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Abstract

Let (Sn)n≥0 be a transient random walk in the domain of attraction of a stable law

and let (ξ(s))s∈Z be a sequence of random variables. Under suitable assumptions, we

establish a Poisson approximation result for the point process of exceedances associated

with (ξ(Sn))n≥0 and demonstrate that it satisfies the D(un) condition.
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1 Introduction

Extreme Value Theory (EVT) was initially introduced in a univariate context for indepen-

dent and identically distributed (i.i.d.) random variables. Subsequently, it was extended to

sequences that do not exhibit independence but satisfy certain mixing conditions and an

anti-clustering property. Among the weakest conditions are those by Leadbetter, referred to

as the D(un) and D′(un) conditions [11]. In this paper, we deal with extremes for a sequence

of real random variables which does not satisfy the D′(un) condition. The sequence which

is considered is a random walk in random scenery. This concept was initially introduced by

Kesten and Spitzer [9], who established limit theorems for the sum of the first n terms and

explored it extensively in various directions (see, e.g., [3, 13] and the survey in [7]). Franke
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and Saigo [4, 5] examined this process in the context of extremes. We detail below their

problem.

Let (Xk)k≥1 be a sequence of integer-valued i.i.d. random variables and let S0 = 0 a.s.

and Sn = X1 + · · ·+Xn, n ≥ 1. Assume that, for any x ∈ R,

P
(
Sn
n1/α ≤ x

)
−→
n→∞

Fα(x),

where Fα is the distribution function of a stable law with characteristic function given by

ϕ(s) = exp(−|s|α(C1 + iC2sgn s)), α ∈ (0, 2],

for some constants C1, C2, with C1 > 0. Let (ξ(s))s∈Z be a stationary sequence of R-valued

random variables which are independent of the sequence (Xk)k≥1. The sequence (ξ(Sn))n≥0

is referred to as a random walk in a random scenery. In [5], Franke and Saigo derive limit

theorems for maxi≤n ξ(Si) as n goes to infinity when the ξ(s)’s are i.i.d.. The statements of

their theorems depend on the value of α. When α < 1 (resp. α > 1), it is known that the

random walk (Sn)n≥0 is transient (resp. recurrent) [9, 10].

An important concept concerning random walks is the range. The latter is defined as the

number of sites visited by the first n terms of the random walk, namely Rn := #{S1, . . . , Sn}.

When α < 1, Le Gall and Rosen [10] proved that

R[nt]

n
−→
n→∞

qt P− a.s. (1.1)

with q := P (Sk 6= 0,∀k ≥ 1) ∈ (0, 1] and t ≥ 0. In [5] it is proved that, if un is a threshold

such that nP (ξ > un) −→
n→∞

τ for some τ > 0, with ξ = ξ(1), and if the ξ(s)’s are i.i.d., then

P
(

max
i≤n

ξ(Si) ≤ un

)
−→
n→∞

e−τq (1.2)

for α < 1. A consequence of this result, combined with and Theorem 1.2 in [11], is that the

sequence (ξ(Sn))n≥0 does not satisfy the D′(un) condition if q 6= 1. Furthermore, Eq. (1.2)

was then generalized in [1] for sequences (ξ(s))s∈Z which are not necessarily i.i.d., but which
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satisfy a slight modification of the D(un) and D′(un) conditions.

In this paper, we give a more precise treatment of the extremes of (ξ(Sn))n≥0. The

conditions which are required are in the sense of [1] and presented below. To introduce the

first one, we write for each i1 < · · · < ip and for each u ∈ R,

Fi1,...,ip(u) = P (ξ(i1) ≤ u, . . . , ξ(ip) ≤ u) .

D(un) condition Let (un)n≥0 be a sequence of real numbers. We say that the (stationary)

sequence of real random variables (ξ(s))s∈Z satisfies the D(un) condition if there exist a

sequence (αn,`)(n,`)∈N2 and a (non-decreasing) sequence (`n) of positive integers such that

αn,`n −→n→∞ 0, `n = o(n), and

|Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)| ≤ αn,`

for any integers i1 < · · · < ip < j1 < · · · < jp′ such that j1 − ip ≥ `.

To introduce the D′(un) condition let us consider a sequence (kn) such that

kn −→
n→∞

∞, n2

kn
αn,`n −→n→∞ 0, kn`n = o(n), (1.3)

where (`n) and (αn,l)(n,l)∈N2 are the same as in the D(un) condition.

