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Abstract

We prove the existence of infinite-volume IDLA forests in Zd, with d ≥ 2, based on a
multi-source IDLA protocol. Unlike IDLA aggregates, the laws of the IDLA forests studied
here depend on the trajectories of particles, and then do not satisfy the famous Abelian
property. Their existence is due to a stabilization result (Theorem 1.1, our main result)
that we establish using percolation tools. Although the sources are infinitely many, we also
prove that each of them play the same role in the building procedure, which results in an
ergodicity property for the IDLA forests (Theorem 1.2).
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1 Introduction

The Internal Diffusion Limited Aggregation (idla) model gives a protocol to build random
aggregates (An)n≥0 recursively in Zd. Initially, we assume that A0 = ∅. Then, at some step
n ≥ 1, given An−1, the first site visited outside of An−1 by a random walk started at the origin
is added to An−1 in order to obtain An. In this context, such random walks are called particles.
idla was initially introduced by Meakin and Deutch in [22] to model an industrial chemical
technique known as electropolishing. The goal of such a process is to eliminate a small coat of
material off of a metallic surface in order to make it smoother. It became pertinent to quantify
how smooth the surface of a polished metal could get through such a process.

A first shape theorem was established by Lawler, Bramson and Griffeath in [19] to describe
the asymptotic shape of An, as n tends to infinity, as a Euclidean ball. This result was later made
sharper with the works of Jerison, Levine and Sheffield [15, 16, 17] and Asselah and Gaudillière
[1, 2, 3]. In their works, the bounds for fluctuations around the limit shape are improved from
linear to logarithmic in dimension d = 2 and sublogarithmic in dimensions d ≥ 3. See also [12]
for a continuous time version. From then on, variants of the idla model have been studied
on many other graphs, such as on cylinder graphs in [18, 21, 25], on supercritical percolation
clusters in [10, 24], on comb lattices in [4, 14] or on non-amenable graphs in [13, 23].

While the previously cited idla models are single-source, multi-source idla models have also
been considered in [7, 8, 20] and by the authors in [5]. This question was originally investigated
by Diaconis and Fulton [9] in the context of the smash sum of two domains in which they
discover the famous Abelian Property of idla aggregates, meaning that modifying the order
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in which particles are launched does not change the distribution of the final aggregate. This
beautiful property will be a powerful tool for the study of idla models.

In the present paper, we introduce new random graphs on Zd with d ≥ 2, called idla
forests, whose construction is based on a multi-source idla protocol. We consider an infinite
set of sources, namely the hyperplane H := {0} × Zd−1. Basically, in addition to the site at
which the current particle exits the aggregate and stops, we also retain the edge by which the
particle reaches that site. This procedure leads to a random forest on the lattice Zd, i.e. a
collection of disjoint random trees rooted at sources of H. Unlike idla aggregates, trajectories
of particles really matter for the idla forests, meaning the Abelian property is no longer true
for this new model, making it more difficult to show the existence of these forests.

However, we prove in Theorem 1.1 (our main result) the existence of the infinite-volume
idla forests, generated by the infinite set of sources H. See Figure 1 for a simulation in
dimension d = 2. Moreover, our construction does not favor any source in the sense that
(roughly speaking), at any time, the next source to emit a particle is selected ‘uniformly’ among
all the sources of H. This remarkable feature is stated in Theorem 1.2 in which we prove that
the idla forests are ergodic w.r.t. the translations of H.

Let us notice that the existence of bi-dimensional idla forests has been already explored
by the authors in [6] but their proof strongly used the one-dimensional aspect of the set of
sources–which is {0}×Z when d = 2–and then completely collapses in higher dimensions. More
than a generalization of [6], we think that the method developed here and based on percolation
tools is original in the context of idla and is certainly promising to deal with graphs built from
idla protocols with infinitely many sources.

Construction of the finite-volume IDLA forests

Let us start by describing our random inputs. Let us first consider a family of i.i.d. Poisson
Point Processes (ppp) on R+, with intensity 1 and denoted by {Nz}z∈H. Each ppp Nz provides
a sequence (τz,j)j≥1 of successive tops which act as random clocks for the emission of particles
from the source z. Thus, to the sequence (τz,j)j≥1, is associated a sequence of i.i.d. simple
random walks (Sz,j)j≥1 on Zd starting at z. Note that the Sz,j ’s, for z ∈ H and j ≥ 1, are
independent from each other and also independent from the ppp Nz’s. Hence, at time τz,j , a
particle is emitted from the source z (precisely, the j-th one coming from z), and follows the
trajectory given by the random walk Sz,j until exiting the current aggregate. To avoid having
multiple particles alive at the same time, we assume that particles realize their trajectories
instantaneously (w.r.t. the Poisson clocks).

Let M, n ≥ 0 be integers. Set HM := {0} × J−M, MKd−1. Let us consider the random set
A†

n[M ] ⊂ Zd defined as the idla aggregate generated by particles emitted from the sources of
HM and during the time interval [0, n]. Since the number of particles involved in A†

n[M ] is
a.s. finite (n(2M + 1)d−1 in mean), this aggregate is a.s. well defined. See the left hand side of
Figure 1 for a simulation of A†

20[50] in dimension d = 3.
Now, we can build quite naturally from A†

n[M ] a finite-volume idla forest Fn[M ], simply
by considering the edges of Zd from which the particles involved in A†

n[M ] exit the current
aggregate. Let κ := ∑

z∈HM
#Nz([0, n]) be the total number of such particles. Let us enumerate

them according to their starting times, say 0 < τ1 < τ2 < ... < τκ < n (they are a.s. different).
For j ∈ J1, κK, we denote by A[j] the aggregate obtained until time τj , including the site added by
the particle sent at time τj . We then have A[0] = ∅ (with τ0 = 0) and A[κ] = A†

n[M ]. We proceed
by induction to build the associated forest Fn[M ]. Let us first set Fn[M, 0] = (∅, ∅). Now, for
j ∈ J1, κK, given the random graph Fn[M, j − 1] = (Vj−1, Ej−1), we define Fn[M, j] = (Vj , Ej)
as follows. Let x be the new site added to A[j − 1] by the j-th particle.
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• If x is the source from which the j-th particle is emitted, then this particle actually is
the first one emitted from x, and x will be the root of a new tree in the graph. We set
Vj = Vj−1 ∪ {x} and Ej = Ej−1.

• Otherwise, let x′ be the last site of A[j − 1] visited by the j-th particle before reaching x.
Then we set Vj = Vj−1 ∪ {x} and Ej = Ej−1 ∪ {(x′, x)}.

Finally, we define Fn[M ] := Fn[M, κ]. See the right hand side of Figure 1 for a simulation of
F30[20] in dimension d = 2. This construction ensures that Fn[M ] is a finite union of trees with
roots in HM and whose vertex set is equal to A†

n[M ].

Figure 1: To the left: A realization in dimension d = 3 of the multi-source aggregate A†
20[50]

with particles emitted from H50 and on the time interval [0, 20], looking like a ‘bar of soap’.
Each settled particle is represented by a blue cube. To the right: A realization in dimension
d = 2 of the finite-volume idla forest F30[20] associated to the aggregate A†

30[20]. Each tree is
represented in a different color. Unfortunately, for visual reasons, we will only represent idla
forests in dimension d = 2.

No monotonicity because of chains of changes

Thanks to the natural coupling defined in Section 2.2, one can construct on the same probability
space the aggregates A†

n[M ], for all M ≥ 0, in such a way that a.s. A†
n[M ] ⊂ A†

n[M + 1] for any
M . This monotonicity property allows us to a.s. define a limiting aggregate as

A†
n[∞] :=

⋃
M≥0

↑ A†
n[M ] . (1.1)

However the same monotonicity property does not hold for the sequence (Fn[M ])M≥0 of associ-
ated idla forests, as depicted in Figure 2. Consequently, we cannot define an infinite-volume for-
est as the increasing union of finite-volume forests, in the same spirit as (1.1). Let M ′ ≥ M ≥ 0.
Although their vertex sets satisfy the inclusion V (Fn[M ]) = A†

n[M ] ⊂ V (Fn[M ′]) = A†
n[M ′]

(thanks to the natural coupling), this is no longer true for their edge sets. Indeed, some vertices
present in both forests Fn[M ] and Fn[M ′] are reached using different particles and possibly
through different edges. This contributes to an edge in Fn[M ] which is not present in Fn[M ′]
(and conversely). These discrepancies between Fn[M ] and Fn[M ′] can occur through a tricky
phenomenon called chains of changes that we detail now. In a first time, the reader may skip
this part and go directly to the result section below.
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Figure 2: A realization of F50[100] and F50[150] using the natural coupling, i.e. their vertex sets
are such that A†

50[100] ⊂ A†
50[150]. The green edges are common to both forests. The blue points

are vertices common to both aggregates, but reached by different particles, and may lead to
discrepancies between F50[100] and F50[150]. The red points are vertices of A†

50[150] \ A†
50[100].

Both pictures on the right are zooms of the one on the left. One can see the presence of many
blue points, especially on both extremities of A†

50[100]. Remark also that some of them appear
in the vicinity of the e1-axis (e1 denoting the first vector of the canonical basis): see the top
left picture. These possible discrepancies are produced by chains of changes.

Let M ′ ≥ M ≥ 0 and n ≥ 0. To explain what a chain of changes is, we need to slightly
describe the natural coupling we use. The basic idea of that coupling consists in using the same
random clocks (Nz) and the same random walks (Sz,j) for both aggregates A†

n[M ] and A†
n[M ′].

Hence a particle starting from a source in HM will work for both aggregates, i.e. it will add a
new site to both aggregates (but not necessarily the same site). However, a particle starting
from a source in HM ′ \ HM will only work for the larger aggregate A†

n[M ′]. Now, consider
such a particle starting at time t1 ∈ (0, n) from a source in HM ′ \ HM , it adds a site x1 to the
larger aggregate. Precisely, if we write A†

t−
1

[M ′] the current aggregate produced right before

sending that particle, then we get A†
t1 [M ′] = A†

t−
1

[M ′] ∪ {x1}, while A†
t1 [M ] = A†

t−
1

[M ] remains

unchanged. At this time, x1 belongs to the larger aggregate A†
t1 [M ′] but not to the smaller one

A†
t1 [M ]. If no other future particles starting from HM visit the site x1, then x1 will remain

a discrepancy until time n between both aggregates. Conversely, assume x1 is visited at time
t2 ∈ (t1, n) (and for the first time) by a particle coming from HM , then both aggregates are
updated as follows:

• The site x1 is added to the smaller aggregate: A†
t2 [M ] = A†

t−
2

[M ] ∪ {x1}.

