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The tensor algebra

Let k denote a commutative ring. To every k-module A is associated the
tensor algebra

TA =
⊕
n∈N

A⊗n

computed as infinite sum of tensorial powers.

Furthermore, this construction is functorial

T : k-Mod −→ k-Alg
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k-algebra as monoid

Recall that a k-algebra M is defined as a k-module equipped with two
morphisms,

k
e−→ M

m←− M ⊗M

called unit and multiplication, making the diagrams below commute:

M ⊗M ⊗M
m⊗M //

M⊗m

��

M ⊗M

m

��
M ⊗M

m // M

k ⊗M
e⊗M //

∼=
%%KKKKKKKKKKK M ⊗M

m

��

M ⊗ k
M⊗eoo

∼=
yysssssssssss

M
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The tensor algebra as a free monoid

k-algebra = monoid object in the category k-Mod

(k-Mod seen as a monoidal category equipped with
the familiar tensor product ⊗ of k-modules)

The k-algebra TA is the free monoid object in the category k-Mod
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A basic problem in algebra

A k-bialgebra H is a k-module equipped with a k-algebra and a k-cogebra
structure, making the bialgebra’s compatibility diagrams commute:

= =

= =
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A basic problem in algebra

There exists (in general) no free k-bialgebra for a given k-module [Loday]

That is, the forgetful functor

UBig : k-Big // k-Modbb

does not have a left adjoint.
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A basic problem in algebra

We want to understand more conceptually what distinguishes

the forgetful functor UAlg which has a left adjoint

from the forgetful functor UBig which does not have a left adjoint.
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Algebraic theories

An algebraic theory is a category L with finite products

objects
0, 1, 2, . . .

categorical product provided by

m1 + . . .+ mk .

An L-model A in a Cartesian category (C,×, 1) is a finite-product
preserving functor A : L −→ C

A[m1 + . . .+ mk ] −→ A[m1]× . . .× A[mk ]
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Examples of algebraic theories

trivial theory: L, the free category with finite product generated by
the category with one object

Model(L,C) ∼= C

theory of monoids: M, the category whose n-ary operations are the
finite words (of arbitrary length) built on an alphabet [n] = {1, . . . , n}
of n letters

Model(L,C) ∼= Mon(C)
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Free models as Kan extensions

Any finite-product preserving morphism f : L1 → L2 defines a forgetful
functor by precomposition

Uf : Model(L2,C) −→ Model(L1,C).

When C is Cartesian closed and has all small colimits (e.g. Set),

free model Ff (A) of A : L1 −→ C along f = left Kan extension

C

L1 f
//

A >>}}}} ⇒
L2

Ff A``AAAA
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Free models as Kan extensions

The construction is functorial

For example, the free monoid in Set is computed as

A∗ =
∐
n∈N

A×n.

The magic comes from the fact that the Kan extension always preserves
finite product if A and f do.

The analogy with the tensor algebra is striking

⇒ adapt algebraic theory to linear theory
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Linear theory : PRO

Cartesian category −→ monoidal category

finite-product preserving functor −→ monoidal functor
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Examples of PROs

trivial PRO: N = the free monoidal category generated by the
category with one object:

MonCat(N)(C) ∼= C

PRO of monoids: ∆ = the category of augmented simplices

MonCat(∆)(C) ∼= Mon(C)
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The tensor algebra

Let f be the unique monoidal functor from N to ∆ that sends 1 7→ 1

When C = k-Mod, the Kan extension is

Lanf A : p 7→
⊕
n∈N

∆(n, p)⊗ A⊗n

where the k-module ∆(n, p)⊗ A⊗n means the direct sum of as many
copies of the k-module A⊗n as there are elements in the hom-set ∆(n, p).

Lanf A(1) = TA

Unfortunately, the Kan extension in Cat is not always a Kan extension in
MonCat.
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When is the left Kan extension of a monoidal functor A

along a monoidal functor f , a monoidal left Kan extension?
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T -algebraic theory

Given a pseudo-monad T on Cat, define the 2-category CatT

T -algebraic category = pseudo-algebra of the pseudo-monad T ,

T -algebraic functor = pseudo-algebra pseudo-functor,

T -algebraic natural transformation = pseudo-algebra natural
transformation.

