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Abstract

Given a simple transient random walk (Sn)n≥0 in Z and a stationary sequence of real random
variables (ξ(s))s∈Z, we investigate the extremes of the sequence (ξ(Sn))n≥0. Under suitable
conditions, we make explicit the extremal index and show that the point process of exceedances
converges to a compound Poisson point process. We give two examples for which the cluster
size distribution can be made explicit.
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1 Introduction

Extreme Value Theory (EVT) deals with rare events and has many applications in various domains
such as hydrology [16], finance [10] and climatology [25]. It was first introduced in the context
of independent and identically distributed (i.i.d.) random variables. It is straightforward that
if (ξ(s))s∈Z is a sequence of i.i.d. random variables then the following property holds: for any
sequence of real numbers (un)n≥0, and for τ > 0,

nP ( ξ(0) > un ) −→
n→∞

τ =⇒ P
(

max
0≤k≤n

ξ(k) ≤ un
)
−→
n→∞

e−τ .

The above property has been extended for sequences of dependent random variables satisfying
two conditions. The first one, referred to as the D(un) condition of Leadbetter, is a long range
dependence property and the second one, known as the D′(un) condition, ensures that, locally,
there is no clusters of exceedances (see [19] for a statement of these conditions).
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In 2009, Franke and Saigo [11, 12] considered the following problem. Let (Xi)i≥1 be a sequence
of centered, integer-valued i.i.d. random variables and let S0 = 0 and Sn = X1 + · · ·+Xn, n ≥ 1.
Assume that (Xi)i≥1 is in the domain of attraction of a stable law, i.e. for each x ∈ R,

P
(
n−

1
αSn ≤ x

)
−→
n→∞

Fα(x),

where Fα is the distribution function of a stable law with characteristic function given by

ϕ(θ) = exp(−|θ|α(C1 + iC2sgnθ)), α ∈ (0, 2].

When α < 1 (resp. α > 1), it is known that the random walk (Sn)n≥0 is transient (resp. recurrent)
[17, 18]. Now, let (ξ(s))s∈Z be a family of R-valued i.i.d. random variables independent of the
sequence (Xi)i≥0. The sequence (ξ(Sn))n≥0 is called a random walk in a random scenery. Such a
concept was first introduced by Kesten and Spitzer [17] who established limit theorems on the sum
of the first n terms and was extensively investigated in various directions, see e.g. [5, 6] and the
survey [15]. In [12], Franke and Saigo derive limit theorems for the maximum of the first n terms
of (ξ(Sn))n≥0 as n goes to infinity. An adaptation of Theorem 1 in [12] shows that in the transient
case, i.e. α < 1, the following property holds: if nP ( ξ(0) > un ) −→

n→∞
τ for some sequence (un)n≥0

and for some τ > 0, then

P
(

max
0≤k≤n

ξ(Sk) ≤ un
)
−→
n→∞

e−qτ , (1.1)

where
q = P (Si 6= 0, ∀i ≥ 1 ) . (1.2)

Notice that q > 0 because the random walk (Sn)n≥0 is transient. The term q can also be expressed
as (see e.g. [18])

q = lim
n→∞

Rn
n

a.s., (1.3)

where Rn = #{S0, . . . , Sn} is the range of the random walk. The result (1.1) was recently extended
to a random scenery which is not necessarily based on i.i.d. random variables but on a sequence
satisfying a slight modification of the D(un) condition [2]. One of the difficulties is that the sequence
(ξ(Sn))n≥0 does not satisfy the D′(un) condition and clusters of exceedances can appear. One way
to define clusters is based on the runs scheme: given a sequence (kn)n≥0 such that kn → ∞ and
kn = o(n), two exceedances, i.e. two points of the form i/n, j/n with ξ(Si) > un and ξ(Sj) > un,
i, j ≤ n, are said to belong to the same cluster if |i− j| ≤ kn (see e.g. [23]).

In this paper, we establish more precise results on the long range dependence and on the so-
called point process of exceedances, i.e. on the family of points i/n such that ξ(Si) exceeds un.
Such a point process is a classical object in EVT (see e.g. [13]) since it counts the number of
occurrences of extreme events. To do it, we assume some additional properties on the random walk
and on the random scenery. First, we let S0 = 0 and Sn = X1 + · · · + Xn, n ≥ 1, where (Xi)i≥1

is a family of independent random variables with distribution P (Xi = 1 ) = p and P (Xi = −1 ) =
1 − p, p ∈]0, 1[\{1