• Since x1 already belongs to A†
t−
2

[M ′], the particle continues its trajectory until exiting the

larger aggregate, say through a new site x2, that it is then added: A†
t2 [M ′] = A†

t−
2

[M ′] ∪
{x2}.

At time t2, the site x1 is no longer a discrepancy between both aggregates but it has been
reached by two different particles: x1 actually is a blue point using the color code of Figure 2,
i.e. both edges leading to x1 in Fn[M ] and Fn[M ′] could be different. Moreover, the site x2
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has become a discrepancy between both aggregates A†
t2 [M ] and A†

t2 [M ′]. In other words, the
discrepancy has been relayed from x1 to x2 by the particle emitted at time t2.

From then on, one can imagine a scenario where, at a random time t3 ∈ (t2, n), the dis-
crepancy at x2 is relayed (by a third particle from HM ) to a new site x3 and possibly becomes
another difference between both forests (i.e. a blue point), and so on. Such a phenomenon is
referred to as a chain of changes. We point out that, even if it is initiated by a particle from
HM ′ \ HM –i.e. quite far away from the e1-axis when M is large–a chain of changes can spread
up to the e1-axis thanks to several relays. See the blue points in the top left picture of Figure 2.

Results

Our main task consists in controlling the chains of changes described in the previous section and
proving that they cannot spread up too much inside the aggregate. This leads to the following
stabilization result for the sequence of idla forests (Fn[M ])M≥0. For that purpose, we need to
define the strip ZK := Z × J−K, KKd−1 for any integer K ≥ 0.

Theorem 1.1 (Forest stabilization result). Let d ≥ 2. For all n ≥ 1 and K ≥ 1, the following
holds with probability one:

∃N0 = N0(n, K) ≥ 0, ∀N ≥ N0, Fn[N ] ∩ ZK = Fn[N0] ∩ ZK , (1.2)

where the above identity means that all vertices and edges of Fn[N ] and Fn[N0] inside the strip
ZK coincide.

From then on, Theorem 1.1 allows us to take the limit M → ∞ in the sequence (Fn[M ])M≥0
in order to obtain an infinite-volume forest Fn. First remark that the sequence (N0(n, K))n,K

in (1.1) can be chosen increasing in K, which implies for any K ′ ≥ K,

Fn[N0(n, K)] ∩ ZK = Fn[N0(n, K ′)] ∩ ZK ⊂ Fn[N0(n, K ′)] ∩ ZK′ . (1.3)

Inclusion (1.3) compensates for the lack of monotonicity of the sequence (Fn[M ])M≥0 and allows
us to define the infinite-volume idla forest up to time n denoted by Fn as

Fn :=
⋃

K≥1
↑ Fn[N0(n, K)] ∩ ZK , (1.4)

a.s. and for any n ≥ 1. A realization of F100[200] is given in Figure 3 seen through the strip
Z40.

After taking the limit M → ∞ in space, let us take the limit n → ∞ in time. The sequence
(N0(n, K))n,K can also be chosen increasing in n. So using once again the stabilization result
of Theorem 1.1, we can write:

Fn ∩ ZK = Fn[N0(n, K)] ∩ ZK = Fn[N0(n + 1, K)] ∩ ZK

⊂ Fn+1[N0(n + 1, K)] ∩ ZK = Fn+1 ∩ ZK ,

where the inclusion Fn[M ] ⊂ Fn+1[M ] is merely due to extra particles emitted during the time
interval (n, n + 1] (from HM ). Hence, the sequence of random graphs (Fn)n≥1 is increasing in
the sense that a.s. for any n ≥ 1, V (Fn) ⊂ V (Fn+1) and E(Fn) ⊂ E(Fn+1). We then define
the infinite-volume idla forest F∞ by

F∞ :=
⋃

n≥1
↑ Fn a.s. (1.5)
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Figure 3: Here is a realization of F100[200] intersected with the strip Z40. Taking M = 200 large
enough, one can expect the infinite-volume forest F100 and the finite volume forest F100[200] to
coincide on Z40 thanks to Theorem 1.1.

The infinite-volume idla forests F∞ and (Fn)n≥0 previously defined are built from an infinite
set of sources, namely the hyperplane H = {0} × Zd−1. Theorem 1.2 below asserts that they
are invariant in distribution w.r.t. translations of H, meaning that all sources in H play the
same role in their constructions. This gives a mathematical sense to what was announced at
the beginning about F∞ and (Fn)n≥0; at each time, the next source to emit a particle is chosen
‘uniformly’ among H.

For k ∈ H, let us denote by Tk the translation operator on Zd defined by ∀x ∈ Zd, Tk(x) =
x + k.

Theorem 1.2. Let d ≥ 2. The infinite-volume idla forests F∞ and (Fn)n≥0 satisfy the fol-
lowing properties:

1. Almost surely, the set of vertices of F∞ satisfies V (F∞) = Zd.

2. The distributions of (Fn)n≥0 and F∞ are invariant w.r.t. translations Tk, k ∈ H.

3. The distributions of (Fn)n≥0 and F∞ are α-mixing, and then ergodic, w.r.t. translations
Tk, k ∈ H.

Strategy for proving Theorem 1.1

Let us call level M the set of sources in H at distance M from the origin (w.r.t. the infinite
norm ∥(z1, . . . , zd)∥ := maxi |zi|). Our main task consists in proving the stabilization result
Theorem 1.1, i.e. given n ≥ 1 and K ≥ 1, that (1.2) recalled below occurs with probability 1:

∃N0 = N0(n, K) ≥ 0, ∀N ≥ N0, Fn[N ] ∩ ZK = Fn[N0] ∩ ZK .

Since the event {Fn[N ]∩ZK ̸= Fn[N0]∩ZK} implies the existence of a chain of changes between
A†

n[N ] and A†
n[N0], a natural approach would be, using the Borel-Cantelli Lemma combined

with a union bound, to show that∑
N0

∑
N≥N0

P
(
Fn[N ] ∩ ZK ̸= Fn[N0] ∩ ZK

)
< ∞ .

However, it is difficult to obtain any upper bounds which decrease with respect to N and make
the corresponding series summable. Indeed, this event provides no control on the level from
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which that chain of changes is initiated: it could be initiated anywhere from level N0 + 1,
independently of N . A different strategy is therefore required.

Our original approach is to interpret the chain of changes phenomenon with a percolation
point of view. Consider N ≥ N0 ≥ K and a chain of changes between the forests Fn[N0] and
Fn[N ] creating (at least) a discrepancy inside the strip ZK . Then, the sequence of successive
relays will be interpreted as a sequence of successive overlapping balls, centered at the sources
emitting the relay particles, whose cluster goes from level N0 to the strip ZK . In particular,
when N0 ≫ K, a very large cluster will correspond to this chain of changes.

Given n, K ≥ 1, we proceed by contradiction and assume that, with positive probability,

∀N0, ∃N ≥ N0, Fn[N ] ∩ ZK ̸= Fn[N0] ∩ ZK . (1.6)

Throughout the whole paper, we will refer to (1.6) as the Absurd hypothesis. According to our
percolation viewpoint, (1.6) leads to the existence of a Boolean model, say Σ, which percolates
(i.e. admits an unbounded cluster) with positive probability. To get a contradiction, we will
also state that Σ is actually subcritical with probability 1, concluding the proof of Theorem 1.1.
To do it, we will act on three characteristics of the Boolean model Σ: its intensity (the density
of its centers), its radii distribution and its long-range correlations.

First, the relay particles involved in a chain of changes are emitted by space-time points
(z, t), i.e. from a source z and at time t. Denoting by (zi, ti)’s the sequence of emitting space-
time points of a given chain of changes, the time sequence (ti) is increasing by construction.
Taking advantage of this monotonicity property, we prove that the intensity of the Boolean
model Σ can be chosen as small as we want.

Thus, recall that the (infinite) aggregate A†
n[∞] defined in (1.1) is also the vertex set of

the idla forest Fn. So any information about it will help us to analyze the chain of changes
phenomenon. In particular, in the Boolean model Σ, the radius of a ball associated to a relay
particle is given by the maximal fluctuations performed by that particle from its source to exiting
A†

n[∞]. So stating a global upper bound (see Proposition 2.2) for this infinite aggregate–within
a kind of cone–will allow us to control these fluctuations and prove that the radii distribution
of Σ satisfies good integrability conditions.

Finally, in order to show that Σ is subcritical, we will apply a multiscale argument in the
manner of [11]. A crucial ingredient making this strategy successful is to quantify how much
Σ, when restricted to a finite window, depends on what happens far away. An important
step towards such a local property satisfied by the Boolean model Σ lies in the stabilization
result below. Theorem 1.3, interesting in itself, asserts that with high probability, the infinite
aggregate A†

n[∞], when restricted to the strip ZM , does not depend on particles launched from
levels larger than 2M .
Theorem 1.3 (Aggregate stabilization result). Let d ≥ 2 and n ≥ 1. There exists a positive
constant C = C(n, d) such that for any M, L ≥ 1,

P
(
A†

n[∞] ∩ ZM = A†
n[2M ] ∩ ZM

)
≥ 1 − C

ML
.

Proof of Theorem 1.3 is based on the global upper bound for A†
n[∞] mentioned above, on

a donut argument already used in [6] and on a variant of the natural coupling between two
aggregates, called the special coupling.

Why does the proof of [6] collapse in higher dimensions?

In [6], the authors proved the existence of idla forests (Fn)n≥1 and F∞–see (1.4) and (1.5)–in
the case of dimension d = 2, i.e. with the set of sources H = {0} × Z. Their proof only works
for the dimension d = 2 and cannot be generalized to higher dimensions: let us explain why.