A T -algebraic theory is then a small T -algebraic category
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Examples of T-algebraic theories

T-algebraic theories TA

algebraic theories free category with finite products

linear theories free monoidal category

symmetric theories free symmetric monoidal category

braided theories free braided monoidal category

projective sketches free category with finite limits

Tabareau, Melliès (PPS) Free models of T-algebraic theories CT ’08 17 / 49



Algebraic distributors at work [Benabou]

The bicategory of distributors consists in

Categories as 0-cells

Functors from
A× Bop −→ Set

as 1-cells, noted
A −→p B

Natural transformations as 2-cells
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Right adjoint and Kan extension

Every functor f : A −→ B gives rise to a distributor

f∗ : A −→p B

which as a right adjoint

f ∗ : B −→p A

A

f∗
%%

⊥ B
f ∗

ee
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Right adjoint and Kan extension

The Kan extension of a functor f along a functor j is obtained by

first composing g∗ and f ∗

then taking the representative Lanf (g) of g∗ ◦ f ∗

Dist(g∗ ◦ f ∗, h∗) ∼= Cat(Lanf (g), h)

C

L1
f∗ //

g∗

FF������������

⊥

L2

g∗◦f ∗

XX222222222222

Lanf (g)

oo

f ∗

XX
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The two ingredients of the recipe

Ingredient n°1:

the adjunction
f∗ a f ∗

is T -algebraic

=⇒ operadicity

Ingredient n°2:

the T -algebraic distributor
g∗ ◦ f ∗ : A −→p C

is represented by a T -algebraic functor

=⇒
as the required

algebraic colimits
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Proarrow equipment [Wood]

A proarrow equipment is a formalisation of the homomorphism of
bicategories between Cat and Dist. It consists in a homomorphism of
bicategories

(−)∗ : K →M

satisfying the three axioms:

1 The object of M are those of K and (−)∗ is the identity on objects.

2 (−)∗ is locally fully faithful, ie.

K(f , g) ∼=M(f∗, g∗)

3 For every arrow f in K, f∗ has a right adjoint f ∗.

Tabareau, Melliès (PPS) Free models of T-algebraic theories CT ’08 22 / 49



Representative of M in K

an arrow g : B → C of K represents an arrow f : B → C of M

when

M(f , (−)∗) ∼= K(g ,−)
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Pseudomonad in a proarrow equipment

A pseudomonad T in a proarrow equipment (−)∗ : K →M is given by

a pseudomonad TK on K
a pseudomonad TM on M
a pseudo natural transformation h : TM ◦ (−)∗ → (−)∗ ◦ TK noted

TM (−)∗

(−)∗ TK

making ((−)∗, h) be a map of pseudomonads from TK to TM,
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Pseudomonad in a proarrow equipment

TM TM (−)∗

(−)∗ TK

=

TM TM (−)∗

(−)∗ TK

(−)∗

(−)∗ TK

=

(−)∗

(−)∗ TK
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Operadicity

A TK-algebraic morphism f of K is operadic

when its right adjoint f ∗ in M is TM-algebraic

A
f∗ is TM-algebraic

++⊥ B
f ∗ is TM-algebraic

kk

Recall that f ∗ is always a lax TM-algebraic morphism.
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Algebraic colimits

An object C of K is algebraically cocomplete
(wrt. the object C) when there is an adjunction in K

colim : C // Coo : y

y is full and faithful
colim,y and y∗ are algebraic
y∗ creates isomorphisms, ie.

C

C

y∗
OO

A

f

AA
g

]]
____ +3θ

7→

C

C

y∗
::

C

y∗
dd

A
f

SS

g

KK
____ +3y∗◦θ

y∗ ◦ θ iso⇒ θ iso
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Main result

Hypotheses:

f : L1 −→ L2 is operadic,

C is algebraically cocomplete via the adjunction

colim : C // Coo : y

for all morphism g : L1 → C in K, g∗ ◦ f ∗ factorises through y∗.
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Main result

Then, the forgetful functor

Uf : Model(L2,C) −→ Model(L1,C)

has a left adjoint computed by left Kan extension :

Lanf : Model(L1,C) −→ Model(L2,C).