D′(un) condition In conjunction with the D(un) condition, we say that (ξ(s))s∈Z satisfies

the D′(un) condition if there exists a sequence of integers (kn) satisfying (1.3) such that

lim
n→∞

n
bn/knc∑
s=1

P (ξ(0) > un, ξ(s) > un) = 0.

In Eq. (3.2.1) in [12], the sequences (αn,l)(n,l)∈N2 and (kn) only satisfy knαn,`n −→n→∞ 0 whereas

in (1.3) we have assumed that n2

kn
αn,`n −→n→∞ 0. In this sense, the D′(un) condition as written

above is slightly more restrictive than the usual condition (see e.g. p29 in [12]) since kn ≤ n.

The main topic of our paper is to extend [5] when α < 1, i.e. in the transient case, to
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sequences which are not i.i.d. but which only satisfy the D(un) and D′(un) conditions.

In Section 2, we prove that the so-called point process of exceedances converges to a

Poisson point process in the transient case. In Section 3, we show that (ξ(Sn))n≥0 satisfies

the D(un) condition.

2 Point process of exceedances

Throughout this section, we deal with the transient case, i.e. α < 1. For any k ≥ 1, let

τk = inf{m ≥ 1 : #{S1, . . . , Sm} ≥ k}. Now, let τ > 0 be fixed and un such that

nP (ξ > un) −→
n→∞

τ. (2.1)

Letting m(n) = bqnc, the point process of exceedances is defined as the random set

Φn =
{
τk
n

: ξ(Sτk) > um(n), τk ≤ n
}
k≥1
⊂ [0, 1]. (2.2)

Proposition 2.1. Let un be as in (2.1). Assume that the D(un) and D′(un) conditions

hold. Then Φn converges weakly to a Poisson point process Φ with intensity τ in [0, 1].

A similar result was obtained in [5] but only for i.i.d. ξ(s)’s. According to Theorem 4.11

in [8], Proposition 2.1 can be rephrased as follows: for any Borel subsets B1, . . . , BK ⊂ [0, 1]

with m[0,1](∂Bi) = 0, 1 ≤ i ≤ K,

(#Φn ∩B1, . . . ,#Φn ∩BK) D−→
n→∞

(#Φ ∩B1, . . . ,#Φ ∩BK) ,

where m[0,1] denotes the Lebesgue measure in [0, 1]. Deriving Poisson approximation for the

point process of exceedances is classical in Extreme Value Theory. In particular, Proposition

2.1 implies P
(
maxi≤n ξ(Si) ≤ um(n)

)
−→
n→∞

e−τ .

Proof of Proposition 2.1. According to Kallenberg’s theorem (see e.g. Proposition 3.22

in [14]), it is sufficient to prove the following properties:

(i) for any 0 ≤ a < b ≤ 1, E [#Φn ∩ (a, b]] −→
n→∞

τ(b− a);

4



(ii) for any (finite) disjoint union of intervals I = ⊔L
i=1(ai, bi] ⊂ (0, 1], with L ≥ 1 and

a1 < b1 < · · · < bL, P (#Φn ∩ I = 0) −→
n→∞

e−τ
∑L

i=1(bi−ai).

First, we prove (i). Given a < b, we have

E [#Φn ∩ (a, b]] = E

∑
k≥1

1 τk
n
∈(a,b] 1ξ(Sτk )>um(n)


= E

∑
k≥1

1 τk
n
∈(a,b]

× P
(
ξ > um(n)

)

∼
n→∞

E
[
Rbnbc −Rbnac

]
× τ

m(n) ,

where the second line comes from the fact that (ξ(s))s∈Z is independent of (Sn)n≥0 and where

the last one comes from (2.1). According to (1.1), we know that E
[
Rbnbc −Rbnac

]
∼

n→∞

n(b− a)q. This together with the fact that m(n) = bqnc implies (i).

To prove (ii), we first assume that I = (a, b], with a < b. Let (kn), (`n) be as in (1.3)

and

rn =
⌊

n

kn − 1

⌋
+ 1, (2.3)

for n large enough. Denoting by P(Sn) the probability conditional on (Sn)n≥0, we get

P (#Φn ∩ (a, b] = 0) = P

 ⋂
k≥1: τk

n
∈(a,b]

{
ξ(Sτk) ≤ um(n)

}
= E

P(Sn)

 ⋂
s∈S(na,nb]

{ξ(s) ≤ um(n)}

 , (2.4)

where

S(na,nb] =
{
Sτk : k ≥ 1, τk

n
∈ (a, b]

}
.