2}. Notice that, as opposed to [2] and [12], the random variable Xi is not
centered. In what follows, the term q appearing in (1.2) also satisfies (1.3). It can easily be
proved that q = |2p − 1|. Secondly, we assume that the random scenery (ξ(s))s∈Z satisfies a long
range dependence property, which is referred to as the ∆(un) condition. To state it, we give some
notation. For each n,m1,m2 with 0 ≤ m1 ≤ m2 ≤ n, define Bm2

m1
(un) as the σ-field generated by

events {ξ(s) ≤ un}, m1 ≤ s ≤ m2, where (un)n≥0 is some sequence of positive numbers. Also for
each n and 1 ≤ ` ≤ n− 1, write

αn,` = max
1≤k≤n−`

max
A∈Bk0 (un),B∈Bnk+`(un)

{|P (A ∩B )− P (A )P (B ) |}.
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We are now prepared to state the ∆(un) condition.

Definition 1 We say that the stationary sequence (ξ(s))s∈Z satisfies the ∆(un) condition if there
exists some sequence (`n)n≥0 such that αn,`n −→n→∞ 0 and `n = o(n).

The above condition is slightly more restrictive than the D(un) condition and was introduced by
Hsing, Hüsler and Leadbetter [14] in the context of stationary sequence of random variables indexed
by the set of positive integers. As an example, any stationary sequence (ξ(s))s∈Z which is α-mixing,
i.e. such that

sup
(A,B)∈F0

−∞×F∞`
|P (A ∩B )− P (A )P (B )| −→

`→∞
0,

where (FLj )j≤L is the natural filtration of (ξ(s))s∈Z, satisfies the ∆(un) condition and therefore the
D(un) condition. This includes, for instance, k-dependent sequences, irreducible ergodic Markov
chains, ARMA models and Gibbs processes (see Chapter 2 in [7] for various examples and [1] for
a survey on mixing conditions).

The extremal index Assume from now on that, for any τ > 0, there exists a threshold un = u
(τ)
n

such that
nP ( ξ(0) > un ) −→

n→∞
τ. (1.4)

The existence of the threshold un = u
(τ)
n is ensured when limx→xf

F (x)

F (x−)
= 1, where xf = sup{u :

F (u) < 1}, F (u) = P ( ξ(0) ≤ u ) and F = 1− F (see Theorem 1.1.13 in [20]).

To state our first main result, we recall the D(k)(un) condition, introduced by Chernick, Hsing
and McCormick [4].

Definition 2 Let k ≥ 1. Assume that (ξ(s))s∈Z satisfies the ∆(un) condition. We say that
(ξ(s))s∈Z satisfies the D(k)(un) condition if there exist sequences of integers (sn)n≥0 and (`n)n≥0

such that sn −→
n→∞

∞, snαn,`n −→n→∞ 0, sn`n/n −→
n→∞

0, and

lim
n→∞

nP ( ξ(0) > un ≥M1,k−1,Mk,rn > un ) = 0,

where Mi,j = −∞ for i > j, Mi,j = max0≤i≤t≤j ξ(t) for i ≤ j, and rn = bn/snc.

As noticed in [4], the D′(un) condition is slightly more restrictive than the D(1)(un) condition.
Observe that the D(k)(un) condition is satisfied when the sequence (ξ(s))s∈Z is k-dependent. Recall
also that the (stationary) sequence (ξ(s))s∈Z has an extremal index σ ∈ [0, 1] if, in conjunction to
(1.4), we have

P
(

max
0≤s≤n

ξ(s) ≤ un
)
−→
n→∞

e−στ ,

for any τ > 0. The extremal index can be interpreted as the reciprocal of the mean size of a cluster
of exceedances. According to Corollary 1.3. in [4], under the assumptions that the ∆(un) and

D(k)(un) conditions hold for un = u
(τ)
n for any τ > 0, the extremal index exists and is equal to

σ if and only if P (M1,k ≤ un|ξ(0) > un ) −→
n→∞

σ for any τ > 0. In particular, when the D′(un)

condition is satisfied, the extremal index exists and is equal to σ = 1 (Theorem 1.2. in [19]).

The following proposition ensures that, under suitable conditions, the extremal index of the
sequence (ξ(Sn))n≥0 exists and can be made explicit.
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Proposition 1 Let (ξ(s))s∈Z be a stationary sequence satisfying the D(k)(un) condition with k ≥ 1,

for un = u
(τ)
n for any τ > 0 and such that (ξ(Sn))n≥0 satisfies the ∆(un) condition. Assume that

the extremal index of (ξ(s))s∈Z exists and is equal to σ ∈ (0, 1], i.e.

nP ( ξ(0) > un ) −→
n→∞

τ and P
(

max
0≤s≤n

{ξ(s)} ≤ un
)
−→
n→∞

e−στ .

