QUELQUES CONCEPTS D'ANALYSE

Agrégation interne de mathématiques

N. CHENAVIER

Table des matières

1	\mathbf{Suj}	Sujet d'analyse 2024								
	1.1	Dérivabilité								
	1.2	Intégration								
	1.3	Equations différentielles linéaires d'ordre 2								
	1.4	Autres concepts et résultats sur les fonctions								
		1.4.1 Fonctions paires et impaires								
		1.4.2 Fonctions bijectives								
		1.4.3 Fonctions convexes et concaves								
	1.5	Probabilités								
		1.5.1 Espérance, variance								
		1.5.2 Inégalités classiques								
		1.5.3 Théorèmes limites								
2	Suj	Sujet d'analyse 2023								
	2.1	· ·								
	2.2									
		Equations différentielles								
		2.2.2 Equations différentielles matricielles d'ordre 1 à coefficients constants 10								
		2.2.3 Equations différentielles linéaires d'ordre 2 à coefficients constants 10								
	2.3	Convergence d'une suite de fonctions								
3	Suj	et d'analyse 2022								
	3.1									
	3.2	Séries de fonctions								
		3.2.1 Modes de convergence								
		3.2.2 Séries entières								
	3 3									

Chapitre 1

Sujet d'analyse 2024

Sommaire

1.1	Déri	vabilité
1.2	Inté	gration 5
1.3	Equa	ations différentielles linéaires d'ordre 2 6
1.4	Auti	res concepts et résultats sur les fonctions
	1.4.1	Fonctions paires et impaires
	1.4.2	Fonctions bijectives
	1.4.3	Fonctions convexes et concaves
1.5	\mathbf{Prob}	pabilités
	1.5.1	Espérance, variance
	1.5.2	Inégalités classiques
	1.5.3	Théorèmes limites

1.1 Dérivabilité

Définition 1.1.1. Soit I un intervalle ouvert de \mathbf{R} . Soient $f: I \to \mathbf{R}$ une fonction et $x_0 \in I$. On dit que f est **dérivable** en x_0 si le taux d'accroissement $\frac{f(x_0+h)-f(x_0)}{h}$ admet une limite finie quand h tend vers 0. On appelle **dérivée** de f en x_0 la valeur de cette limite :

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Définition 1.1.2. Soit I un intervalle ouvert de \mathbf{R} et $f:I\to\mathbf{R}$ une fonction. On dit que f est de **classe** \mathcal{C}^1 sur I si f est dérivable sur I et si f' est de plus continue.

1.2 Intégration

Théorème 1.2.1. (Théorème fondamental de l'analyse) Soit f une fonction continue sur [a, b], avec a < b.

(i) La fonction $F:[a,b] \to \mathbf{R}$ définie pour tout $x \in [a,b]$ par :

$$F(x) = \int_{a}^{x} f(t) dt$$

est une primitive de f, c'est-à-dire F'(x) = f(x) pour tout $x \in [a, b]$.

(ii) La fonction f possède une infinité de primitives sur l'intervalle [a, b] et ces dernières diffèrent toutes d'une constante additive.

Théorème 1.2.2. (Intégration par parties) Soient f et g deux fonctions de classe C^1 sur [a, b], avec a < b. Alors

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx.$$

Théorème 1.2.3. (Changement de variables) Soit $f: I \to \mathbf{R}$ une fonction continue sur un intervalle I et soit $\varphi: [a,b] \to I$ une fonction de classe \mathcal{C}^1 , avec a < b. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt.$$

Théorème 1.2.4. (théorème de dérivation sous le signe intégral) Soient A et I deux intervalles quelconques et $f: A \times I \to \mathbf{R}$ une fonction telle que :

- pour tout $x \in A$, la fonction $t \mapsto f(x,t)$ est intégrable sur I,
- pour tout $t \in I$, la fonction $x \mapsto f(x,t)$ est dérivable sur A,
- il existe une fonction $g: I \to \mathbb{R}_+$ intégrable sur I telle que, pour tout $(x,t) \in A \times I$, on a

$$|\partial_x f(x,t)| \le g(t).$$

Alors la fonction $F: x \mapsto \int_I f(x,t) dt$ est dérivable sur A. De plus, pour tout $a \in A$, on a

$$F'(a) = \int_I \partial_x f(a, t) dt.$$

1.3 Equations différentielles linéaires d'ordre 2

Théorème 1.3.1. Soient a et b deux réels. Notons (E_c) l'équation caractéristique :