7



For any integer n, let us define the vacant set Vn ⊂ H by

Vn := {z ∈ H : L(z) ∩ A†
n[∞] = ∅}

where L(z) := z + {(k, 0) : k ∈ Z} is the horizontal line passing by z. It is proved in Corollary
5.2 of [6] that the random set Vn contains a.s. infinitely many sources. Due to the dimension
d = 2, this implies that the aggregate A†

n[∞] is made up of (infinitely many) disjoint, finite
connected components. The aggregate A†

n[∞] being the vertex set of the idla forest Fn, it
is then impossible for a chain of changes initiated from a very far away source to spread and
create a discrepancy inside a given strip ZK (the relay particles cannot jump from a connected
component of A†

n[∞] to another one). Corollary 5.2 of [6] is certainly still true in dimension
d ≥ 3 (in the sense that A†

n[∞] contains an infinite number of empty lines Z×{y}, for y ∈ Zd−1)
but its consequence about A†

n[∞], due to planarity, definitely collapses in higher dimensions.
However, one could ask whether the aggregate A†

n[∞] would still be an union of disjoint,
finite connected components in dimension d ≥ 3. Actually that is wrong whenever n is large
enough. Indeed, let us call rooted a source z having emitted at least one particle during the time
interval [0, n]. Hence, z is rooted if and only if the corresponding ppp Nz has generated at least
one top in [0, n], which occurs with probability 1 − e−n. The events {z is rooted}, z ∈ H, being
independent from each other and their (common) probability tending to 1 as n → ∞, we get
that the set of rooted sources percolates in H for n large enough. Since a rooted source belongs
to A†

n[∞], we conclude that this aggregate contains a (unique) infinite connected component.

Organization of the paper

Our paper is organized as follows. In Section 2, are gathered several properties about the
aggregate A†

n[∞] that will be useful in the sequel. The natural and special couplings are detailed
and the Aggregate stabilization result Theorem 1.3 is proved. In Section 3, we explain how chains
of changes can be interpreted in terms of percolation. In particular, we define in Section 3.3 a
discrete Boolean model Σ̂ε, with intensity pε → 0 as ε → 0, which is proved to be supercritical
(i.e. percolating) for any ε > 0 under the Absurd hypothesis (1.6). Conversely, in Section 4,
we adapt to our context a multiscale argument due to [11] which allows us to prove that Σ̂ε

does not percolate provided the intensity pε is small enough, leading to a contradiction with the
conclusion of Section 3. Finally, Section 5 is devoted to the proof of Theorem 1.2. A detailed
proof of Proposition 2.2 is given in the Appendix A.

2 The infinite aggregate A†
n[∞]

Let n ≥ 1. Recall that the infinite aggregate A†
n[∞] has been defined in (1.1) as the limit of

the increasing sequence of (finite) aggregates (A†
n[M ])M≥1. In this section, are gathered several

results about A†
n[∞] which will be helpful for the proof of our main result Theorem 1.1. Indeed,

the infinite aggregate A†
n[∞] is intended to be the vertex set of the infinite-volume idla forest

Fn. Results about A†
n[∞] are stated in Section 2.1. Both natural and special couplings are given

in Section 2.2. Finally, we prove the stabilization result for A†
n[∞] (Theorem 1.3) in Section

2.3.

2.1 Results

Let us start with an invariance property in distribution for the infinite aggregate A†
n[∞]. This

result is based on the fact that the random ingredients generating A†
n[∞], namely the collection
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of ppp {Nz : z ∈ H} and the random walks {Sz,j : z ∈ H, j ≥ 1}, are iid. See Proposition 2.2
of [6] for the same result but in dimension d = 2. The same proof actually works for any d ≥ 2.

Proposition 2.1. The distribution of A†
n[∞] is invariant w.r.t. translations of the source set

H:
TkA†

n[∞] law= A†
n[∞]

where Tk, for k ∈ H, is defined on Zd by Tk(x) = x + k.

The following result, given by Proposition 2.2, provides a global control of the shape of
A†

n[∞]. It is referred to as a Global Upper Bound and is necessary in the proof of Theorem 1.3
in Section 2.3. Let us begin by introducing some notations. For 0 < α < 1 and ε > 0, let us
consider the cone C α

ε as

C α
ε =

⋃
ℓ≥0

{
z ∈ Zd, ∥pH(z)∥ = ℓ, |z1| ≤ εℓα

}
,

where pH denotes the orthogonal projection onto H. Then, for any integer M ≥ 0, we define
the event

Over†
α(M, n, ε) := {A†

n[∞] ∩ Zc
M ̸⊂ C α

ε } , (2.1)

meaning that the aggregate A†
n[∞] exceeds the cone C α

ε outside the strip ZM . Proposition 2.2
states an upper bound for the probability of Over†

α(M, n, ε) which implies that above a certain
level, the aggregate is almost surely contained inside the cone C α

ε .

Proposition 2.2. (Global upper bound) For any ε > 0 and α ∈ (1 − 1/d, 1), there exists a
positive constant C = C(d, n, ε, α) such that for all integers L, M > 1,

P
(
Over†

α(M, n, ε)
)

≤ C

ML
.

In particular, with probability 1, there exists a (random) level from which A†
n[∞]∩Zc

M is included
in the cone C α

ε .

Proposition 2.2 actually is a refined version of Theorem 4.1 of [5] which states the same
result but for α = 1 (i.e. for a wider cone). So only a short proof of Proposition 2.2 is
given in the Appendix, focusing on the differences due to the use of the thinner cone C α

ε , with
α ∈ (1 − 1/d, 1). However this refinement (using C α

ε instead of C 1
ε ) is required here to get

Theorem 1.3–and then our main result Theorem 1.1–as explained at the end of Section 2.3.

2.2 Two couplings

Let n ≥ 1 and M ′ > M . In this section, we detail two different couplings allowing to construct
both aggregates A†

n[M ] and A†
n[M ′] on the same probability space in such a way that

A†
n[M ] ⊂ A†

n[M ′] a.s. (2.2)

The first one, called the natural coupling, will be used intensively in Section 3 to describe the
chains of changes. It has been introduced in [6]. In this paper, we will require a variant of
the natural coupling, called the special coupling, ensuring a special property (⋆) (see below) in
addition to 2.2. The special coupling will be used in Section 2.3 to get Theorem 1.3. Hence, we
first recall the natural coupling in details and thus its variant.
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Let us begin by describing the natural coupling. Let κ := ∑
z∈HM′ #Nz([0, n]) be the total

number of particles sent from HM ′ during the time interval [0, n]. Let us build two sequences
of aggregates (Ai)0≤i≤κ and (Bi)0≤i≤κ such that

for all 0 ≤ i ≤ κ, Ai ⊂ Bi and Aκ = A†
n[M ], Bκ = A†

n[M ′] .

We proceed by induction on i ∈ J0, κK by sorting the κ particles according to their starting times
(from time 0 to n). When i = 0 (no particles have been emitted), we have that A0 = B0 = ∅.
Now, suppose i ≥ 0 and Ai ⊂ Bi and let us say that the (i + 1)-th particle is sent from a source
z ∈ HM ′ .

• If z ∈ HM ′ \HM then the (i + 1)-th particle only contributes to Bi. It adds a random site
x to Bi while Ai remains unchanged:

Ai+1 := Ai ⊂ Bi ⊂ Bi ∪ {x} =: Bi+1.

• If z ∈ HM , the (i + 1)-th particle contributes to both aggregates. Since Ai ⊂ Bi, it exits
Ai before Bi, and adds a random site x to Ai. Now, we must consider two cases.

– If x /∈ Bi, then x is added to Bi. Hence,

Ai+1 := Ai ∪ {x} ⊂ Bi ∪ {x} =: Bi+1 .

– If x ∈ Bi, then the (i+1)-th particle does not exit Bi in x, and continues its trajectory
until exiting Bi on some site x′ ̸= x. In this case,

Ai+1 := Ai ∪ {x} ⊂ Bi ⊂ Bi ∪ {x′} =: Bi+1 .

Let us now detail the special coupling. The total number of particles sent from HM ′ during
[0, n] is still denoted by κ and, as before, we build two sequences of aggregates (Ãi)0≤i≤κ and
(B̃i)0≤i≤κ by induction on i ∈ J0, κK. Our construction will ensure that

for all 0 ≤ i ≤ κ, Ãi ⊂ B̃i and Ãκ = A†
n[M ], B̃κ

law= A†
n[M ′] ,

while also ensuring that the following condition holds, for any 0 ≤ i ≤ κ:

(⋆) Any element x ∈ B̃i\Ãi is produced by a particle emitted from a source in HM ′ \HM .

Let us build the Ãi’s and B̃i’s. When i = 0, we have that Ã0 = B̃0 = ∅. Let us assume for some
i ≥ 0 that Ãi ⊂ B̃i, and that they both satisfy condition (⋆). Let us say that the (i + 1)-th
particle is sent from a source z ∈ HM ′ (and moves according to a random walk Sz).

• If z ∈ HM ′ \HM then the (i + 1)-th particle only contributes to Bi. As for the natural
coupling, it adds a random site x to Bi while Ai remains unchanged:

Ãi+1 := Ãi ⊂ B̃i ⊂ B̃i ∪ {x} =: B̃i+1

and the couple (Ãi+1, B̃i+1) still satisfies (⋆).

• If z ∈ HM , the (i + 1)-th particle contributes to both aggregates. Since Ãi ⊂ B̃i, it exits
Ãi before B̃i, and adds a random site x to Ãi. Once again, we consider two cases.

10



– If x /∈ B̃i then we proceed as for the natural coupling: x is also added to B̃i which
again implies

Ãi+1 := Ãi ∪ {x} ⊂ B̃i ∪ {x} =: B̃i+1 .

The couple (Ãi+1, B̃i+1) still satisfies (⋆) since the just added site x belongs to Ãi+1
and B̃i+1.

– If x ∈ B̃i\Ãi, then thanks to condition (⋆), the site x was reached by a particle (say
with index i′ < i) originating from some source z′ ∈ HM ′\HM (and moving according
to a random walk Sz′). Then, the (i + 1)-th particle settles at x, wakes up the i′-th
particle which continues its trajectory (according to Sz′) until exiting B̃i on some
site y. In this case,

Ãi+1 := Ãi ∪ {x} ⊂ B̃i ⊂ B̃i ∪ {y} =: B̃i+1 .

Note that the couple (Ãi+1, B̃i+1) satisfies (⋆) since y, which is a discrepancy between
Ãi+1 and B̃i+1, has been produced by a particle sent from HM ′ \HM .

To conclude, let us remark that in both couplings, the aggregates Ai and Ãi are built in the
same way. They are a.s. equal and then Ãκ = Aκ = A†

n[M ]. This is not the case for the B̃i’s:
even if B̃i = Bi, the site y added following the random walk Sz′ could be different from the site
x′ added following Sz. However, in distribution, they are equal:

B̃κ
law= Bκ = A†

n[M ′]

since the trajectory used to add the site y to B̃i is the concatenation of Sz from the source z to
x, thus Sz′ after x. This trajectory is a random walk.