Then the sequence (ξ(Sn))n≥0 admits an extremal index which is equal to θ = σq, where q is as in
(1.2).

In other words, Proposition 1 claims that P ( max0≤k≤n ξ(Sk) ≤ un ) −→
n→∞

e−σqτ .

The D(k)(un) condition In [12], Franke and Saigo proved that, when the ξ(s)’s are i.i.d., the
sequence (ξ(Sn))n≥0 does not satisfy the D′(un) condition. Since the D(1)(un) condition is slightly
less restrictive than the D′(un) condition and since Equation (1.5) (as stated below) is satisfied
when the ξ(s)’s are i.i.d., the following result can be compared to Proposition 3 in [12].

Proposition 2 Assume that (ξ(s))s∈Z is a stationary sequence satisfying

lim sup
n→∞

nP
(
ξ(0) > un and there exists s ∈ {−k + 1, . . . , k − 1} \ {0} s.t. ξ(s) > un

)
< τ. (1.5)

Then (ξ(Sn))n≥0 does not satisfy the D(k)(un) condition for any k ≥ 1.

The point process of exceedances A point process in [0, 1] is a random variable in the space
N of all finite counting measures on [0, 1]. The space N is endowed to the corresponding σ-algebras
that are induced by the mappings ω 7→ ω(B) for all Borel subset B in [0, 1] (see e.g. Section 2.1 in
[21]).

Let τ > 0 and n ≥ 1. The point process of exceedances is defined as

Φn(B) = Φ(τ)
n (B) =

∑
i≤n

Iξ(Si)>un δi/n(B), (1.6)

for any Borel subset B ⊂ [0, 1]. With a slight abuse of notation, we identify Φn to its support,
i.e. the random (closed) subset

{
i
n : ξ(Si) > un, i ≤ n

}
⊂ [0, 1]. Now, let (kn)n≥0 be a sequence of

positive integers with kn −→
n→∞

∞ and kn = o(n). In what follows, for any j ≥ 1, we let

pn(j) = p(τ)
n (j) = P ( #Φkn = j|ξ(0) > un ) ,

where Φkn is defined in the same spirit as Φn by considering this time integers i ≤ kn, with the
abuse of notation #Φkn := Φkn([0, 1]).

Recall that a compound Poisson point process (see Section 15.1 in [21]) in [0, 1] of intensity
λ > 0 and cluster size distribution π = (πi)i≥1 is a point process Φ of the form

Φ(B) =
∑
i≥1

iζ(B × {i}),

where ζ is a Poisson point process in [0, 1]× N∗ with intensity measure given by E [ ζ(B × {i}) ] =
λ|B|πi, for any Borel subset B ⊂ [0, 1] and i ∈ N∗. Intuitively, πi is the measure for clumps of size i.
The point process Φ can be identified to the random (closed) subset {(xj , nj), j ≥ 1} ⊂ [0, 1]×N∗,

4



where {xj , j ≥ 1} is a stationary Poisson point process in [0, 1] of intensity λ and where (nj)j≥1 is a
family of i.i.d. random variables with distribution π which is independent of the xj ’s. The following
proposition states that, under suitable conditions, the point process of exceedances converges to a
compound Poisson point process.

Proposition 3 Let (ξ(s))s∈Z be a stationary sequence satisfying the D(k)(un) condition with k ≥ 1,

for un = u
(τ)
n for any τ > 0 and such that (ξ(Sn))n≥0 satisfies the ∆(un) condition. Assume that

p
(τ0)
n (j) converges to some number p(j) for any j ≥ 1 and for some τ0. Then the point process Φ

(τ)
n

converges in distribution to a compound Poisson point process with intensity θτ , where θ = σq, and
cluster size distribution π(j) = 1

θ (p(j)− p(j + 1)), for any τ > 0.

The above proposition is classical in EVT and is a simple application of Theorem 2.5 in [22] and
Theorem 5.1 in [14]. Informally, it claims that asymptotically a cluster of exceedances is identified
to a point of the compound Poisson point process and that the number of exceedances in the cluster
is a random variable which is distributed w.r.t. π. In a different context, asymptotic results on
point processes associated with extremes in random sceneries are also established in [3].

Our paper is organized as follows. In Section 2, we prove Propositions 1-3. In Section 3, we
give some examples illustrating Proposition 3. In particular, we make explicit the cluster size
distribution of the limiting point process of exceedances. In section 4, we shortly discuss possible
ways to ensure that (ξ(Sn))n≥0 satisfies the ∆(un) condition to apply Propositions 1 and 3.