$$r^2 + ar + b = 0.$$

- (i) Les solutions de l'équation homogène y'' + ay' + by = 0 sont les fonctions définies sur \mathbf{R} de la forme suivante :
 - $x \mapsto \lambda e^{r_1 x} + \mu e^{r_2 x}$, où r_1 et r_2 sont solutions réelles de (E_c) ;
 - $x \mapsto (\lambda x + \mu)e^{r_1x}$, où $r_1 = r_2$ est l'unique solution réelle de (E_c) ;
 - $x \mapsto e^{\alpha x} (\lambda \cos(\omega x) + \mu \sin(\omega x))$, où $r_1 = \alpha + i\omega$ et $r_2 = \alpha i\omega$ sont solutions complexes $de(E_c)$.

Dans les trois cas, les nombres λ et μ sont des constantes réelles.

(ii) Si de plus une condition initiale de la forme $y(x_0) = y_0$ et $y'(x_0) = y_1$ est fixée, avec $x_0 \in \mathbf{R}$ et $y_0 \in \mathbf{R}$ alors les valeurs des constantes λ et μ sont fixées. En particulier, l'équation avec condition initiale possède une unique solution.

Théorème 1.3.2. Soient a et b deux réels et f_P une solution sur I de l'équation différentielle y'' + ay' + by = c.

- (i) Les solutions de l'équation différentielle y'' + ay' + by = c sur I sont les fonctions f de la forme $f = f_H + f_P$, où f_H est solution de l'équation homogène y'' + ay' + by = 0.
- (ii) Si de plus une condition initiale de la forme $y(x_0) = y_0$ et $y'(x_0) = y_1$ est fixée alors il existe une unique solution à l'équation y'' + ay' + by = c.

1.4 Autres concepts et résultats sur les fonctions

1.4.1 Fonctions paires et impaires

Définition 1.4.1. *Soit* $f : \mathbf{R} \to \mathbf{R}$ *une fonction. On dit que :*

- f est paire si, pour tout $x \in \mathbf{R}$, on a f(-x) = f(x);
- f est **impaire** si, pour tout $x \in \mathbf{R}$, on a f(-x) = -f(x).

1.4.2 Fonctions bijectives

Définition 1.4.2. Soient E et F deux ensembles et $f: E \to F$ une application. On dit que f est bijective si, pour tout $y \in F$, il existe un unique élément $x \in E$ tel que y = f(x).

Théorème 1.4.3. (théorème de la bijection) Soit f une application continue et strictement monotone sur un intervalle I, d'extrémités a et b finis ou infinis. L'image f(I) de I par f est un intervalle de même nature que I (ouvert, fermé, semi-ouvert), d'extrémités $\lim_a f$ et $\lim_b f$. De plus, f est une bijection de I sur son image f(I).

1.4.3 Fonctions convexes et concaves

Définition 1.4.4. Soit I un intervalle de \mathbf{R} et $f: I \to \mathbf{R}$ une fonction. On dit que :

• f est **convexe** si, pour tout $(x,y) \in I^2$ et pour tout $t \in [0,1]$, on a

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y);$$

• f est concave si - f est convexe.

Proposition 1.4.5. Soit I un intervalle et $f: I \to \mathbf{R}$ une fonction deux fois dérivable. La fonction f est convexe si et seulement si $f''(x) \geq 0$ pour tout $x \in I$.

1.5 Probabilités

1.5.1 Espérance, variance

Définition 1.5.1. Soit X une variable aléatoire discrète, réelle, à valeurs dans un espace dénombrable E.

- (i) On dit que f admet une espérance si $\sum_{x \in E} |x| \mathbb{P}(X = x) < \infty$.
- (ii) Si f admet une espérance, on appelle espérance de X le nombre réel

$$\mathbb{E}\left[X\right] = \sum_{x \in E} x \mathbb{P}\left(X = x\right).$$

Définition 1.5.2. Soit X une variable aléatoire discrète, réelle, à valeurs dans un espace dénombrable E.

- (i) On dit que f admet une variance si $\sum_{x \in E} x^2 \mathbb{P}(X = x) < \infty$.
- (ii) Si f admet une variance, on appelle variance de X le nombre réel

$$\mathbb{V}\left[X\right] = \mathbb{E}\left[(X - \mathbb{E}\left[X\right])^2\right] = \sum_{x \in E} (x - \mathbb{E}\left[X\right])^2 \mathbb{P}\left(X = x\right).$$

Il existe des définitions analogues dans le cas où la variable réelle X admet une densité de probabilité.