Notice that #S(na,nb] = Rbnbc−Rbnac. To capture the fact that (ξ(s))s∈Z satisfies the D(un)

condition and thus the D(um(n)) condition, we construct blocks and stripes as follows. Let

Kn =
⌊
Rbnbc −Rbnac

rn

⌋
+ 1.
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We subdivide the set S(na,nb] into subsets Bi ⊂ S(na,nb], 1 ≤ i ≤ Kn, referred to as blocks, in

such a way that #Bi = rn and maxBi < minBi+1 for all i ≤ Kn − 1. Notice that Kn ≤ kn

and #BKn = Rbnbc−Rbnac− (Kn− 1) · rn a.s.. For each j ≤ Kn, we denote by Lj the family

consisting of the `n largest terms of Bj. When j = Kn, we take the convention LKn = ∅ if

#BKn < `n. The set Lj is referred to as a stripe, and the union of the stripes is denoted by

Ln = ⋃
j≤Kn Lj. Proceeding as in the proofs of Lemmas 1 and 2 in [1], we can show that for

almost all realization of (Sn)n≥0,

• P(Sn)
(⋂

s∈S(na,nb]

{
ξ(s) ≤ um(n)

})
− P(Sn)

(⋂
s∈S(na,nb]\Ln

{
ξ(s) ≤ um(n)

})
−→
n→∞

0;

• P(Sn)
(⋂

s∈S(na,nb]\Ln

{
ξ(s) ≤ um(n)

})
−∏i≤Kn P(Sn)

(⋂
s∈Bi\Ln

{
ξ(s) ≤ um(n)

})
−→
n→∞

0;

• ∏i≤Kn P(Sn)
(⋂

s∈Bi\Ln

{
ξ(s) ≤ um(n)

})
−∏i≤Kn P(Sn)

(⋂
s∈Bi

{
ξ(s) ≤ um(n)

})
−→
n→∞

0;

• ∏i≤Kn P(Sn)
(⋂

s∈Bi

{
ξ(s) ≤ um(n)

})
− exp

(
−Rbnbc−Rbnac

m(n) τ
)
−→
n→∞

0.

The first and the third assertions come from the fact that `n = o(rn). The second assertion

is a consequence of the fact that the sequence (ξ(s))s∈Z satisfies the D(un) condition and

the last one is obtained by using the D(un) and D′(un) conditions. Since Rbnbc−Rbnac
m(n) τ −→

n→∞

τ(b− a) a.s., we deduce that, for almost all realization of (Sn)n≥0,

P(Sn)

 ⋂
s∈S(na,nb]

{
ξ(s) ≤ um(n)

} −→
n→∞

e−τ(b−a). (2.5)

This, together with (2.4) implies (ii) in the particular case when I = (a, b].

Now, if I is of the form I = ⊔L
i=1(ai, bi], we write

P (#Φn ∩ I = 0) = E

P(Sn)

 L⋂
i=1

⋂
s∈S(nai,nbi]

{ξ(s) ≤ um(n)}

 .
By considering stripes and blocks again, we can show that

P(Sn)

 L⋂
i=1

⋂
s∈S(nai,nbi]

{ξ(s) ≤ um(n)}

− L∏
i=1

P(Sn)

 ⋂
s∈S(nai,nbi]

{ξ(s) ≤ um(n)}

 −→
n→∞

0,
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for almost all realization of (Sn)n≥0. It follows that

lim
n→∞

P (#Φn ∩ I = 0) = lim
n→∞

E

 L∏
i=1

P(Sn)

 ⋂
s∈S(nai,nbi]

{ξ(s) ≤ um(n)}


= E

 lim
n→∞

L∏
i=1

P(Sn)

 ⋂
s∈S(nai,nbi]

{ξ(s) ≤ um(n)}


= e−τ

∑L

i=1(bi−ai),

where the last line comes from (2.5). This concludes the proof of Proposition 2.1. �

We end this section with several remarks. First, Proposition 2.1 provides a more detailed

analysis of the extremes considered in [1] as it implies that P
(
maxi≤n ξ(Si) ≤ um(n)