−M ′ M ′
z z′

0−M M
+ + + ++ + +

x

yx′

Sz′Sz

A†
n[M ′]

A†
n[M ]

Figure 4: The aggregates A†
n[M ] and A†

n[M ′] are represented in dark and light gray. The
trajectories of random walks Sz and Sz′ are respectively depicted in green and red. In the
natural coupling, the site x′ is added to B̃i using solely Sz whereas in the special coupling, the
site y is added to B̃i using first Sz until exiting Ãi = Ai and then Sz′ . We highlight in blue the
actual path that is realized when doing so.

2.3 Proof of Theorem 1.3

Let n ≥ 1. Our goal is to prove that there exists a positive constant C = C(n, d) such that for
any M, L ≥ 1,

P
(
A†

n[∞] ∩ ZM = A†
n[2M ] ∩ ZM

)
≥ 1 − C

ML
.
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To do it, let us introduce the event

DM :=

 The trajectory of any random walk associated with a particle of A†
n[∞] and starting

from a level greater than 2M does not visit the strip ZM before exiting C α
ε

 .

The event DM has a probability tending to 1 as M → ∞:

Lemma 2.3. For ε > 0 and α ∈ (0, 1), there exists a positive constant C = C(d, n, ε, α) such
that for all M, L ≥ 1,

P (DM ) ≥ 1 − C

ML
.

The proof of Theorem 1.3 works in two steps. We first explain how to conclude from Lemma
2.3 and then we prove this auxiliary result.

Let us pick ε > 0 and α ∈ (1 − 1/d, 1). Let M, L ≥ 1. Let us consider the event GM defined
by

GM :=
{

A†
n[∞] ∩ Zc

M ⊂ C α
ε

}
∩ DM .

Thanks to Proposition 2.2 and Lemma 2.3, there exists a positive constant C = C(d, n, ε, α)
such that P(GM ) ≥ 1 − CM−L. Given M ′ > 2M , we consider the aggregates A†

n[2M ] and
A†

n[M ′] under the special coupling. Hence, a.s. A†
n[2M ] is included in A†

n[M ′] and any element
x in A†

n[M ′]\A†
n[2M ] is produced by a particle emitted from a source in HM ′ \H2M thanks to

the condition (⋆). On the event GM , the random walk associated to this particle necessarily
exited C α

ε before reaching ZM , and hence necessarily exited A†
n[M ′] before reaching ZM . This

means that, on the event GM , both aggregates A†
n[2M ] and A†

n[M ′] coincide on ZM and leads
to

P
(
A†

n[M ′] ∩ ZM = A†
n[2M ] ∩ ZM

)
≥ 1 − C

ML
, ∀M ′ > 2M . (2.3)

The key argument here is the special coupling which ensures that any discrepancy between both
aggregates is due to a single particle and not to a chain of changes.

We can now conclude. On the one hand, thanks to (2.3),

lim inf
M ′→∞

P
(
A†

n[M ′] ∩ ZM ⊂ A†
n[2M ] ∩ ZM

)
≥ 1 − C

ML
.

On the other hand, the infinite aggregate A†
n[∞] being the limit of the increasing sequence

(A†
n[M ′])M ′ (thanks to the natural coupling), we have

lim
M ′→∞

P
(
A†

n[M ′] ∩ ZM ⊂ A†
n[2M ] ∩ ZM

)
= P

(
A†

n[∞] ∩ ZM ⊂ A†
n[2M ] ∩ ZM

)
.

As a consequence, we can write

P
(
A†

n[∞] ∩ ZM ⊂ A†
n[2M ] ∩ ZM

)
≥ 1 − C

ML

and the same holds for P(A†
n[∞]∩ZM = A†

n[2M ]∩ZM ) since A†
n[2M ] ⊂ A†

n[∞] with probability
1. This concludes the proof of Theorem 1.3.

Proof of Lemma 2.3. Let ε > 0, α ∈ (0, 1) and M, j ≥ 1. Let us set

EM,j :=

 At least one random walk starting from Ann(M, j)

visits the strip ZM before exiting C α
ε


12



where Ann(M, j) := H(j+2)M \H(j+1)M . Hence, the event Dc
M is equal to ∪j≥1EM,j and we

focus on bounding each term P(EM,j).
As in the proof of Theorem 1.2 of [5], our strategy consists in building donuts from level

(j + 1)M down to level M , symmetric w.r.t. the hyperplane H and containing the cone C α
ε

(restricted to Z(j+1)M \ZM ). The largest donut is the one built at level (j + 1)M . Its width is
equal to 2ε((j + 1)M)α and all the following donuts have smaller sizes. Therefore, the number
of donuts ko = ko(j, M, ε, α) we can build from level (j + 1)M to level M verifies

ko ≥ (j + 1)M − M

2ε(j + 1)αMα
≥ (jM)1−α

4ε
, (2.4)

where the last inequality is due to (j + 1)α ≤ 2j.
We know that if a random walk sent from a level greater than (j + 1)M reaches the strip

ZM while staying inside the cone C α
ε , it necessarily crossed over the ko donuts previously built.

The probabilistic cost to cross any given donut while staying inside the cone is at most 1 − c
with c := (2d)−2. So the probability for such random walk to cross the ko donuts before exiting
C α

ε is at most (1 − c)ko . See Proposition 3.1 of [5] for details.
Besides, let us denote by N

(j)
tot = N

(j)
tot (d, n, M, j) the total number of particles sent from

Ann(M, j) during the time interval [0, n]:

N
(j)
tot :=

∑
z∈Ann(M,j)

Nz([0, n]) .

The next result allows us to bound from above N
(j)
tot with high probability.

Lemma 2.4. Let M, j ≥ 1 and set CM,j := #Ann(M, j). Then,

P
(
N

(j)
tot > 2nCM,j

)
≤ exp

(
−c0jd−2Md−1

)
,

where c0 = c0(d, n) denotes a positive constant.

Proof of Lemma 2.4. The searched inequality is a direct consequence of the concentration in-
equality for Poisson variables (2.5) stated below, applied to N

(j)
tot which is distributed as a

Poisson random variable with parameter nCM,j and to the fact that CM,j is of order jd−2Md−1.
If X is a Poisson random variable of parameter λ > 0, then for any t ≥ 0, the following

holds:
P (X − E [X] ≥ t) ≤ exp

(
− t2

2
(
λ + t

3
)) . (2.5)

All the ingredients are gathered, we can compute:

P(EM,j) ≤ P
(
EM,j ∩

{
N

(j)
tot ≤ 2nCM,j

})
+ P

(
N

(j)
tot > 2nCM,j

)
≤

2nCM,j∑
i=1

P
({

walk i visits ZM before exiting C α
ε

})
+ exp

(
− c0jd−2Md−1)

≤
2nCM,j∑

i=1
P
({

walk i crosses ko donuts before exiting C α
ε

})
+ exp

(
− c0jd−2Md−1)

≤ 2nCM,j(1 − c)ko + exp
(

− c0jd−2Md−1) .
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Thus, (2.4) leads to

2nCM,j(1 − c)ko ≤ C1Md−1(j + 1)d−2 exp
(

− C2(jM)1−α)
where C1, C2 are positive constants depending only on d, n, ε. Summing over j ≥ 1, we get

P
( ⋃

j≥1
EM,j

)
≤
∑
j≥1

P(EM,j) ≤
∑
j≥1

C1Md−1(j + 1)d−2 exp
(

− C2(jM)1−α)
+
∑
j≥1

exp
(

− c0jd−2Md−1) .

Since 1 − α > 0, both terms of the upper bound above are summable and decrease faster than
any power of M−1, which concludes the proof.

Remark that the previous conclusion holds only if d ≥ 3. When d = 2, we have to proceed
slightly differently. Each Ann(M, j) has the same cardinality, equal to M . So, in the previous
computation, it suffices to intersect the event EM,j with {N

(j)
tot ≤ 2nMjβ} (for some β > 0) since

(2.5) allows to bound the probability of {N
(j)
tot > 2nMjβ} by exp(−c′Mjβ)–which is summable

w.r.t. j and M .

Theorem 4.1 of [5] is a weaker version of Proposition 2.2: it gives the same result but in the
particular case of a linear cone C 1

ε , i.e. with α = 1. Taking α = 1 in the computation (2.4)
leads to a constant number of donuts ko (no longer depending on j, M) which prevents us to
conclude as above. Hence, in [5], in order to get sufficiently many donuts to make unlikely the
crossing to ZM for particles coming far away, we required more space. This argument led to a
stabilization result (Theorem 1.2 of [5]) weaker than our Theorem 1.3 since it claimed that we
need to go above levels Mγ , γ > 1, to stabilize A†

n[∞] ∩ ZM .
However, to apply with success the multiscale argument of Section 4, we need a stabilization

result for A†
n[∞] ∩ ZM requiring a linear number of levels of M (rather than Mγ). This is why

we had to improve the stabilization result Theorem 1.2 of [5] into Theorem 1.3. This justifies
the use of the thinner cone C α

ε leading to the refined global upper bound Proposition 2.2.

3 From chains of changes to percolation models
To get the stabilization result Theorem 1.1, we proceed by contradiction by assuming the
Absurd hypothesis (1.6) that we recall now: there exist positive integers n0, K0 (fixed for the
whole section) such that

∀N0, ∃N ≥ N0, Fn0 [N ] ∩ ZK0 ̸= Fn0 [N0] ∩ ZK0

occurs with positive probability.
In section 3.1, we use a space-time representation of a chain of changes between the forests

Fn0 [N0] and Fn0 [N ] to describe the propagation of discrepancies between the corresponding
aggregates A†

n0 [N0] and A†
n0 [N ]. In Section 3.2, a percolation model Σ with good properties

(Lemmas 3.1 and 3.2) is introduced. Under the Absurd hypothesis, we prove that Σ percolates
in the sense that it contains an infinite descending chain with positive probability. Finally, in
Section 3.3, we take advantage of the monotonicity in time of such infinite descending chain
in order to state that it actually appears instantaneously. The final result of Section 3 is
summarized in Proposition 3.4 saying that a discrete Boolean model Σ̂ε percolates even if its
intensity tends to 0 with ε → 0.