2 Proofs of the main results

2.1 Proof of Proposition 1

Let Rn = #{S0, . . . , Sn} be the range associated with the random walk (Sn)n≥0. Then

P
(

max
0≤i≤n

ξ(Si) ≤ un
)

= E
[
P
(

max
1≤s≤Rn

{ξ(s)} ≤ un|Rn
)]

.

Moreover,∣∣∣∣P( max
1≤s≤Rn

{ξ(s)} ≤ un|Rn
)
− P

(
max

1≤s≤bqnc
{ξ(s)} ≤ un

)∣∣∣∣ ≤ 2P (∃s ∈ (Rn, bqnc) : ξ(s) > un )

≤ 2|Rn − bqnc|P ( ξ(0) > un ) ,

where (Rn, bqnc) denotes the interval with (non-necessarily ordered) extremities Rn and bqnc.
According to (1.3) and (1.4), we deduce that

P
(

max
1≤s≤Rn

{ξ(s)} ≤ un|Rn
)
− P

(
max

1≤s≤bqnc
{ξ(s)} ≤ un

)
−→
n→∞

0.

Therefore, to prove that (ξ(Sn))n≥0 has an extremal index which is equal to θ = σq, it is sufficient
to prove that

P
(

max
1≤s≤bqnc

{ξ(s)} ≤ un
)
−→
n→∞

e−σqτ . (2.1)

We prove below (2.1).
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When k = 1, the identity follows from Corollary 1.3 in [4] which also shows that the extremal
index is σ = 1. Assume from now on that k ≥ 2. Because (ξ(s))s∈Z satisfies the D(k)(un) condition,
it follows from Corollary 1.3 in [4] that

P
(

max
1≤s≤k−1

{ξ(s)} ≤ un|ξ(0) > un

)
−→
n→∞

σ.

In particular

P
(

max
1≤s≤k−1

{ξ(s)} ≤ u(q)
n |ξ(0) > u(q)

n

)
−→
n→∞

σ,

where u
(q)
n = ubn/qc. Observe that (ξ(s))s∈Z also satisfies the ∆(u

(q)
n ) and D(k)(u

(q)
n ) condition.

Because nP
(
ξ(0) > u

(q)
n

)
−→
n→∞

qτ , it follows again from Corollary 1.3 in [4] that

P
(

max
1≤s≤n

{ξ(s)} ≤ u(q)
n

)
−→
n→∞

e−σqτ .

Taking n = bqn′c, we deduce that

P
(

max
1≤s≤bqn′c

{ξ(s)} ≤ u(q)
bqn′c

)
−→
n′→∞

e−σqτ .

Because n′

bbqn′c/qc −→n′→∞
1, the latter expression gives

P
(

max
1≤s≤bqn′c

{ξ(s)} ≤ un′
)
−→
n′→∞

e−σqτ ,

which proves (2.1).

2.2 Proof of Proposition 2

It is sufficient to prove that, for any sequence (rn)n≥0 with rn −→
n→∞

∞, we have

lim inf
n→∞

nP
(
ξ(S0) > un ≥ M̃1,k−1, M̃k,rn > un

)
> 0, (2.2)

where, similarly to Definition 2, we let M̃i,j = −∞ for i > j, M̃i,j = max0≤i≤t≤j ξ(St) for i ≤ j.
Assume that k is even. We have

nP
(
ξ(S0) > un ≥ M̃1,k−1, M̃k,rn > un

)
≥ nP

(
ξ(0) > un ≥ M̃1,k−1, Sk = 0

)
= nP ( ξ(0) > un, Sk = 0 )− nP

(
ξ(0) > un, M̃1,k−1 > un, Sk = 0

)
.

(2.3)

First, because (ξ(s))s∈Z and (Sn)n≥0 are independent, we obtain from (1.4) that

nP ( ξ(0) > un, Sk = 0 ) ∼
n→∞

τ P (Sk = 0 ) , (2.4)
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where P (Sk = 0 ) 6= 0 since k is even. Secondly, we have

nP
(
ξ(0) > un, M̃1,k−1 > un, Sk = 0

)
= nP

 {ξ(0) > un, Sk = 0} ∩
⋃

1≤i≤k−1

{Si = 0}


+ nP

{ξ(0) > un, M̃1,k−1 > un, Sk = 0
}
∩

⋂
1≤i≤k−1

{Si 6= 0}

 . (2.5)

The first term of the right hand-side of (2.5) is equal to

nP ( ξ(0) > un )P

 {Sk = 0} ∩
⋃

1≤i≤k−1

{Si = 0}

 ∼
n→∞

τ P

 {Sk = 0} ∩
⋃

1≤i≤k−1

{Si = 0}

 .