)
−→
n→∞

e−τ . A natural question is whether we can consider the points i/n such that ξ(Si) is larger

than un instead of those which are larger than um(n). In this case, we think that the

underlying point process converges to a compound Poisson point process (a specific example

is dealt in [2] but does not constitute a general approach). Regarding the transient case,

i.e. α > 1, Franke and Saigo (Theorem 4 in [5]) demonstrate that the normalized point

process of exceedances converges to a Cox point process. However, their result relies on the

assumption that the ξ(s)’s are i.i.d.. This result could be extended to the case where the

ξ(s)’s only satisfy the D(un) and D′(un) conditions. Such an extension would be possible

by adapting the proof of Proposition 2.1 above.

3 The D(un) condition

For technical reasons, we assume in this section only that

1
n2 sup

p≤n+1
sup

0≤i1<···<ip≤n
V
[
Ri1,...,ip

]
−→
n→∞

0, (3.1)

where Ri1,...,ip = #{Si1 , . . . , Sip}. Such an assumption holds if the Xi’s are a.s. positive

(as an example, we can take Xi = bZic + 1, where the Zi’s are i.i.d., positive and have a

one-sided stable distribution, i.e. with characteristic function ϕ(s) = e−|s|
α(C1−i tan(πα/2))).
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Proposition 3.1. Assume that (ξ(s))s∈Z satisfies the D(un) and D′(un) conditions for un

such that nP (ξ > un) −→
n→∞

τ , with τ > 0. Then (ξ(Sn))n≥0 satisfies the D(un) condition.

In [5], the authors establish a similar result (Proposition 2) under the assumption that

the ξ(s)’s are i.i.d.. However, a key equality on page 463, namely

E
[
(F (un))Rj1,...,jq

]
E
[
(F (un))Ri1,...,ip

]
= E

[
E
[
(F (un))Rj1,...,jq |Si1 , . . . , Sip

]
(F (un))Ri1,...,ip

]
,

raises question as the justification provided lacks explicit detail. We propose a more general

alternative proof that remedies this issue.

Proof of Proposition 3.1. We adapt several arguments of [5] to our context. Let 0 ≤

i1 < · · · < ip < j1 < · · · < jp′ ≤ n be a family of integers, with j1 − ip > `n and `n = o(n).

To prove that (ξ(Sn))n≥0 satisfies the D(un) condition, we have to show that

|F ′i1,...,ip,j1,...,jp′ (un)− F ′i1,...,ip(un)F ′j1,...,jp′ (un)| ≤ α̃n,`n ,

for some sequence (α̃n,`)(n,`)∈N2 such that α̃n,`n −→n→∞ 0, with

F ′i1,...,ip(un) = P
(
ξ(Si1) ≤ un, . . . , ξ(Sip) ≤ un

)
.

We have

|F ′i1,...,ip,j1,...,jp′ (un)− F ′i1,...,ip(un)F ′j1,...,jp′ (un)|

≤
∣∣∣∣∣F ′i1,...,ip,j1,...,jp′ (un)− E

[
exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

)]∣∣∣∣∣
+
∣∣∣∣∣E
[
exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

)]
− E

[
exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)]∣∣∣∣∣
+
∣∣∣∣∣E
[
exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)]
− F ′i1,...,ip(un)F ′j1,...,jp′ (un)

∣∣∣∣∣ . (3.2)

To deal with the first and the third terms, we will use the following lemma.

8



Lemma 3.2. We have

sup
0≤i1<···<ip≤n

E
[∣∣∣∣∣F ′i1,...,ip(un)− exp

(
−
Ri1,...,ip

n
τ

)∣∣∣∣∣
]
−→
n→∞

0.

Proof of Lemma 3.2. We adapt key arguments from the proofs of Lemmas 1 and 2 in [1]

to our context. Let (kn) and (rn) be as in (1.3) and (2.3). Given 1 ≤ i1 < i2 < · · · < ip ≤ n,

we subdivide {Si1 , . . . , Sip} into Kn blocks, with Kn = bRi1,...,ip
rn
c + 1, as in the proof of

Proposition 2.1. More precisely, there exists a unique Kn-tuple of subsets Bi ⊂ Sn := S(0,n],

i ≤ Kn, such that: ⋃j≤Kn Bj = {Si1 , . . . , Sip}, #Bi = rn and maxBi < minBi+1 for all

i ≤ Kn − 1. In particular, Kn ≤ kn and #BKn = Ri1,...,ip − (Kn − 1) · rn a.s.. Without loss

of generality, we assume that #BKn = #Bi = rn for all i ≤ Kn− 1, so that Ri1,...,ip = Knrn.