1.5.2 Inégalités classiques

Proposition 1.5.3. (Inégalité de Markov) Soit X une variable aléatoire réelle positive. Alors, pour tout a > 0,

$$\mathbb{P}\left(X \geq a\right) \leq \frac{\mathbb{E}\left[X\right]}{a}.$$

Proposition 1.5.4. (Inégalité de Tchebychev) Soit X une variable aléatoire réelle dans L^2 . Alors, pour tout a > 0,

$$\mathbb{P}\left(\left|X - \mathbb{E}\left[X\right]\right| \ge a\right) \le \frac{\mathbb{V}\left[X\right]}{a^2}.$$

1.5.3 Théorèmes limites

Théorème 1.5.5. (loi forte des grands nombres) Soit (X_n) une suite de variables aléatoires réelles indépendantes identiquement distribuées dans L^1 . Notons $m = \mathbb{E}[X_1]$. Alors

$$\overline{X_n} \stackrel{p.s.}{\to} m.$$

Théorème 1.5.6. (théorème central limite) Soit (X_n) une suite de variables aléatoires réelles indépendantes identiquement distribuées. Supposons que $X_1 \in L^2$ et notons $m = \mathbb{E}[X_1]$ et $\sigma^2 = \mathbb{V}[X_1]$, avec $\sigma^2 > 0$. Alors

$$(\overline{X_n} - m) \times \sqrt{\frac{n}{\sigma^2}} \stackrel{loi}{\to} \mathcal{N}(0, 1).$$

Chapitre 2

Sujet d'analyse 2023

Sommaire

2.1 Exponentielle de matrice						
2.2 Equations différentielles						
2.2	1 Equations différentielles linéaires d'ordre 1	9				
2.2	2 Equations différentielles matricielles d'ordre 1 à coefficients constants	10				
2.2	3 Equations différentielles linéaires d'ordre 2 à coefficients constants $$	10				
2.3 Convergence d'une suite de fonctions						

2.1 Exponentielle de matrice

Définition 2.1.1. Soit A une matrice carrée à coefficients réels ou complexes. On appelle **exponentielle de** A la matrice notée e^A définie par :

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

L'exponentielle de A est bien définie car la série de matrices $\sum_{n\geq 0} \frac{A^n}{n!}$ converge normalement, i.e. $\sum_{n\geq 0} \frac{||A||^n}{n!}$, où $||\cdot||$ désigne n'importe quelle norme matricielle.

Proposition 2.1.2. L'exponentielle de matrices satisfait les propriétés suivantes (A et B désignent ci-dessous des matrices carrées) :

- (i) $(e^A)^T = e^{A^T}, (e^A)^* = e^{A^*};$
- (ii) $\det(e^A) = e^{Tr(A)}$;
- (iii) e^A est toujours inversible et $(e^A)^{-1} = e^{-A}$;
- (iv) si A et B commutent, i.e. AB = BA, alors $e^{A+B} = e^A e^B = e^B e^A$.

2.2 Equations différentielles

2.2.1 Equations différentielles linéaires d'ordre 1

Théorème 2.2.1. Soit a une fonction continue sur un intervalle I.

- (i) Les solutions de l'équation différentielle y' = a(x)y sur I sont les fonctions f_H , définies sur I par $f_H(x) = ke^{A(x)}$, où k est un réel quelconque et A une primitive de a sur I.
- (ii) Parmi toutes les solutions de l'équation y' = a(x)y, il en existe une seule qui prend une valeur donnée en un point donné.

Théorème 2.2.2. Soient a et b deux fonctions continues sur un intervalle I et f_P une solution sur I de l'équation différentielle y' = a(x)y + b(x).

- (i) Les solutions de l'équation différentielle y' = a(x)y + b(x) sur I sont les fonctions f, définies sur I par $f(x) = ke^{A(x)} + f_P(x)$, où k est un réel quelconque et A une primitive de a sur I.
- (ii) Parmi toutes les solutions de l'équation y' = a(x)y, il en existe une seule qui prend une valeur donnée en un point donné.

2.2.2 Equations différentielles matricielles d'ordre 1 à coefficients constants

Proposition 2.2.3. Soit A une matrice carrée (réelle ou complexe) de taille $n \times n$, avec $n \ge 1$. L'ensemble des solutions de l'équation différentielle

$$Y' = AY$$

où $Y = (y_1, \dots, y_n)^T$ est un n-uplet de fonctions définies sur \mathbf{R} ou \mathbf{C} , est l'ensemble des fonctions Y_S de la forme

$$Y_S(x) = e^{Ax} \times K,$$

où K est une matrice de taille $n \times 1$.