To deal with the second term of the right hand-side of (2.5), observe that

nP

{ξ(0) > un, M̃1,k−1 > un, Sk = 0
}
∩

⋂
1≤i≤k−1

{Si 6= 0}


≤ nP ( ξ(0) > un,∃s ∈ {−k + 1, . . . , k − 1} \ {0} s.t. ξ(s) > un )

× P

 ⋂
1≤i≤k−1

{Si 6= 0} ∩ {Sk = 0}

 .

According to (1.5), it follows that

lim sup
n→∞

nP

{ξ(0) > un, M̃1,k−1 > un, Sk = 0
}
∩

⋂
1≤i≤k−1

{Si 6= 0}


< τ P

 ⋂
1≤i≤k−1

{Si 6= 0} ∩ {Sk = 0}

 . (2.6)

Then (2.3) - (2.6) implies (2.2) when k is even.

In a similar way, we prove that the condition D(k)(un) is not satisfied when k is odd by consid-
ering this time the event {Sk+1 = 0}.

2.3 Proof of Proposition 3

First, notice that, according to Proposition 1, the extremal index of (ξ(Sn))n≥0 exists and equals

θ = σq > 0. Now, let τ0 be such that p
(τ0)
n (j) converges to some number p(j). In particular

p
(τ0)
n (j) − p(τ0)

n (j − 1) −→
n→∞

θπ(j) for any j ≥ 1, where π(j) = 1
θ (p(j) − p(j + 1)). Such a property

ensures that Equation (2.5) in [22] is satisfied. It follows from Theorem 2.5 in [22] that Φ
(τ0)
n

7



converges to a point process Φ(τ0) with Laplace transform

LΦ(τ0)(f) := E

 exp

− ∑
x∈Φ(τ0)

f(x)

 = exp

(
−θτ0

∫ ∞
0

(1− L(f(t)))dt

)
,

for any positive and measurable function f , where L denotes the Laplace transform of π. In
particular, Φ(τ0) is a compound Poisson point process of intensity θτ0 with cluster size distribution

π. Moreover, according to Theorem 5.1 in [14], the fact that Φ
(τ0)
n converges to Φ(τ0) for some

τ0 > 0 ensures that Φ
(τ)
n converges to Φ(τ) for any τ > 0. This concludes the proof of Proposition

3.

3 Examples

In this section, we give two examples illustrating Proposition 3. The second one extends the first
one. Being slightly easier to establish, we have chosen to present Example 1 separately for sake of
simplicity.

3.1 Example 1

Assume that the ξ(s)’s are i.i.d.. Let N(0) = #{i ≥ 0 : Si = 0} be the number of visits of the
random walk (Sn)n≥0 to site 0 and recall that

q = P (Si 6= 0, ∀i ≥ 1 ) = P (N(0) = 0 ) .

Notice that q ∈ (0, 1) since the random walk is transient (p 6= 1/2) and that N(0) has a geometric
distribution with parameter q. Moreover, since the ξ(s)’s are i.i.d., the extremal index of (ξ(s))s∈Z
equals 1. Thus, according to Proposition 1, the extremal index of (ξ(Sn))n≥0 exists and is equal to
θ = q.

Now, let Φ be a compound Poisson point process in [0, 1] with intensity θτ and cluster size
distribution

π(j) =
P (N(0) = j )− P (N(0) = j + 1 )

θ

= q(1− q)j−1.

Proposition 4 For any τ > 0, the point process of exceedances Φn, as defined in (1.6), converges
in distribution to Φ.

Proof of Proposition 4. Since the ξ(s)’s are i.i.d., the ∆(un) and the D(1)(un) conditions clearly
hold for (ξ(s))s∈Z. Let us justify that (ξ(Sn))n≥0 also satisfies the ∆(un) condition. By looking
carefully at the proof of [9, Theorem 2.2], one can see that the argument, based on a suitable
coupling, adapts verbatim - without assuming that the ξ(s)’s take their values in a finite set - to
prove that (ξ(Sn))n≥0 is α−mixing. In particular, the ∆(un) condition holds for (ξ(Sn))n≥0.

According to Proposition 3, it is sufficient to compute the cluster size distribution. First, let
(kn)n≥0 be a family of integers such that kn −→

n→∞
∞ and kn = o(n) and let

Φkn =

{
i

n
: ξ(Si) > un, 0 ≤ i ≤ kn

}
.
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For any j ≥ 1, recall that
pn(j) = P ( #Φkn = j|ξ(0) > un ) .

We proceed into two steps: first, we compute the limit of pn(j); then we compute π(j).