When the proarrow equipment is (−)∗ : Cat→ Dist, this left Kan
extension is computed by

Lanf A =
∫ m∈L1 L2(fm, n)⊗ A⊗m
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Operadicity

When the proarrow equipment is (−)∗ : Cat→ Dist, operadicity means
that ∫ h∈T (L1)

L1(m, [h])⊗ T (L2)(Tf (h), n) −→ L2(fm, [n])

is an isomorphism
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Operadicity

operadicity = tree decomposition property

Tabareau, Melliès (PPS) Free models of T-algebraic theories CT ’08 31 / 49



Operadicity for linear theories

When T is the pseudomonad for monoidal category, the isomorphism
becomes

∫ h1∈L1 · · ·
∫ hk∈L1 L1(h, h1 + · · ·+ hk)× L2(h1, n1)× · · · × L2(hk , nk)

−→ L2(h, n1 + · · ·+ nk)
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Operadicity for linear theories

=
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Operadicity for linear theories

This terminology “operadic” is justifies by the fact:

Every map of operads f between two operads
L1 and L2 (seen as monoidal categories)

is operadic
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Factorisation system of Cat [Street,Walters]

E : the classe of final functors

M : the classe of discrete fibrations

Any diagram F : J → C may be seen as the presheaf ϕ given by the
decomposition

J
F−→ C = J

F1−→ Eltϕ
F2−→ C

where F1 is a final functor and F2 is a discrete fibration.
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Algebraically cocomplete

When the proarrow equipment is (−)∗ : Cat→ Dist,

algebraic cocompleteness = colimits under some class F
commute with the T -algebraic structure
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Algebraically cocomplete : linear theories

When T is the pseudo-monad for monoidal categories, one chooses a
subcategory of the category of presheaves

C ↪→ Ĉ

closed under the Day’s tensor product

ϕ1 ⊗C ϕ2 : b 7→
∫ a1,a2∈C

C(b, a1 ⊗C a2)⊗ ϕ1(a1)⊗ ϕ2(a2)
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Algebraically cocomplete : linear theories

This is the case for example when the class F is closed under product

I × J
final //

F×G ))RRRRRRRRRRRRRRR Eltϕ× Eltψ

discrete
��
fibration

final // Elt(ϕ⊗ ψ)

discrete
��
fibration

C× C ⊗
// C
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Algebraically cocomplete : linear theories

C• is the restriction of the category of presheaves to presheaves having a
colimit in C

C

y
""

⊥ C•

colim

bb
� � // Ĉ

C is the restriction of the category of presheaves to presheaves having an
algebraic colimit in C

C

y
""

⊥ C
colim

bb
� � // C• �

� // Ĉ

Observe that C and Ĉ are equipped with ⊗Day but not necessarily C•.
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Free monoid: the Dubuc construction

C is an monoidal category with colimits for which

coequalisers commute with the tensor product

sequential colimits commute with the tensor product

Then we can compute the free monoid on pointed object
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Free monoid: the Dubuc construction

L1 = ∆face : the category of augmented simplices and injective maps

theory of pointed objects

L2 = ∆ : the category of augmented simplices

theory of monoids

C

∆face

A•

::ttttttttttttttttt
� �

f operadic
// ∆

LanA

ccHHHHHHHHHHHHHHHHH
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Free monoid: the Dubuc construction

In practice, we have to show that

all the diagrams defining the Kan extension in Dist

live in C
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Free monoid: the Dubuc construction

Coequalisers commute with the tensor product in C.

Thus, the presheaf ϕn associated to the diagram

1 // A
//// A⊗2

////// · · · // ////
//

// A
⊗n

lives in C for every n.
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Free monoid: the Dubuc construction

As sequential colimits commute with the tensor product in C, the
sequential colimit of the presheaves ϕn

1 // A
// // A⊗2

////// · · · //////
//

// A
⊗n · · ·

=

∆face
A•−→ C

lives in C
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Free monoid: the Vallette/Lack construction

C is an monoidal category with colimits for which

reflexive coequalisers commute with the tensor product

sequential colimits commute with the tensor product

Then we can compute the free monoid on pointed object
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Free monoid: the Vallette/Lack construction

Recipe : replace the pair

A
f //
g

// A⊗2

with the reflexive pair (having the same coequaliser)

A⊕ A⊗2
f⊕A⊗2

//

g⊕A⊗2
// A⊗2

i2

}}

and apply the same construction.
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Free commutative monoid

C is an symmetric monoidal category with colimits for which

coequalisers commute with the tensor product

coproducts commute with the tensor product

Then we can compute the free commutative monoid
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Free commutative monoid

First, we coequalise the permutation on A⊗n

Then we take the coproduct of the coequalisers

TA =
⊕

n∈N A⊗n/ ∼
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Future work

Applying this construction to games
,where we have almost no colimit,

to compute the free commutative comonoid.

TA is the game where Opponent can open
as many copies of the game A as he wants.

Enable to construct a Cartesian closed category of games
starting from a symmetric monoidal one.

Tabareau, Melliès (PPS) Free models of T-algebraic theories CT ’08 49 / 49


	Main Talk