2.2.3 Equations différentielles linéaires d'ordre 2 à coefficients constants

Théorème 2.2.4. Soient a et b deux nombres réels. L'ensemble des solutions de l'équation différentielle linéaire (sans second membre, à coefficients constants)

$$y'' + ay' + by = 0$$

est un ${f R}$ -espace vectoriel de dimension 2. Les solutions fondamentales sont fournies dans le théorème 1.3.1.

2.3 Convergence d'une suite de fonctions

Définition 2.3.1. Soit I un intervalle. Soient $(f_n)_{n\geq 0}$ une suite de fonctions définies sur I et f une fonction définie sur I, à valeurs réelles. On dit que :

(i) $(f_n)_{n\geq 0}$ converge simplement vers f sur I si, pour tout $x\in I$, on a $f_n(x) \underset{n\to\infty}{\longrightarrow} f(x)$, i.e. si

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists N = N(\varepsilon, x) : \ \forall n \in \mathbb{N}, \ (n \ge N) \Longrightarrow |f_n(x) - f(x)| \le \varepsilon;$$

(ii) $(f_n)_{n\geq 0}$ converge uniformément vers f sur I si $||f_n-f||_{\infty} \underset{n\to\infty}{\longrightarrow} 0$, où $||f_n-f||_{\infty} = \sup_{x\in I} |f_n(x)-f(x)|$ désigne la norme uniforme de f_n-f , i.e. si

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) : \ \forall x \in I, \ \forall n \in \mathbb{N}, \ (n \ge N) \Longrightarrow |f_n(x) - f(x)| \le \varepsilon.$$

Proposition 2.3.2. Soit I un intervalle. Soient $(f_n)_{n\geq 0}$ une suite de fonctions définies sur I et f une fonction définie sur I, à valeurs réelles. Si $(f_n)_{n\geq 0}$ converge uniformément vers f alors $(f_n)_{n\geq 0}$ converge simplement vers f.

La réciproque de la proposition ci-dessus n'est pas vraie. Cependant, on a le résultat suivant.

Théorème 2.3.3. Soit I un intervalle compact. Soient $(f_n)_{n\geq 0}$ une suite de fonctions définies sur I et f une fonction définie sur I, à valeurs réelles. Si $(f_n)_{n\geq 0}$ converge simplement vers f et si $(f_n)_{n\geq 0}$ est une suite croissante de fonctions, i.e. si la suite de nombres réels $(f_n(x))_{n\geq 0}$ est croissante pour tout $x \in I$, alors $(f_n)_{n\geq 0}$ converge uniformément vers f.

Chapitre 3

Sujet d'analyse 2022

Sommaire

3.1	Séries numériques	
3.2	Séries de fonctions	
	3.2.1 Modes de convergence	
	3.2.2 Séries entières	
3.3	Théorèmes d'intégration	

3.1 Séries numériques

Soit (u_n) une suite de nombres réels ou complexes. On définit les sommes partielles par

$$S_n = \sum_{k=0}^n u_k.$$

La suite des sommes partielles (S_n) s'appelle la **série** de terme général u_n . On la note $\sum_{n\geq 0} u_n$.

Définition 3.1.1. On dit que la série $\sum_{n\geq 0} u_n$ est :

- convergente si la limite $\lim_{n\to\infty} S_n$ existe, et on note alors $\sum_{n=0}^{\infty} u_n := \lim_{N\to\infty} \sum_{n=0}^{N} u_n$ cette limite;
- divergente si elle n'est pas convergente;
- absolument convergente si la série $\sum_{n>0} |u_n|$ est convergente.

Remarque 3.1.2. Si (u_n) est une suite à termes positifs, alors la série $\sum_{n\geq 0} u_n$ est convergente si et seulement si elle est majorée, c'est-à-dire si et seulement si $\sum_{n\geq 0} u_n < \infty$.

Théorème 3.1.3. (Critère de Cauchy) Si une série converge absolument, alors elle converge.

La réciproque du résultat ci-dessus n'est pas vraie.

Proposition 3.1.4. Soit (u_n) une suite. Si la série $\sum_{n\geq 0} u_n$ converge, alors la suite (u_n) tend vers θ .

La réciproque de la proposition ci-dessus n'est pas vraie : par exemple, la série $\sum_{n\geq 1}\frac{1}{n}$ diverge et pourtant $\frac{1}{n}\underset{n\to\infty}{\longrightarrow}0$.