For z ∈ H and r ∈ N, let us set B(z, r) := z + Hr the (d − 1)-dimensional ball, included in
H, centered at z and with radius r (for the infinity norm). We also denote by pH : Zd → H the
orthogonal projection onto the hyperplane H.
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3.1 A space-time representation of chains of changes

Let (N0, N), with N ≥ N0, a couple of integers such that the forests Fn0 [N ] and Fn0 [N0] do not
coincide on the strip ZK0 . From now on, we consider their vertex sets, namely the aggregates
A†

n0 [N ] and A†
n0 [N0], under the natural coupling defined in Section 2.2, i.e. satisfying a.s. the

inclusion A†
n0 [N0] ⊂ A†

n0 [N ]. A (random) space-time couple (z, t) where z is a source with
∥z∥ ≤ N and t ∈ [0, n0] is a ‘top’ of the ppp Nz, is called a starting point. It means that, at
time t, a particle using the random walk Sz,t = (Sz,t(k))k≥0 and launched from the source z,
contributes to the construction of A†

n0 [N ]–and also of A†
n0 [N0] if ∥z∥ ≤ N0. As explained in

the introduction, the difference between both forests Fn0 [N ] and Fn0 [N0] inside ZK0 is due to
a chain of changes, i.e. a sequence of κ ≥ 1 particles coming from starting points (zi, ti)1≤i≤κ

satisfying the following conditions:

N0 < ∥z1∥ ≤ N and ∥zi∥ ≤ N0, for 2 ≤ i ≤ κ

0 < t1 < t2 < · · · < tκ < n0

for 1 ≤ i ≤ κ − 1, the i-th particle is relayed by the (i + 1)-th one

the κ-th particle exists A†
t−
κ

[N ] through ZK0

(3.1)

Recall that ‘the i-th particle is relayed by the (i + 1)-th one’ means that the discrepancy
xi ∈ A†

ti
[N ]\A†

ti
[N0] created by the i-th particle at time ti, is visited by the (i+1)-th particle at

time ti+1, which contributes to both aggregates. So, at time ti+1, xi is now longer a discrepancy
and is replaced with a new one xi+1 ∈ A†

ti+1 [N ] \ A†
ti+1 [N0] which actually is the site at which

the (i + 1)-th particle settles when it exits the current aggregate A†
t−
i+1

[N ].
Associated with a given starting point (z, t) and with the corresponding particle, we define

the radius RN (z, t) as follows:

RN (z, t) := min
{
r ∈ N : B(z, r) contains pH(Sz,t(0)), pH(Sz,t(1)), . . . , pH(Sz,t(τ))

}
where

τ = τ(z, t, N) := min{k : Sz,t(k) /∈ A†
t− [N ]}

denotes the time at which the particle moving according to Sz,t exits the current aggregate
A†

t− [N ]. In other words, the ball B(z, RN (z, t)) contains the part of the projected trajectory
pH(Sz,t) until Sz,t exits A†

t− [N ]. It is worth pointing out here that RN (z, t) only depends on
the random walk Sz,t and the current aggregate A†

t− [N ].
Now, let us come back to the sequence of κ ≥ 1 particles satisfying (3.1). The fact that the

i-th particle is relayed by the (i + 1)-th one means that

B(zi, RN (zi, ti)) ∩ B(zi+1, RN (zi+1, ti+1)) ̸= ∅ .

Figure 5 properly illustrates our argument. On the left hand side, aggregates A†
n[N0] and

A†
n[N ] are respectively in dark and light gray–the first one being included in the second one

according to the natural coupling. The trajectory of the first particle, starting at (z1, t1), is
depicted in red. Since ∥z1∥ > N0, it works only for the larger aggregate and creates a first
discrepancy x1. The trajectory of the second particle, starting at (z2, t2), is depicted in black
and green. This particle works for both aggregates until it visits x1 for the first time (the black
path): x1 is then added to the smaller aggregate and is no longer a discrepancy. Thus, the second
particle continues its trajectory (the green path) but now working only for the larger aggregate:
it creates a new discrepancy x2 between both aggregates. Note that the radii RN (z1, t1) and
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H

RN (z1, t1)

RN (z2, t2)

(z1, t1)

(z2, t2)

H

time

0

−
−

−

−

n
t3

t2

t1

+
z1

(z1, t1)
RN (z1, t1)

+
z2

(z2, t2) RN (z2, t2)

+
z3

(z3, t3) RN (z3, t3)

Figure 5: Representations of a chain of changes

RN (z2, t2) are represented on the left hand side of Figure 5. The hatched area emphasizes the
fact that the balls B(z1, RN (z1, t1)) and B(z2, RN (z2, t2)) overlap.

This phenomenon is perhaps better visualized in the right hand side of Figure 5 where the
extra time parameter is taken into account. Remark that not only the colored rectangles have
to intersect, but they need to do so with respect to increasing times. This additional constraint
will turn out to be crucial in our proof.

Conclusion. Given (N0, N) such that the forests Fn0 [N ] and Fn0 [N0] do not coincide on
ZK0 , we can assert that there exists a sequence of κ ≥ 1 particles coming from starting points
(zi, ti)1≤i≤κ and satisfying the following conditions:

N0 < ∥z1∥ ≤ N and ∥zi∥ ≤ N0, for 2 ≤ i ≤ κ

0 < t1 < t2 < · · · < tκ < n0

for 1 ≤ i ≤ κ − 1, B(zi, RN (zi, ti)) ∩ B(zi+1, RN (zi+1, ti+1)) ̸= ∅

B(zκ, RN (zκ, tκ)) ∩ ZK0 ̸= ∅

(3.2)

At this stage, the radii RN (zi, ti)’s we consider are far from easy to handle, as the law
of RN (zi, ti) strongly depends on the shape of A†

ti
[N ] as well as the starting point (zi, ti),

which is random. Consequently, the radii RN (zi, ti)’s are neither independent, nor identically
distributed. To overcome this latter obstacle, we will replace in the next section the aggregate
A†

t−
i

[N ] involved in the definition of RN (zi, ti) with the larger aggregate A†
T [∞] (with T ≥ n0)

whose distribution is translation invariant.
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3.2 Existence of infinite descending chains under the Absurd hypothesis
Let T ≥ n0. Associated to the starting point (z, t), with z ∈ H and t ∈ [0, n0], let us introduce
the random radius R((z, t), T ) defined by

R((z, t), T ) := min
{
r ∈ N : B(z, r) contains pH(Sz,t(0)), pH(Sz,t(1)), . . . , pH(Sz,t(τ ′))

}
where

τ ′ = τ ′(z, t, N) := min{k : Sz,t(k) /∈ A†
T [∞]}

denotes the time at which the particle moving according to Sz,t exits the infinite aggregate
A†

T [∞]. The new radius R((z, t), T ) is defined similarly as RN (z, t), but we are now considering
the trajectory of Sz,t until it exits A†

T [∞] rather than A†
t− [N ]. Growing the aggregate both in

time and space, from A†
t− [N ] to A†

T [∞], we then a.s have

RN (z, t) ≤ R((z, t), T ) .

Hence, given (N0, N) such that the forests Fn0 [N ] and Fn0 [N0] do not coincide on ZK0 , we
get the existence of a sequence of κ ≥ 1 particles coming from starting points (zi, ti)1≤i≤κ and
satisfying the following conditions:

N0 < ∥z1∥

0 < t1 < t2 < · · · < tκ < n0

for 1 ≤ i ≤ κ − 1, B(zi, R((zi, ti), T )) ∩ B(zi+1, R((zi+1, ti+1), T )) ̸= ∅

B(zκ, R((zκ, tκ), T )) ∩ ZK0 ̸= ∅

(3.3)

So, we now consider the space-time percolation model Σ = Σ(n0, T ) defined as the collection
of balls B(z, R((z, t), T )), for any starting point (z, t) with z ∈ H and t ∈ [0, n0]. Note also
that considering larger radii, i.e. replacing RN (z, t) with R((z, t), T ), all dependency on the
parameter N disappears in (3.3) and this allows us to take advantage of the stationarity property
of A†

T [∞], which will greatly facilitate the study of Σ.
In the rest of this section, we state two properties about the percolation model Σ; a finite

moment property for its radii (Lemma 3.1) and a finite degree property (Lemma 3.2).

Let us start by introducing the random radius RT (z), for z ∈ H and T ≥ n0, defined as

RT (z) := max
t∈Nz([0,T ])

R((z, t), T ) (3.4)

where Nz denotes the ppp with intensity 1 associated to the source z. Also, t ∈ Nz([0, T ]) means
that t is a ‘top’ of the ppp Nz occurring in [0, T ]. Since the aggregate A†

T [∞] is translation
invariant in distribution (w.r.t. translations of H, see Proposition 2.1) then all the radii RT (z),
z ∈ H, have the same distribution. Setting RT := RT (0), the next result states that the RT (z)’s
admit finite moments.

Lemma 3.1. Let T ≥ n0 and L > 0 be real numbers. There exists a constant C > 0 such that
for any integer M ,

P
(
RT ≥ M

)
≤ CM−L .

In particular E[(RT )k] is finite for any integer k.
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Proof. Let M ≥ T be an a positive integer, fix α ∈ (1 − 1/d, 1). Let us first write:

P
(
RT ≥ 2M

)
≤ P

(
RT ≥ 2M, #N0([0, T ]) ≤ M, Over†

α(M, T, ε)c
)

+ P (#N0([0, T ]) > M) + P
(
Over†

α(M, T, ε)
)

, (3.5)

where Over†
α(M, T, ε) := {A†

T [∞] ∩ Zc
M ̸⊂ C α

ε }. We know from Proposition 2.2 that the
probability of Over†

α(M, T, ε) is smaller than any power of M−1 provided M is sufficiently
large. Additionally, we also know that P (#N0([0, T ]) > M) decreases faster than any power of
M−1, given M is large enough. It then remains to focus on the first term of (3.5). Hence,

P
(
RT ≥ 2M, #N0([0, T ]) ≤ M, Over†

α(M, T, ε)c
)

= P
(
∃t ∈ N0([0, T ]), R((0, t), T ) ≥ 2M, #N0([0, T ]) ≤ M, Over†

α(M, T, ε)c
)

≤ E

 ∑
t∈N0([0,T ])

1R((0,t),T )>2M1#N0([0,T ])≤M1Over†
α(M,T,ε)c


= E

1#N0([0,T ])≤M

∑
t∈N0([0,T ])

P
(
R((0, t), T ) > 2M, Over†

α(M, T, ε)c | N0([0, T ])
) .

Now, the event {R((0, t), T ) > 2M} implies that the random walk traveled a distance at least
2M , and in particular, that it traveled from levels M to 2M , while staying contained inside
A†

T [∞]. Now, working on Over†
α(M, T, ε)c implies that AT [∞] is contained inside C α

ε above
levels M . Hence working on both events implies that the random walk traveled from level M
to level 2M , all while staying contained inside C α

ε . By taking j = 1 in (2.4), we know that the
number of boxes between levels M and 2M , denoted by ko, is such that

ko ≥ (2M)1−α

4ε
= M1−α

21+αε
.