Step 1. We write

pn(j) = P ( #Φkn ≥ j|ξ(0) > un )− P ( #Φkn ≥ j + 1|ξ(0) > un ) .

Moreover,

P ( #Φkn ≥ j|ξ(0) > un ) = P ( #Φkn ≥ j,Nkn(0) ≥ j|ξ(0) > un )

+ P ( #Φkn ≥ j,Nkn(0) < j|ξ(0) > un ) ,

where Nkn(0) = #{0 ≤ i ≤ kn : Si = 0} is the number of visits in 0 until time kn. We show
below that the first term of the right-hand side converges to P (N(0) = j ) and that the second
term converges to 0. First, we notice that, conditional on the event {ξ(0) > un}, we have

{#Φkn ≥ j} ∩ {Nkn(0) ≥ j} = {Nkn(0) ≥ j}.

Therefore

P ( #Φkn ≥ j,Nkn(0) ≥ j|ξ(0) > un ) = P (Nkn(0) ≥ j|ξ(0) > un )

= P (Nkn(0) ≥ j )

−→
n→∞

P (N(0) ≥ j ) , (3.1)

where the second line comes from the fact that the random walk is independent of the scenery.
Moreover, writing Skn = {S0, . . . , Skn}, we have

P ( #Φkn ≥ j,Nkn(0) < j|ξ(0) > un ) ≤ P ( ∃s ∈ Skn \ {0} : ξ(s) > un|ξ(0) > un )

=
P ( {∃s ∈ Skn \ {0} : ξ(s) > un} ∩ {ξ(0) > un} )

P ( ξ(0) > un )

≤
E
[∑

s∈Skn\{0}
P ( ξ(s) > un, ξ(0) > un )

]
P ( ξ(0) > un )

≤ P ( ξ(0) > un )E [ #Skn ] ,

where the last line comes from the fact that the ξ(s)’s are i.i.d.. Moreover, according to [18], we

know that
#Skn
kn

−→
n→∞

q a.s.. Thus, according to the Lebesgue’s dominated convergence theorem

(which can be applied since #Skn ≤ kn), we have E
[

#Skn
kn

]
−→
n→∞

q. Because P ( ξ(0) > un ) ∼
n→∞

τ
n ,

we have
P ( #Φkn ≥ j,Nkn(0) < j|ξ(0) > un ) = O (kn/n) ,

which converges to 0 since kn = o(n). This together with (3.1) gives that

P ( #Φkn ≥ j|ξ(0) > un ) −→
n→∞

P (N(0) ≥ j )

and consequently that

pn(j) −→
n→∞

P (N(0) ≥ j )− P (N(0) ≥ j + 1 ) = P (N(0) = j ) =: p(j).

9



Step 2. We provide below an explicit formula for π. According to Theorem 4.1 in [24] (see also
Theorem 2.5 in [22]), we have

p(j) = θ

∞∑
m=j

π(m).

Therefore

π(j) =
p(j)− p(j + 1)

θ
=

P (N(0) = j )− P (N(0) = j + 1 )

θ
.

�

Remark 1 It is known that, under suitable conditions, the extremal index can be interpreted as
the reciprocal of the mean size of a cluster of exceedances, i.e. θ−1 =

∑∞
j=1 jπ(j), see e.g. [14].

Such an identity holds in the above example since 1
q =

∑∞
j=1 jq(1− q)j−1.

3.2 Example 2

Let k ≥ 0. Assume that ξ(s) = max{Ys, Ys+1, . . . , Ys+k}, where the family of random variables
(Ys)s∈Z is assumed to be i.i.d.. For any subset A ⊂ Z, let N(A) be the number of visits of the
random walk in A, i.e.

N(A) = #{i ≥ 0 : Si ∈ A}.

The following proposition gives an explicit formula for the extremal index of (ξ(Sn))n≥0 and for
the cluster size distribution.

Proposition 5 The point process of exceedances Φn, as defined in (1.6), converges in distribution
to a compound Poisson point process of intensity θτ , with θ = q

k+1 , and cluster size distribution

π(j) =
1

q

∑
A30:|A|=k+1

(P (N(A) = j )− P (N(A) = j + 1 )) ,

for any τ > 0.

Proof of Proposition 5. Replacing the use of [9, Theorem 2.2] and its proof by the one of [8,
Theorem 2], one can show that (ξ(Sn))n≥0 satisfies the ∆(un) condition. Moreover, we notice that
the extremal index of (ξ(s))s∈Z is equal to σ = 1

k+1 . Moreover, because the ξ(s)’s are k-dependent,

the sequence (ξ(s))s∈Z satisfies the D(k)(un). Therefore, according to Proposition 1, the extremal
index of (ξ(Sn))n≥0 exists and is equal to θ = q

k+1 .