Exemple 3.1.5. 1. Soit (u_n) la suite définie par $u_n = x^n$. La série $\sum_{n \geq 0} u_n$ est convergente si et seulement si |x| < 1. La somme de la série vaut

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

On parle de série géométrique.

2. Soit (u_n) la suite définie par $u_n = \frac{x^n}{n!}$. La série $\sum_{n \geq 0} u_n$ est convergente pour tout $x \in \mathbf{R}$. La somme de la série vaut

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

- 3. Soit (u_n) la suite définie par $u_n = \frac{1}{n^x}$. La série $\sum_{n \geq 0} u_n$ est convergente pour tout x > 1. La somme de la série n'a pas d'expression analytique et est connue sous le nom de fonction zêta, c'est-à-dire $\zeta(x) = \sum_{n=0}^{\infty} \frac{1}{n^x}$, pour tout x > 1. On parle de série de Riemann.
- 4. Soit (u_n) la suite définie par $u_n = \frac{(-1)^n}{n}$. La série $\sum_{n\geq 0} u_n$ est convergente mais pas absolument convergente. Il s'agit d'un cas particulier de série alternée.

Proposition 3.1.6. Soit (u_n) une suites de nombres réels positifs. La série $\sum_{n\geq 0} u_n$ converge si et seulement si $\sum_{n\geq 0} u_n < \infty$.

Proposition 3.1.7. Soient (u_n) et (v_n) deux suites de nombres réels positifs. Si $u_n \le v_n$ pour tout $n \ge 0$ et si $\sum_{n \ge 0} v_n$ converge alors $\sum_{n \ge 0} u_n$ converge.

Théorème 3.1.8. Soient (u_n) et (v_n) deux suites de nombres réels positifs. Si $u_n \underset{n \to \infty}{\sim} v_n$, i.e. $si \xrightarrow[v_n]{u_n} \underset{n \to \infty}{\longrightarrow} 1$, alors les séries $\sum_{n \ge 0} u_n$ et $\sum_{n \ge 0} v_n$ sont de même nature. En d'autres termes, $\sum_{n \ge 0} u_n$ converge si et seulement si $\sum_{n \ge 0} v_n$ converge.

3.2 Séries de fonctions

3.2.1 Modes de convergence

Définition 3.2.1. Soit (u_n) une suite de fonctions définies sur un intervalle I de \mathbf{R} à valeurs réelles. On dit que la série de fonctions $\sum_{n\geq 0} u_n$:

(i) converge simplement vers une fonction $u: I \to \mathbf{R}$ si, pour tout $x \in I$, on a

$$\sum_{n=0}^{N} u_n(x) \xrightarrow[N \to \infty]{} u(x);$$

(ii) converge uniformément vers une fonction $u: I \to \mathbf{R}$ si, $||\sum_{n=0}^{N} u_n - u||_{\infty} \xrightarrow[N \to \infty]{} 0$, i.e. si

$$\sup_{x \in I} \left| \sum_{n=0}^{N} u_n(x) - u(x) \right| \underset{N \to \infty}{\longrightarrow} 0;$$

(iii) converge normalement si la série numérique $\sum_{n\geq 0} ||u_n||_{\infty}$ converge, i.e. si

$$\sum_{n>0} ||u_n||_{\infty} < \infty.$$

Proposition 3.2.2. (i) La convergence uniforme entraine la convergence simple.

(ii) La convergence normale entraine la convergence uniforme.

Les réciproques des assertions ci-dessus ne sont pas vraies.

3.2.2 Séries entières

Une **série entière** est une série de fonctions $\sum_{n\geq 0} u_n$ où chaque fonction u_n est de la forme $u_n(x)=a_nx^n$, avec $x\in \mathbf{R}$ et $a_n\in \mathbf{R}$ pour tout $n\geq 0$. On note plus communément 1 une série entière sous la forme $\sum_{n\geq 0} a_nx^n$.

Définition 3.2.3. On appelle **rayon de convergence** de la série entière $\sum_{n\geq 0} a_n x^n$ la quantité (éventuellement infinie)

$$R = \sup\{r \ge 0 : (a_n r^n) \text{ est born\'ee .}\}$$

Proposition 3.2.4. Soit $\sum_{n\geq 0} a_n x^n$ une série entière de rayon de convergence R. Alors, pour tout $x\in \mathbf{R}$,

- (i) si |x| < R, la série $\sum_{n>0} a_n x^n$ converge absolument;
- (ii) si |x| > R, la série $\sum_{n>0} a_n x^n$ diverge grossièrement.