Hence, using a box argument similar to the one used in the proof of Theorem 1.3, we can show
that:

∑
t∈N0([0,T ])

P
(
R((0, t), T ) > 2M, Over†

α(M, T, ε)c | N0([0, T ])
)

≤
∑

t∈N0([0,T ])

(
1 − 1

4d2

)ko

= #N0([0, T ]) exp
(
−c0M1−α

)
,

where c0 = − 1
21+αε

ln
(
1 − 1

4d2

)
> 0. Hence,

P
(
RT ≥ 2M, #N0([0, T ]) ≤ M, Over†

α(M, T, ε)c
)

≤ E
[
#N0([0, T ])e−c0M1−α

1#N0([0,T ])≤M

]
≤ M exp(−c0M1−α) ,

which decreases faster than any power of M−1. Finally, we have proved that P(RT ≥ 2M)
decreases faster than any power of M−1 from which one easily concludes.

Lemma 3.1 paves the way to a finite degree property for the percolation model Σ = Σ(n0, T ).
Precisely, any given ball B(z, R((z, t), T )) of Σ overlaps only a finite number of other balls
B(z′, R((z′, t′), T )) of Σ, with probability 1.
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Lemma 3.2. Let T ≥ n0 and z ∈ H. Then, with probability one, for any starting point
(z, t) with t ≤ n0, the number of starting points (z′, t′), with z′ ∈ H and t′ ≤ n0, such that
B(z, R((z, t), T )) ∩ B(z′, R((z′, t′), T )) ̸= ∅ is finite.

Proof. Since the radius RT (z) is by definition larger than any R((z, t), T )–see (3.4)–it is enough
to prove that a.s.

#
{
z′ ∈ H : B(z, RT (z)) ∩ B(z′, RT (z′)) ̸= ∅

}
< ∞ .

Thus using the translation invariance property of the RT (z)’s, it is also enough to state that
the expectation

E
[
#
{
z ∈ H : B(0, RT (0)) ∩ B(z, RT (z)) ̸= ∅

}]
is finite. This follows from the next computation:

E
[
#
{
z ∈ H : B(0, RT (0)) ∩ B(z, RT (z)) ̸= ∅

}]
= E

[ ∑
z∈H

1RT (0)+RT (z)≥∥z∥
]

=
∑
z∈H

P
(
RT (0) + RT (z) ≥ ∥z∥

)
≤

∑
z∈H

P
(
{RT (0) ≥ ∥z∥/2} ∪ {RT (z) ≥ ∥z∥/2}

)
≤ 2

∞∑
ℓ=0

∑
∥z∥=ℓ

P
(
RT (0) ≥ ∥z∥/2

)
≤ Cd

∞∑
ℓ=0

ℓd−2 P
(
RT (0) ≥ ℓ

)
.

This latter sum is finite thanks to Lemma 3.1.

Conclusion. Let us interpret the percolation model Σ as the (undirected) graph G whose
vertex set is given by the starting points (z, t), with z ∈ H and t ≤ n0 and whose edge set is made
of pairs {(z, t), (z′, t′)} such that the corresponding balls B(z, R((z, t), T )) and B(z′, R((z′, t′), T ))
overlap. Lemma 3.2 asserts that each vertex of the graph G almost surely has a finite degree.

Now, combining this finite degree property with the Absurd hypothesis, we get the existence
of an infinite descending chain. Let us explain why. Recall that T ≥ n0 and K0 are fixed
parameters. The Absurd hypothesis says that, with positive probability, for any integer N0,
there exists a sequence of κ = κ(N0) ≥ 1 particles satisfying (3.3). With each of these sequences
can be associated a cluster in the percolation model Σ = Σ(n0, T ) joining the outside of ZN0 to
ZK0 whose centers have increasing times. Roughly speaking, these sequences connect the strip
ZK0 to regions as far as desired through the percolation model Σ. Then, using the finite degree
property and proceeding step by step, we can extract an infinite sequence of starting points
((zi, ti))i≥1 such that

∥zi∥ → ∞

for any index i, 0 < ti+1 < ti < n0

for any index i, B(zi, R((zi, ti), T )) ∩ B(zi+1, R((zi+1, ti+1), T )) ̸= ∅

B(z1, R((z1, t1), T )) ∩ ZK0 ̸= ∅

(3.6)

Note that, w.r.t. (3.3), we have reversed the indices of the time sequence (ti)i≥1. On the one
hand, this sequence of starting points ((zi, ti))i≥1 is infinite and means that Σ percolates since
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it contains an unbounded cluster. On the other hand, it is also descending since the sequence
of starting times (ti)i≥1 is decreasing.

Let K0 := HK0 . The previous analysis allows us to say that, under the Absurd hypothesis,
the following holds

P
(
Perco(n0, K0, n0)

)
> 0 , (3.7)

where, for any 0 ≤ t ≤ T and any compact set K ⊂ H,

Perco(t, K, T ) :=


∃ a sequence ((zi, ti))i≥1 of starting points s.t. ∥zi∥ → ∞,

B(z1, R((z1, t1), T )) ∩ K ̸= ∅, and for any i ≥ 1, ti+1 < ti < t

and B(zi, R((zi, ti), T )) ∩ B(zi+1, R((zi+1, ti+1), T )) ̸= ∅

 .

In the next section, we will take advantage of the monotonicity of the time sequence (ti)i≥1 to
establish that the infinite descending chain mentioned above appears instantaneously.

3.3 Instantaneous percolation

For T ≥ t ≥ 0, let us set:
Perco(t, T ) :=

⋃
K

Perco(t, K, T ) , (3.8)

where the union above is taken over all compact subsets of H. The event Perco(t, T ) ensures the
existence of an infinite descending chain made up with balls coming from the percolation model
Σ, anchored at some (random) K ⊂ H. The event Perco(t, T ) is monotone w.r.t. parameters t
and T :

Lemma 3.3. Let 0 ≤ t ≤ t′ ≤ T ≤ T ′. Then,

Perco(t, T ) ⊂ Perco(t, T ′) and Perco(t, T ) ⊂ Perco(t′, T ) .

Proof. Let 0 ≤ t ≤ T ≤ T ′. Recall that the infinite aggregate A†
T [∞] corresponds to particles

launched from the whole set of sources H and during the time interval [0, T ]. Hence, A†
T [∞] and

A†
T ′ [∞] can be naturally coupled so that a.s. A†

T [∞] ⊂ A†
T ′ [∞]. This leads to R((zi, ti), T ) ≤

R((zi, ti), T ′) whatever the starting point (zi, ti) with ti ≤ t. So, Perco(t, K, T ) is included in
Perco(t, K, T ′), for any compact set K, and the same holds for Perco(t, T ) and Perco(t, T ′).

The second inclusion is easy to prove. Indeed, replacing t with t′ ≥ t amounts to relax
the upper bound on the decreasing sequence (ti)i≥1 appearing in the event Perco(t, K, T ). So
Perco(t, K, T ) is included in Perco(t′, K, T ), for any K, and the same holds for Perco(t, T )
and Perco(t′, T ).

From now on, we fix T := n0 + 1. Let us introduce the critical percolation time as

tc = tc(T ) := inf
{
0 ≤ t ≤ T : P

(
Perco(t, T )

)
> 0

}
∈ [0, T ] .

Combining to the monotone property given by Lemma 3.3, we can then write: P (Perco(t, T )) = 0 for any 0 ≤ t < tc,

P (Perco(t, T )) > 0 for any tc < t ≤ T.
(3.9)
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Both statements of (3.9) become meaningful provided the critical percolation time tc is non-
trivial, i.e. different from 0 and T . This is where the Absurd hypothesis steps in since (3.7) and
Lemma 3.3 imply that

P
(

Perco(n0, T )
)

≥ P
(

Perco(n0, n0)
)

≥ P
(

Perco(n0, K0, n0)
)

> 0

that is to say
tc ≤ n0 < T . (3.10)

Actually, the condition tc < T–ensured by the Absurd hypothesis–leads to a phenomenon of
instantaneous percolation for the percolation model Σ that we describe below.

Let us first assume that the critical percolation time tc is positive. The case tc = 0 is similar
and will be treated after. Hence for any ε > 0 small enough (i.e. such that tc − ε ≥ 0 and
tc + ε ≤ T ), we have P(Perco(tc + ε, T )) > 0 while P(Perco(tc − ε, T )) = 0 by (3.9), meaning
that

P
(

Perco(tc + ε, T )\Perco(tc − ε, T )
)

> 0 .

Let us analyze what happens on the event Perco(tc + ε, T )\Perco(tc − ε, T ). First of all, the
event Perco(tc + ε, T ) asserts the existence of an infinite descending chain in Σ associated to
a sequence of starting points ((zi, ti))i≥1 with, for any i ≥ 1, ti+1 < ti < tc + ε. Besides, the
event Perco(tc − ε, T )c forces all the ti’s to be larger than tc − ε. Otherwise there would exist
some index i0 such that ti0 < tc − ε. In that case, one would have an infinite descending chain
associated to the sequence of starting points ((zi, ti))i≥i0 anchored at B(zi0 , R((zi0 , ti0), T )) and
such that for any i, ti+1 < ti ≤ ti0 < tc − ε, meaning that Perco(tc − ε, T ) actually occurs. In
conclusion, the sequence of starting points ((zi, ti))i≥1 satisfies tc − ε < ti+1 < ti < tc + ε for
any index i. This means that this infinite descending chain appears entirely during the time
interval [tc − ε, tc + ε], with length 2ε, for ε > 0 arbitrarily small. This is why we talk about
instantaneous percolation. Let us emphasize that the previous argument works because the
radii R((zi, ti), T )’s remain the same in both events Perco(tc − ε, T ) and Perco(tc + ε, T ) since
they have the same second parameter T .

In the particular case tc = 0, we know that there is no percolation at the critical time tc

since no particles have been launched yet. So we apply the previous analysis with tc + ε = ε
and tc − ε replaced with 0. As before, an infinite descending chain appears entirely during the
time interval [0, ε], for any small ε > 0.

In order to simplify the argumentation and lighten notations, let us reduce the first case
tc > 0 to the second one tc = 0. Indeed, because the radii R((zi, ti), T )’s remain unchanged
in the events Perco(·, T ), the time interval during which the infinite descending chain entirely
occurs matters in distribution only through its length (the ppp Nz’s have stationary increments).
Henceforth,(

∀ε > 0, P
(

Perco(tc + ε, T )\Perco(tc − ε, T )
)

> 0
)

=⇒
(
∀ε > 0, P

(
Perco(ε, T )

)
> 0

)
.