Let us compute the cluster size distribution. We only deal with the case k = 1 since the general
case can be dealt in a similar way. To do it, we proceed in the same spirit as in Section 3.1.

Step 1. First, we make explicit the limit of

pn(j) = P ( #Φkn ≥ j|ξ(0) > un )− P ( #Φkn ≥ j + 1|ξ(0) > un ) .

We notice that

P ( #Φkn ≥ j|ξ(0) > un ) =
P ( #Φkn ≥ j, Y0 > un )

P ( ξ(0) > un )
+

P ( #Φkn ≥ j, Y1 > un )

P ( ξ(0) > un )

− P ( #Φkn ≥ j, Y0 > un, Y1 > un )

P ( ξ(0) > un )
. (3.2)

10



To deal with the first term of the right-hand side, we write

P ( #Φkn ≥ j, Y0 > un )

P ( ξ(0) > un )
= P ( #Φkn ≥ j|Y0 > un )× P (Y0 > un )

P ( ξ(0) > un )
.

Proceeding in the same spirit as in Section 3.1, we can prove that P ( #Φkn ≥ j|Y0 > un ) converges
to P (N({−1, 0}) ≥ j ). Moreover, because ξ(0) = max{Y0, Y1}, where Y0 and Y1 are independent,
and because nP ( ξ(0) > un ) −→

n→∞
τ , we have nP (Y0 > un ) −→

n→∞
τ
2 . Therefore,

P ( #Φkn ≥ j, Y0 > un )

P ( ξ(0) > un )
−→
n→∞

1

2
P (N({−1, 0}) ≥ j ) .

In a similar way, we get

P ( #Φkn ≥ j, Y1 > un )

P ( ξ(0) > un )
−→
n→∞

1

2
P (N({0, 1}) ≥ j ) .

Moreover, for the last term of (3.2), we have

P ( #Φkn ≥ j, Y0 > un, Y1 > un )

P ( ξ(0) > un )
≤ (P (Y0 > un ))2

P ( ξ(0) > un )
∼

n→∞

τ

4n
.

This, together with (3.2), gives
pn(j) −→

n→∞
p(j),

with

p(j) =
1

2
(P (N({−1, 0}) = j ) + P (N({0, 1}) = j )) .

Step 2. In the same spirit as in Section 3.1, we have π(j) = p(j)−p(j+1)
θ , that is, since q = 2θ

π(j) =
1

q

(
P (N({−1, 0}) = j )− P (N({−1, 0}) = j + 1 )

+ P (N({0, 1}) = j )− P (N({0, 1}) = j + 1 )
)
.

�

4 ∆(un) condition for (ξ(Sn))n≥0 and related questions

In the examples provided in Section 3, the field (ξ(s))s∈Z has a weak dependence property and
(ξ(Sn))n≥0 gets stronger mixing properties than the one required in order to apply Propositions
1 and 3. One may wonder how to proceed to verify that (ξ(Sn))n≥0 satisfies the ∆(un) condition
if the field (ξ(s))s∈Z has a stronger dependence property. In this section, we state a (theoretical)
result which ensures that (ξ(Sn))n≥0 satisfies the ∆(un) condition and give some open questions.

Proposition 6 Let (Sn)n≥0 be a simple transient random walk, i.e. p 6= 1/2 and let (un)n≥0 be a
sequence of positive integers. Assume that the following conditions hold.

(i) The sequence (ξ(s))s∈Z satisfies the ∆(un) condition.

11



(ii) For some β ∈ (1/2, 1),

max
1≤k≤n−˜̀

n

max
A∈B̃k0 (un),B∈B̃n

k+˜̀n
(un)
{|E [P (A|S0:n )P (B|S0:n ) ]− P (A )P (B )|} −→

n→∞
0,

where

˜̀
n =

⌈
`2n+1 + 2nβ

|2p− 1|

⌉
. (4.1)

Then (ξ(Sn))n≥0 satisfies the ∆(un) condition.

In the above proposition, the notation B̃n0 (un) stands for the σ-algebra generated by events of
the form {ξ(Si) ≤ un}, 0 ≤ i ≤ n, and S0:n = {S0, . . . , Sn}.

From a practical point of view, it is difficult to apply Proposition 6 since it requires to deal
with the conditional probabilites appearing in (ii). However, due to the fact that the random walk
has a drift, we think that this condition is unnecessary. A first open question is to determine if
the assumption (i) is sufficient to ensure that (ξ(Sn))n≥0 satisfies the ∆(un) condition. In the case
where (ii) cannot be relaxed, another natural question is to apply Proposition 6 for examples which
are different from those considered in this paper.