Lorsque |x| = R, on ne peut pas conclure en général. L'intervalle] - R, R[est appelé **disque** de convergence de la série entière.

Proposition 3.2.5. Soit $\sum_{n\geq 0} a_n x^n$ une série entière à coefficients réels.

(i) Le rayon de convergence de $\sum_{n\geq 0} a_n x^n$ est donné par

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n}.$$

(ii) Si $\frac{|a_{n+1}|}{|a_n|}$ possède une limite, alors le rayon de convergence est donné par

$$\frac{1}{R} = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}.$$

Proposition 3.2.6. Soit $\sum_{n\geq 0} a_n x^n$ une série entière à coefficients réels de rayon de convergence R>0. Soit $r\in]0,R[$. Alors la série $\sum_{n\geq 0} a_n x^n$ converge normalement sur l'intervalle fermé [0,r].

Proposition 3.2.7. Soit $\sum_{n\geq 0} a_n x^n$ une série entière à coefficients réels de rayon de convergence R>0 et $f(x)=\sum_{n=0}^{\infty} a_n x^n$ pour tout $x\in]-R,R[$. La série entière est de classe \mathcal{C}^{∞} sur]-R,R[. De plus, pour tout $x\in]-R,R[$ et tout $k\geq 0$, on a

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k}.$$

Proposition 3.2.8. Soit $\sum_{n\geq 0} a_n x^n$ une série entière à coefficients réels de rayon de convergence R>0 et $f(x)=\sum_{n=0}^{\infty} a_n x^n$ pour tout $x\in]-R,R[$. Pour tout $n\geq 0$, on a

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

^{1.} Rigoureusement, il faudrait en réalité écrire $\sum_{n\geq 0} x \mapsto a_n x^n$

Définition 3.2.9. On appelle **série entière produit** de $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} b_n x^n$ la série entière $\sum_{n\geq 0} c_n x^n$ avec $c_n = \sum_{k=0}^n a_k b_{n-k}$.

Proposition 3.2.10. Le rayon de convergence R de la série produit $\sum_{n\geq 0} c_n x^n$ de $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} b_n x^n$ vérifie $R\geq \min\{R_a,R_b\}$, on a

$$\sum_{n=0}^{\infty} c_n x^n = \left(\sum_{n=0}^{\infty} a_n x^n\right) \times \left(\sum_{n=0}^{\infty} b_n x^n\right).$$

3.3 Théorèmes d'intégration

Théorème 3.3.1. (théorème de convergence monotone) Soit (f_n) une suite de fonctions mesurables, définies sur un intervalle I à valeurs réelles et positives. Supposons que f_n converge simplement vers une fonction f et que, pour tout $x \in I$, la suite $(f_n(x))_{n>0}$ est croissante. Alors

$$\lim_{n \to \infty} \int_I f_n(x) dx = \int_I f(x) dx.$$

Théorème 3.3.2. (théorème de convergence dominée) Soit (f_n) une suite de fonctions mesurables, définies sur un intervalle I à valeurs réelles et positives. Supposons que f_n converge simplement vers une fonction f et qu'il existe une fonction g intégrable, positive, telle que $|f_n(x)| \leq g(x)$ pour tout $x \in I$. Alors

$$\lim_{n \to \infty} \int_I f_n(x) dx = \int_I f(x) dx.$$

Théorème 3.3.3. (Fubini-Tonelli) Soient I et J deux intervalles et $f: I \times J \to \mathbf{R}$ une fonction mesurable. Si f est positive alors

$$\int_{I \times I} f(x, y) dx dy = \int_{I} \left(\int_{I} f(x, y) dy \right) dx = \int_{I} \left(\int_{I} f(x, y) dx \right) dy.$$

Théorème 3.3.4. (Fubini) Soient I et J deux intervalles et $f: I \times J \to \mathbf{R}$ une fonction mesurable. S'il existe une fonction $g: \times I \times J \to \mathbf{R}$ intégrable, telle que $|f(x,y)| \leq g(x,y)$ pour tout $(x,y) \in I \times J$, alors

$$\int_{I \times J} f(x, y) dx dy = \int_{I} \left(\int_{J} f(x, y) dy \right) dx = \int_{J} \left(\int_{I} f(x, y) dx \right) dy.$$

Il existe des résultats analogues à ce qui précède dans le contexte des séries (en remplaçant la notion d'intégrale par celle de série).