Conclusion. We have taken advantage of the monotonicity in time of the sequence of
starting points ((zi, ti))i≥1 to state that the corresponding infinite descending chain in the
percolation model Σ appears instantaneously. Precisely, we have proven under the Absurd
hypothesis that

∀ε > 0, P
(

Perco(ε, T )
)

> 0 . (3.11)

We can now forget the time dimension of our model: (3.11) allows us to exhibit a supercritical
discrete Boolean model, denoted by Σ̂ε, whose intensity tends to 0 as ε → 0.
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Let us set, for any source z ∈ H,

Yz := 1#Nz([0,ε])>0 .

So Yz = 1 means that at least one particle has been emitted during the time interval [0, ε]. The
Yz’s are Bernoulli random variables with common parameter

pε := P (Yz = 1) = 1 − e−ε (3.12)

which tends to 0 as ε → 0. By hypothesis on the ppp Nz’s, the random variables Yz, z ∈ H,
are also independent from each other. Let us denote by

χε :=
{
z ∈ H : Yz = 1

}
the random set of emitting sources during the time interval [0, ε]. The set χε can be interpreted
as a discrete ppp on H with intensity pε: it will play the role of the center set for the Boolean
model Σ̂ε. In all that follows, let us keep in mind that when ε → 0 there are very few centers,
and so very few balls, in the Boolean model Σ̂ε.

Thus, for z ∈ H, let us define in the same spirit of (3.4) the radius RT (z; ε) as

RT (z; ε) := max
t∈Nz([0,ε])

R((z, t), T ) .

The only difference between radii RT (z; ε) and RT (z) defined in (3.4) is that RT (z; ε) involves
particles launched during [0, ε] while RT (z) involves particles of [0, T ], so that RT (z; ε) ≤ RT (z)
(and then RT (z; ε) also satisfies the finite moment property of Lemma 3.1). They both refer to
radii R(·, T ) defined from the aggregate A†

T [∞] (with T = n0 + 1).
We are now ready to define the (discrete) Boolean model Σ̂ε by

Σ̂ε :=
⋃

z∈χε

B
(
z, RT (z; ε)

)
.

Statement (3.11) says that, for any ε > 0 and with positive probability, there exists a sequence
of starting points ((zi, ti))i≥1 such that ∥zi∥ → ∞ and, for any i ≥ 1, ti+1 < ti < ε and the balls
B(zi, R((zi, ti), T )) and B(zi+1, R((zi+1, ti+1), T )) overlap. So, the zi’s all belong to χε and the
larger balls B(zi, RT (zi; ε)) and B(zi+1, RT (zi+1; ε)) overlap too. In other words, the Boolean
model Σ̂ε contains an unbounded cluster.

Finally, the argumentation of the whole Section 3 provides the following result:

Proposition 3.4. Under the Absurd hypothesis (1.6), the following holds:

∀ε > 0, P
(
Σ̂ε percolates

)
> 0 . (3.13)

4 A multiscale argument

In this section, we study the (d − 1)-dimensional, discrete Boolean model

Σ̂ε =
⋃

z∈χε

B
(
z, RT (z; ε)

)
,

defined in the previous section, and whose intensity pε tends to 0 as ε → 0. We adapt the
strategy of [11] to our context to state :
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Proposition 4.1. For any ε > 0 small enough, the Boolean model Σ̂ε does not percolate with
probability 1.

To implement the strategy of [11], we need to make our model more local. This is the role
of Σ̂loc

ε defined below. For that purpose, the stabilization result for the infinite aggregate A†
n[∞]

(Theorem 1.3) is an important ingredient to ensure that the localized model Σ̂loc
ε is a good

approximation of Σ̂ε.

Proof of Theorem 1.1. Propositions 3.4 and 4.1 together say that the Absurd hypothesis (1.6)
leads to a contradiction. We then conclude that, with probability 1, there exists N0 such that,
for any N ≥ N0, the forests Fn0 [N ] and Fn0 [N0] coincide on the strip ZK0 . This concludes the
proof of Theorem 1.1.

4.1 The localized Boolean models Σ̂loc
ε

Recall that T = n0 + 1 and ε > 0 is thought to be small. Given a source x ∈ H, we denote by
A†

T [B(x, 20M)] the aggregate A†
T [·] using only sources of B(x, 20M). Associated to the starting

point (z, t), with z ∈ H and t ∈ [0, ε], let us introduce the local radius Rloc
x,M ((z, t), T ) defined

by

Rloc
x,M ((z, t), T ) := min

{
r ∈ N : B(z, r) contains pH(Sz,t(0)), pH(Sz,t(1)), . . . , pH(Sz,t(τ ′′))

}
(4.1)

where
τ ′′ := min{k : Sz,t(k) /∈ A†

T [B(x, 20M)]}

denotes the time at which the particle moving according to Sz,t exits A†
T [B(x, 20M)]. Taking

the maximum over starting points (z, t) with t ∈ Nz([0, ε]), we get

Rloc
T (z; ε) = Rloc

T,x,M (z; ε) := max
t∈Nz([0,ε])

Rloc
x,M ((z, t), T ) .

Let us now define the localized Boolean model Σ̂loc
ε (x, M) which is a version of Σ̂ε localized to

the neighborhood of x:

Σ̂loc
ε = Σ̂loc

ε (x, M) :=
⋃

z∈χε∩B(x,10M)
B
(
z, Rloc

T,x,M (z; ε)
)

.

Unlike Σ̂ε, the localized Boolean model Σ̂loc
ε is local in the following sense. It only uses sources

of χε contained inside B(x, 10M). The radii that it considers depend only on A†
T [B(x, 20M)].

As in [11], we consider the event

Gε(x, M) :=

 The connected component of x in Σ̂loc
ε (x, M) ∪ B(x, M)

is not included in B(x, 8M)

 .

Since our model is translation invariant, we have for any x:

πε(M) := P
(
Gε(0, M)

)
= P

(
Gε(x, M)

)
.

Let us denote by Ĉε(0) the cluster of the source 0 in the discrete Boolean model Σ̂ε whose
diameter diam Ĉε(0) is defined as the minimal integer r such that Ĉε(0) ⊂ B(0, r). The next
two results allow us to conclude.
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Proposition 4.2. There exists a constant C = CT,d > 0 such that for all M, L ≥ 1,

P
(
diam Ĉε(0) ≥ 8M

)
≤ πε(M) + C

ML
.

Proposition 4.3. For any ε > 0 small enough we have

lim inf
M→∞

πε(M) = 0 .

Proof of Proposition 4.1. Taking ε > 0 small enough according to Proposition 4.3, the two
previous results imply that

lim
M→∞

P
(
diam Ĉε(0) ≥ 8M

)
= lim inf

M→∞
P
(
diam Ĉε(0) ≥ 8M

)
≤ lim inf

M→∞
πε(M) = 0 ,

meaning that the source 0 almost surely belongs to a finite connected component in Σ̂ε. This
discrete Boolean model being translation invariant in distribution, we conclude that it a.s.
admits only finite connected components. I.e. Σ̂ε does not percolate with probability 1.

The next two sections are devoted to the proofs of Propositions 4.2 and 4.3.

4.2 Proof of Proposition 4.2

Let us introduce for any M ≥ 1 the event H(M) defined by

H(M) :=
{

each ball of Σ̂ε intersecting B(0, 10M) has a radius smaller than M
}

.

The following lemma gives a control for the probability of H(M).

Lemma 4.4. There exists a positive constant C = C(d, ε) such that for any M, L ≥ 1,

P
(
H(M)c) ≤ C

ML
.

Let us first prove Proposition 4.2 from Lemma 4.4 and in a second step, Lemma 4.4 will be
proven.

Proof of Proposition 4.2. We define the event

G(M) := H(M) ∩
{

A†
T [∞] ∩ Z10M = A†

T [B(0, 20M)] ∩ Z10M

}
.

Now, we use the stabilization result Theorem 1.3 which, combined to Lemma 4.4, provides the
following control on the probability of G(M):

P (G(M)) ≥ 1 − C

ML
,

for some positive constant C and for any M, L ≥ 1. Recalling that πε(M) denotes the probability
of Gε(0, M), it is then sufficient to prove the inclusion:{

diam Ĉε(0) ≥ 8M
}

∩ G(M) ⊂ Gε(0, M) .

Let us assume that the event {diam Ĉε(0) ≥ 8M} ∩ G(M) holds. This implies the existence of
a cluster C of Σ̂ε containing 0 and going beyond B(0, 8M). Each ball of C overlaps B(0, 8M)
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and then has a radius smaller than M thanks to H(M). So they are included in B(0, 10M) and
their centers belong to χε ∩ B(0, 10M).

Given a vertex z, the radii Rloc
T (z; ε) and RT (z; ε) used resp. for Σ̂loc

ε and Σ̂ε are possibly
different since they resp. refer to A†

T [B(0, 20M)] and A†
T [∞]. However, we prove that on the

event {diam Ĉε(0) ≥ 8M} ∩ G(M), these radii are equal for the balls involved in the cluster
C. Indeed, these balls are included in B(0, 10M) and, on G(M), the aggregates A†

T [∞] and
A†

T [B(0, 20M)] coincide on Z10M . So the radii Rloc
T (z; ε) and RT (z; ε) coincide for each center z

of balls involved in C. Therefore, on {diam Ĉε(0) ≥ 8M} ∩ G(M), there exists a cluster of balls
of Σ̂ε such that:

• all these balls have their centers in χε ∩ B(0, 10M);

• all these balls have their radii given by Rloc
T (z; ε);

• the cluster contains 0 and goes beyond B(0, 8M).

Then, this cluster of balls is also a cluster of Σ̂loc
ε and the event Gε(0, M) occurs.

Proof of Lemma 4.4. Fix M, L ≥ 1. Let us introduce the following events:

Inside(M) :=

 There exists a ball of Σ̂ε centered inside B(0, 20M)

that intersects B(0, 10M) with a radius greater than M

 ,

Outside(M) :=

 There exists a ball of Σ̂ε centered outside B(0, 20M)

that intersects B(0, 10M)

 .

Hence, the event H(M)c can be written as the union Inside(M) ∪ Outside(M) and we have
to work with the probability of these two events. We begin by handling the event Inside(M).
Let us write:

P (Inside(M)) = P

 ⋃
z∈χε∩B(0,20M)

{
RT (z; ε) ≥ M

}
≤

∑
z∈B(0,20M)

P (RT (z; ε) ≥ M)

≤ CdMd−1P (RT (0; ε) ≥ M) .