Proof of Proposition 6. Without loss of generality, we only deal with the case p > 1/2. Let
(`n)n≥1 be such that αn,`n −→n→∞ 0 and `n = o(n). Let ˜̀

n be as in (4.1), with β ∈ (1/2, 1). Notice

that ˜̀
n −→
n→∞

∞ and ˜̀
n = o(n). Similarly to αn,`, we introduce the term

α̃n,` = max
1≤k≤n−`

max
A∈B̃k0 (un),B∈B̃nk+`(un)

{|P (A ∩B )− P (A )P (B ) |},

where B̃m2
m1

(un) denotes the σ-field generated by events {ξ(Si) ≤ un}, m1 ≤ i ≤ m2. We prove
below that α̃n,˜̀n −→n→∞ 0. To do it, we will use the following lemma.

Lemma 7 Assume that p > 1/2. Let us consider the following event:

En =
⋂

k≤n−˜̀
n

{
max{S0, . . . , Sk} ≤ k(2p− 1) + nβ

}
∩
{

min{Sk+˜̀
n
, . . . , Sn} ≥ (k + ˜̀

n)(2p− 1)− nβ
}
.

Then there exist two positive constants c1 and c2 such that P (Ecn ) ≤ c1e
−c2n2β−1

.

Proof of Lemma 7. It is sufficient to prove that the events⋃
k≤n−˜̀

n

{
max{S0, . . . , Sk} > k(2p− 1) + nβ

}
and ⋃

k≤n−˜̀
n

{
min{Sk+˜̀

n
, . . . , Sn} < (k + ˜̀

n)(2p− 1)− nβ
}

occur with probability smaller than c1e
−c2n2β−1

. We only deal with the first one since the second
one can be dealt in a similar way. To do it, we notice that

P

 ⋃
k≤n−˜̀

n

{
max{S0, . . . , Sk} > k(2p− 1) + nβ

} ≤ ∑
k≤n−˜̀

n

∑
i≤k

P
(
Si > k(2p− 1) + nβ

)
≤

∑
k≤n−˜̀

n

k P
(
Sk > k(2p− 1) + nβ

)
,
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where the last line comes from the fact that Si is stochastically dominated by Sk, with i ≤ k, since
p > 1/2. Now, let k ≤ n − ˜̀

n be fixed, and let S′k be a binomial random variable with parameter

(k, p), so that Sk
sto
= 2S′k − k. We have

P
(
Sk > k(2p− 1) + nβ

)
= P

(
S′k > kp+

1

2
nβ
)
≤ e−

1
2 ·
n2β

k ,

according to the Hoeffding’s inequality. Since k ≤ n, the last term is lower than e−
1
2n

2β−1

. Summing
over k, we get

P

 ⋃
k≤n−˜̀

n

{
max{S0, . . . , Sk} > k(2p− 1) + nβ

} ≤ n2e−
1
2n

2β−1

.

This concludes the proof of Lemma 7. �
Lemma 7 ensures that the event En occurs with high probability since β > 1/2. Now, let

k ≤ n − ˜̀
n be fixed. Let us consider two events A ∈ B̃k0(un) and B ∈ B̃n

k+˜̀
n
(un). First, according

to Lemma 7, we notice that

P (A ∩B ) = P (A ∩B ∩ En ) + o(1)

= E [ IEn P (A ∩B|S0:n ) ] + o(1),

where o(1) only depends on n. Moreover,

|IEn P (A ∩B|S0:n )− IEn P (A|S0:n )P (B|S0:n )| ≤ α2n+1,`2n+1 . (4.2)

Indeed, since A ∈ B̃k0(un) and since we are on En, conditional on S0:n, the event A only depends on
events of the form {ξ(s) ≤ un}, with s ≤ k(2p−1)+nβ. In the same way, the event B only depends
on events of the form {ξ(s) ≤ un}, with s ≥ (k+ ˜̀

n)(2p− 1)−nβ. Equation (4.2) follows since the
difference between k(2p−1)+nβ and (k+ ˜̀

n)(2p−1)−nβ is at least `2n+1. Now, because (ξ(s))s∈Z
satisfies the ∆(un) condition, we know that α2n+1,`2n+1 converges to 0 as n goes to infinity. Thus,
thanks again to Lemma 7, we have

P (A ∩B ) = E [P (A|S0:n )P (B|S0:n ) ] + o(1).

This together with assumption (ii) shows that α̃n,˜̀n −→n→∞ 0 and concludes the proof of Proposition

6. �
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