{K} , f_* has a right adjoint f^* .

an arrow g:B ightarrow C of ${\mathcal K}$ represents an arrow f:B ightarrow C of ${\mathcal M}$ when

$$\mathcal{M}(f,(-)_*) \cong \mathcal{K}(g,-)$$

Pseudomonad in a proarrow equipment

A pseudomonad T in a proarrow equipment $(-)_* : \mathcal{K} \to \mathcal{M}$ is given by

- a pseudomonad $\mathcal{T}_{\mathcal{K}}$ on \mathcal{K}
- a pseudomonad $\mathcal{T}_{\mathcal{M}}$ on \mathcal{M}
- a pseudo natural transformation $h: T_{\mathcal{M}} \circ (-)_* \to (-)_* \circ T_{\mathcal{K}}$ noted

making $((-)_*, h)$ be a map of pseudomonads from $T_{\mathcal{K}}$ to $T_{\mathcal{M}}$,

Pseudomonad in a proarrow equipment

Operadicity

A $T_{\mathcal{K}}$ -algebraic morphism f of \mathcal{K} is operadic

when its right adjoint f^* in \mathcal{M} is $T_{\mathcal{M}}$ -algebraic

Recall that f^* is always a lax T_M -algebraic morphism.

Tabareau, Melliès (PPS)

Free models of T-algebraic theories

Algebraic colimits

An object \mathbb{C} of \mathcal{K} is algebraically cocomplete (wrt. the object $\overline{\mathbb{C}}$) when there is an adjunction in \mathcal{K}

$$\operatorname{colim}: \ \overline{\mathbb{C}} \Longrightarrow \mathbb{C} \ : y$$

- y is full and faithful
- colim, y and y^* are algebraic
- y* creates isomorphisms, ie.

Hypotheses:

- $f: \mathbb{L}_1 \to \mathbb{L}_2$ is operadic,
- $\bullet \ \mathbb{C}$ is algebraically cocomplete via the adjunction

$$\operatorname{colim}: \ \overline{\mathbb{C}} \Longrightarrow \mathbb{C} : y$$

• for all morphism $g: \mathbb{L}_1 \to \mathbb{C}$ in \mathcal{K} , $g_* \circ f^*$ factorises through y^* .

Then, the forgetful functor

```
U_f : \mathsf{Model}(\mathbb{L}_2,\mathbb{C}) \to \mathsf{Model}(\mathbb{L}_1,\mathbb{C})
```

has a left adjoint computed by left Kan extension :

$$Lan_f$$
 : $Model(\mathbb{L}_1, \mathbb{C}) \rightarrow Model(\mathbb{L}_2, \mathbb{C}).$

When the proarrow equipment is $(-)_*$: Cat \rightarrow Dist, this left Kan extension is computed by

$$\mathsf{Lan}_f A = \int^{m \in \mathbb{L}_1} \mathbb{L}_2(fm, n) \otimes A^{\otimes m}$$

When the proarrow equipment is $(-)_{\ast}:\mathsf{Cat}\to\mathsf{Dist},$ operadicity means that

$$\int^{h\in T(\mathbb{L}_1)} \mathbb{L}_1(m,[h]) \otimes T(\mathbb{L}_2)(Tf(h),n) \longrightarrow \mathbb{L}_2(fm,[n])$$

is an isomorphism

$operadicity \quad = \quad tree \ decomposition \ property$

Tabareau, Melliès (PPS)

When $\ensuremath{\mathcal{T}}$ is the pseudomonad for monoidal category, the isomorphism becomes

$$\int^{h_1 \in \mathbb{L}_1} \cdots \int^{h_k \in \mathbb{L}_1} \mathbb{L}_1(h, h_1 + \cdots + h_k) \times \mathbb{L}_2(h_1, n_1) \times \cdots \times \mathbb{L}_2(h_k, n_k)$$

$$\longrightarrow \quad \mathbb{L}_2(h, n_1 + \cdots + n_k)$$

Operadicity for linear theories

Operadicity for linear theories

This terminology "operadic" is justifies by the fact:

Every map of operads f between two operads \mathbb{L}_1 and \mathbb{L}_2 (seen as monoidal categories) is operadic

Factorisation system of Cat [Street, Walters]

- \mathcal{E} : the classe of final functors
- \mathcal{M} : the classe of discrete fibrations

Any diagram $F: J \to \mathbb{C}$ may be seen as the presheaf φ given by the decomposition

$$J \xrightarrow{F} \mathbb{C} = J \xrightarrow{F_1} \operatorname{Elt} \varphi \xrightarrow{F_2} \mathbb{C}$$

where F_1 is a final functor and F_2 is a discrete fibration.