For each j ≤ Kn, we denote by Lj the family consisting of the `n largest terms of Bj and

let Ln = ⋃
j≤Kn Lj. In the rest of the paper, we write MB = maxs∈B ξ(s) for all B ⊂ Z.

Adapting the proof of Lemma 1 in [1], we can show that, for almost all realization of

(Sn)n≥0 and for n larger than some deterministic integer n0,

∣∣∣P(Sn)
(
M{Si1 ,...,Sip} ≤ un

)
− P(Sn)

(
M{Si1 ,...,Sip}\Ln ≤ un

)∣∣∣ ≤ kn`nP (ξ > un) ;

∣∣∣∣∣∣P(Sn)
(
M{Si1 ,...,Sip}\Ln ≤ un

)
−

∏
j≤Kn

P(Sn)
(
MBj\Ln ≤ un

)∣∣∣∣∣∣ ≤ knαn,`n ;

∣∣∣∣∣∣
∏
j≤Kn

P(Sn)
(
MBj\Ln ≤ un

)
−

∏
j≤Kn

P(Sn)
(
MBj ≤ un

)∣∣∣∣∣∣ ≤ 2τkn`n
n

.

Since P (ξ > un) ∼
n→∞

τ
n
and F ′i1,...,ip(un) = E

[
P(Sn)

(
M{Si1 ,...,Sip} ≤ un

)]
, we get

sup
0≤i1<···<ip≤n

∣∣∣∣∣∣F ′i1,...,ip(un)− E

 ∏
j≤Kn

P(Sn)
(
MBj ≤ un

)∣∣∣∣∣∣ −→n→∞ 0.

Without restriction, we assume from now on that P (ξ > un) = τ
n
. We show below that

sup
0≤i1<···<ip≤n

∣∣∣∣∣∣E
 ∏
j≤Kn

P(Sn)
(
MBj ≤ un

)− E
[
exp

(
−
Ri1,...,ip

n
τ

)]∣∣∣∣∣∣ −→n→∞ 0. (3.3)

To do it, we adapt several arguments of Lemma 2 in [1]. Using the facts that log(1− x) ≥
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−x− x2 for |x| small enough and that rnP (ξ > un) −→
n→∞

0, we get for n large enough

∏
j≤Kn

P(Sn)
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip

n
τ

)

≥ exp (Kn log(1− rnP (ξ > un)))− exp
(
−
Ri1,...,ip

n
τ

)

≥ exp
(
−KnrnP (ξ > un)−Kn(rnP (ξ > un))2

)
− exp

(
−
Ri1,...,ip

n
τ

)
.

Because Knrn = Ri1,...,ip and P (ξ > un) = τ
n
, we have

∏
j≤Kn

P(Sn)
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip

n
τ

)

≥ exp
(
−
Ri1,...,ip

n
τ

)(
exp

(
−Kn(rnP (ξ > un))2

)
− 1

)
≥ exp(−kn(rnP (ξ > un))2)− 1,

since Kn ≤ kn a.s.. Because knrn ∼
n→∞

n, we obtain for some c > 0,

∏
j≤Kn

P(Sn)
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip

n
τ

)
≥ −c · 1

kn
.

Moreover, because ∏j≤Kn P(Sn)
(
MBj ≤ un

)
≤ exp

(
−∑j≤Kn P(Sn)

(
MBj > un

))
, it fol-

lows from the Bonferroni inequalities that

∏
j≤Kn

P(Sn)
(
MBj ≤ un

)

≤ exp
−(Kn − 1)rnP (ξ > un) +

∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)
 .

Since Knrn = Ri1,...,ip and P (ξ > un) = τ
n
, we have

∏
j≤Kn

P(Sn)
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip

n
τ

)
≤ exp

(
−
Ri1,...,ip

n
τ

)

×

exp
rnP (ξ > un) +

∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)
− 1


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and therefore

∏
j≤Kn

P(Sn)
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip

n
τ

)

≤ exp
rnP (ξ > un) +

∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)
− 1.

Proceeding along the same lines as in the proof of Lemma 2 in [1], we can show that

exp
rnP (ξ > un) +

∑
j≤Kn

∑
α<β;α,β∈Bj

P (ξ(α) > un, ξ(β) > un)
− 1

≤ c

 1
kn

+ n
bn/knc∑
s=1

P (ξ(0) > un, ξ(s) > un)
 .

Thus, for almost all realization of (Sn)n≥0,

∣∣∣∣∣∣
∏
j≤Kn

P(Sn)
(
MBj ≤ un

)
− exp

(
−
Ri1,...,ip

n
τ

)∣∣∣∣∣∣
≤ c

 1
kn

+ n
bn/knc∑
s=1

P (ξ(0) > un, ξ(s) > un)
 ,

This shows (3.3) by taking the expectations and the triangular inequality.

It remains to prove that

sup
0≤i1<···<ip≤n

E
[∣∣∣∣∣exp

(
−
Ri1,...,ipτ

n

)
− E

[
exp

(
−
Ri1,...,ipτ

n

)]∣∣∣∣∣
]
−→
n→∞

0.

To do it, we write for any ε > 0,

E
[∣∣∣∣∣exp

(
−
Ri1,...,ipτ

n

)
− E

[
exp

(
−
Ri1,...,ipτ

n

)]∣∣∣∣∣
]

= E
[∣∣∣∣∣exp

(
−
Ri1,...,ipτ

n

)
− E

[
exp

(
−
Ri1,...,ipτ

n

)]∣∣∣∣∣1|Ri1,...,ip/n−E[Ri1,...,ip/n]|≤ε

]

+ E
[∣∣∣∣∣exp

(
−
Ri1,...,ipτ

n

)
− E

[
exp

(
−
Ri1,...,ipτ

n

)]∣∣∣∣∣1|Ri1,...,ip/n−E[Ri1,...,ip/n]|>ε

]
.

The first term of the right-hand of the equality is smaller than some function f(ε), with

f(ε) −→
ε→0

0 whereas the second one is smaller than 2n−2 ε−2 sup0≤i1<···<ip≤nV
[
Ri1,...,ip

]
, which

11



converges to 0 as n goes to infinity according to (3.1). This concludes the proof of Lemma

3.2 by taking first the limit over n→∞ and then the limit over ε→ 0. �

As a consequence of Lemma 3.2, the first and the third terms of the right-hand side of (3.2)

converge to 0 as n goes to infinity. To deal with the second one, we write

∣∣∣∣∣exp
(
−
Ri1,...,ip,j1,...,jp′

n
τ

)
− exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)∣∣∣∣∣
= exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)exp
Rj1,...,jp′

i1,...,ip

n
τ

− 1


≤ exp
Rip+`n+1,...,n

1,...,ip

n
τ

− 1,

where the last line comes from the fact that j1 − ip > `n, with

R
j1,...,jp′
i1,...,ip = #

(
{Si1 , . . . , Sip} ∩ {Sj1 , . . . , Sjp′}

)
= Ri1,...,ip +Rj1,...,jp′ −Ri1,...,ip,j1,...,jp′ .

Since `n ≥ 0, we get

sup
∣∣∣∣∣exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

)
− exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)∣∣∣∣∣
≤ sup

i≤n
exp

Ri+1,...,n
1,...,i

n
τ

 − 1, (3.4)

where the supremum in the left-hand side is taken over all integers 0 ≤ i1 < · · · < ip < j1 <

· · · < jp′ ≤ n, with j1 − ip > `n. Using the fact that Ri+1,...,n
1,...,i = R1,...,i + Ri+1,...,n − R1,...,n

and following [10], we have supi≤n
Ri+1,...,n

1,...,i
n

−→
n→∞

0 a.s.. This, together with (3.4) implies

sup
∣∣∣∣∣E
[
exp

(
−
Ri1,...,ip,j1,...,jp′

n
τ

)]
− E

[
exp

(
−
Ri1,...,ip +Rj1,...,jp′

n
τ

)]∣∣∣∣∣ −→n→∞ 0

and concludes the proof of Proposition 3.1. �

When α > 1 and when the ξ(s)’s are i.i.d., it is proved in [5] (Proposition 1) that

(ξ(Sn))n≥0 does not satisfy the D(un) condition. The same holds when the ξ(s)’s only

12



satisfy the D(un) and D′(un) conditions.
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