When the proarrow equipment is $(-)_*$: Cat \rightarrow Dist,

 $\label{eq:completeness} \begin{array}{l} \mbox{algebraic cocompleteness} = \mbox{colimits under some class} \ \mathcal{F} \\ \mbox{commute with the } \ \mathcal{T}\mbox{-algebraic structure} \end{array}$

Algebraically cocomplete : linear theories

When T is the pseudo-monad for monoidal categories, one chooses a subcategory of the category of presheaves

$$\overline{\mathbb{C}} \hookrightarrow \widehat{\mathbb{C}}$$

closed under the Day's tensor product

$$arphi_1\otimes_{\overline{\mathbb{C}}}arphi_2:b\mapsto\int^{a_1,a_2\in\mathbb{C}}\mathbb{C}(b,a_1\otimes_{\mathbb{C}}a_2)\otimesarphi_1(a_1)\otimesarphi_2(a_2)$$

Algebraically cocomplete : linear theories

This is the case for example when the class $\ensuremath{\mathcal{F}}$ is closed under product

This is the case for example when the class ${\mathcal F}$ is closed under product

Algebraically cocomplete : linear theories

 \mathbb{C}^{\bullet} is the restriction of the category of presheaves to presheaves having a colimit in \mathbb{C}

 $\overline{\mathbb{C}}$ is the restriction of the category of presheaves to presheaves having an algebraic colimit in \mathbb{C}

Observe that $\overline{\mathbb{C}}$ and $\widehat{\mathbb{C}}$ are equipped with \otimes_{Day} but not necessarily \mathbb{C}^{\bullet}

 $\ensuremath{\mathbb{C}}$ is an monoidal category with colimits for which

- coequalisers commute with the tensor product
- sequential colimits commute with the tensor product

Then we can compute the free monoid on pointed object

Free monoid: the Dubuc construction

• $\mathbb{L}_1 = \Delta_{face}$: the category of augmented simplices and injective maps theory of pointed objects • $\mathbb{L}_2 = \Delta$: the category of augmented simplices theory of monoids

In practice, we have to show that

all the diagrams defining the Kan extension in Dist

live in $\overline{\mathbb{C}}$

Tabareau, Melliès (PPS)

Coequalisers commute with the tensor product in \mathbb{C} .

Thus, the presheaf φ_n associated to the diagram

$$1 \longrightarrow A \Longrightarrow A^{\otimes 2} \Longrightarrow \cdots \Longrightarrow A^{\otimes n}$$

lives in $\overline{\mathbb{C}}$ for every *n*.

As sequential colimits commute with the tensor product in \mathbb{C} , the sequential colimit of the presheaves φ_n

lives in $\overline{\mathbb{C}}$

 $\ensuremath{\mathbb{C}}$ is an monoidal category with colimits for which

- reflexive coequalisers commute with the tensor product
- sequential colimits commute with the tensor product

Then we can compute the free monoid on pointed object

Free monoid: the Vallette/Lack construction

Recipe : replace the pair

$$A \xrightarrow{f} A^{\otimes 2}$$

with the reflexive pair (having the same coequaliser)

and apply the same construction.

 $\ensuremath{\mathbb{C}}$ is an symmetric monoidal category with colimits for which

- coequalisers commute with the tensor product
- coproducts commute with the tensor product

Then we can compute the free commutative monoid

First, we coequalise the permutation on $A^{\otimes n}$

Then we take the coproduct of the coequalisers

$$TA = \bigoplus_{n \in \mathbb{N}} A^{\otimes n} / \sim$$

Applying this construction to games ,where we have almost no colimit, to compute the free commutative comonoid.

TA is the game where Opponent can open as many copies of the game *A* as he wants.

Enable to construct a Cartesian closed category of games starting from a symmetric monoidal one.