Using Lemma 3.1, P (RT (0; ε) ≥ M) decreases faster than any power of M−1, which handles
this case.

We switch our focus to the event Outside(M) which is trickier to handle since it deals with
an infinite number of particles outside of B(0, 20M). Let us recall the event

Over†
α(10M, T, δ) =

{
A†

T [∞] ∩ Zc
10M ̸⊂ C α

δ

}
introduced in Section 2.1, where

C α
δ =

⋃
ℓ≥0

{
z ∈ Zd, ∥pH(z)∥ = ℓ, |z1| ≤ δℓα

}
.

For δ > 0 and α ∈ (1 − 1/d, 1), we know thanks to the global upper bound Proposition 2.2
that the probability of Over†

α(10M, T, δ) decreases faster than any power of M−1. So we can
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restrict our attention to the event Outside(M) ∩ Over†
α(10M, T, δ)c. The event Outside(M)

provides the existence of a ball of the Boolean model Σ̂ε that intersects B(0, 10M) and whose
center is beyond level 20M . This ball is due to a particle starting (during the time interval
[0, ε]) from a source beyond level 20M and visiting the strip Z10M before exiting the aggregate
A†

T [∞]. Thanks to Over†
α(10M, T, δ)c, we can assert that the random walk associated to that

particle starts from a level greater than 20M and visits Z10M before exiting the cone C α
δ . This

implies the event Dc
10M introduced in Section 2.3 whose probability is smaller than any power

of M−1 thanks to Lemma 2.3. This concludes the proof.

4.3 Proof of Proposition 4.3

This section is an adaptation of [11]. Lemmas 4.5 and 4.6 together imply, by induction, that
πε(10nM) → 0 as n → ∞ for some M and ε small enough. Lemma 4.5 is the induction step,
allowing to go from scale 10nM to 10n+1M , while Lemma 4.6 is the base step.

Lemma 4.5. There exist positive constants c = c(d) and C = C(T, d) such that for any
M, L ≥ 1,

πε(10M) ≤ cπε(M)2 + C

ML
.

Lemma 4.6. There exists a positive constant C ′ = C ′(d) such that for all M ≥ 1 and all ε > 0:

πε(M) ≤ εC ′Md−1 .

Let us prove Proposition 4.3 from Lemmas 4.5 and 4.6.

Proof of Proposition 4.3. This is an adaptation of Lemma 3.7 of [11]. Setting f(M) := cπε(M)
and g(M) := 10cC/M , Lemma 4.5 provides

f(10M) ≤ f(M)2 + g(10M) . (4.2)

Since g(M) → 0, we can pick M0 such that, for any M ≥ M0, g(M) ≤ 1/4. Thus, using
Lemma 4.6, there exists ε0 = ε0(M0) > 0 small enough such that, for ε ≤ ε0 and M ≤ M0,

f(M) = cπε(M) ≤ cε0C ′Md−1
0 ≤ 1/2 .

So, the function f is bounded by 1/2 on the interval (0, M0]. Let us first extend this bound
on (M0, 10M0]. To do it, let us fix ε ∈ (0, ε0). Thanks to (4.2), we can write for any M ∈
(M0, 10M0]:

f(M) ≤ f(M/10)2 + g(M) ≤
(1

2
)2

+ 1
4 = 1

2 .

Iterating this argument, we prove by induction that f(M) ≤ 1/2 for any M > 0.
As a consequence, we deduce from (4.2) that, for any M > 0,

f(10M) ≤ 1
2f(M) + g(10M) ≤ 1

2 + g(10M) ,

from which is not difficult to get, once again by induction, that the following holds for any
integer n,

f(10nM) ≤ 1
2n

+ g(10nM) + g(10n−1M)
2 + . . . + g(10M)

2n−1 . (4.3)

Henceforth, using (4.3) and g(10nM) → 0 as n → ∞, we prove that f(10nM) tends to 0 as
n → ∞, which is the searched result.
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Proof of Lemma 4.4. Let us first consider the event F (M) defined by

F (M) := {∀z ∈ χε ∩ B(0, 100M), RT (z; ε) ≤ M}

for which, any ball of Σ̂ε centered at some z ∈ χε ∩ B(0, 100M) has a radius RT (z; ε) smaller
than M . Since these radii are identically distributed and satisfy Lemma 3.1), the event F (M)
is very likely. There exists a constant C > 0 such that for any M, L ≥ 1,

P
(
F (M)c) ≤ C

ML
. (4.4)

Besides, for M ≥ 1, let us consider the event

Stab(0, 100M) :=
⋂

z∈B(0,100M)
StabM (z)

where, for any z ∈ H,

StabM (z) :=

 A†
T [B(z, 20M)] ∩ (Z × B(z, 10M)) = A†

T [S] ∩ (Z × B(z, 10M)) ,

for any S ⊂ H such that B(z, 20M) ⊂ S.

 .

In particular, StabM (0) means that A†
T [B(0, 20M)] (also denoted by A†

T [20M ] for short) and
A†

T [S] coincide on Z10M , for any H20M ⊂ S ⊂ H. Let us prove that there exists a constant
C > 0 such that for any M, L ≥ 1,

P
(

Stab(0, 100M)c) ≤ C

ML
. (4.5)

Let us start by writing, using translation invariance of the aggregates A†
T [·],

P
(

Stab(0, 100M)c) ≤
∑

z∈B(0,100M)
P
(

StabM (z)c) ≤ c(100M)d−1P
(

StabM (0)c) .

So it is sufficient to show that StabM (0)c has a probability decreasing faster than any power of
M−1. The Aggregate stabilization result Theorem 1.3 asserts that, with probability larger than
1 − CM−L, the aggregates A†

T [20M ] and A†
T [∞] coincide on the strip Z10M . Then the same

holds for A†
T [20M ] and A†

T [S], for any H20M ⊂ S ⊂ H since A†
T [20M ] ⊂ A†

T [S] ⊂ A†
T [∞] by the

natural coupling. So StabM (0) occurs with probability larger than 1 − CM−L, and then (4.5)
is proven.

Let Sr be the (d − 2)-dimensional sphere centered at the origin, with radius r and included
in the source set H: Sr := {z ∈ H : ∥z∥ = r}. We claim that the following key inclusion holds
for any M ,

Gε(0, 10M) ∩ F (M) ∩ Stab(0, 100M) ⊂
( ⋃

c∈S10

Gε(Mc, M)
)

∩
( ⋃

c′∈S80

Gε(Mc′, M)
)

. (4.6)

Lemma 4.4 actually appears as a straight consequence of the inclusion (4.6) combined with (4.4)
and (4.5). Let us first explain why and, in a second step, we will establish (4.6).

Inequalities (4.4) and (4.5) allow to write

πε(10M) = P
(
Gε(0, 10M)

)
≤ P

(
Gε(0, 10M) ∩ F (M) ∩ Stab(0, 100M)

)
+ C

ML

≤ P
(( ⋃

c∈S10

Gε(Mc, M)
)

∩
( ⋃

c′∈S80

Gε(Mc′, M)
))

+ C

ML
.
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Recall that the event Gε(Mc, M) involves balls of Σ̂loc
ε whose centers are included in B(Mc, 10M)

and radii are defined w.r.t. the aggregate A†
T [B(Mc, 20M)]. So the event ⋃c∈S10 Gε(Mc, M)

only concerns random inputs (i.e. Poisson clocks and random walks) associated to sources of
H30M . In the same way, ⋃c′∈S80 Gε(Mc′, M) only concerns random inputs associated to sources
outside of H59M . So they are independent from each other. It is then easy to conclude:

πε(10M) ≤ P
( ⋃

c∈S10

Gε(Mc, M)
)
P
( ⋃

c′∈S80

Gε(Mc′, M)
)

+ C

ML

≤ |S10||S80|πε(M)2 + C

ML
.

As a consequence, it only remains to establish the inclusion (4.6) and, to do it, let us assume
that Gε(0, 10M) ∩ F (M) ∩ Stab(0, 100M) occurs. On the event Gε(0, 10M), the localized
Boolean model

Σ̂loc
ε (0, 10M) =

⋃
z∈χε∩B(0,100M)

B
(
z, Rloc

T,0,10M (z; ε)
)

contains a cluster C joining B(0, 10M) to B(0, 80M)c. The balls of Σ̂loc
ε (0, 10M) are centered at

vertices z in B(0, 100M) and their radii Rloc
T,0,10M (z; ε) are by definition relative to the aggregate

A†
T [B(0, 200M)]. Since A†

T [B(0, 200M)] ⊂ A†
T [∞], we have that, for any z ∈ χε ∩ B(0, 100M),

Rloc
T,0,10M (z; ε) ≤ RT (z; ε) ≤ M on the event F (M). This means that all the balls of C have

radii smaller than M . We can then extract from C a sub-cluster, say C′, joining B(Mc, M) for
some (random) c ∈ S10 to B(Mc, 8M)c. Indeed, the sphere S10M is covered by the union of balls
B(Mc, M), with c ∈ S10. Now, we have to prove that C′ is also a cluster of Σ̂loc

ε (Mc, M), ensuring
the occurrence of Gε(Mc, M). Hence, we have to prove that each ball B(z, Rloc

T,0,10M (z; ε))
involved in C′ satisfies the two following properties:

• Its center z belongs to χε ∩B(Mc, 10M). This is clear since, by construction, each ball of
C′ overlaps B(Mc, 8M) and has a radius smaller than M .

• Its radius Rloc
T,0,10M (z; ε) is actually equal to Rloc

T,Mc,M (z; ε). This is where the event
Stab(0, 100M) comes into play. The previous item implies that the ball B(z, Rloc

T,0,10M (z; ε))
is completely included in B(Mc, 10M). Its radius is defined w.r.t. the aggregate A†

T [B(0, 200M)]
(see (4.1)), but only through

A†
T [B(0, 200M)] ∩

(
Z × B(Mc, 10M)

)
since B(z, Rloc

T,0,10M (z; ε)) ⊂ B(Mc, 10M). Thanks to Stab(0, 100M), in particular StabM (cM)
applied with S := B(0, 200M) ⊃ B(Mc, 20M), we have

A†
T [B(0, 200M)] ∩

(
Z × B(Mc, 10M)

)
= A†

T [B(Mc, 20M)] ∩
(
Z × B(Mc, 10M)

)
. (4.7)

Since the radius Rloc
T,Mc,M (z; ε) is defined w.r.t. the aggregate A†

T [B(Mc, 20M)], the iden-
tity (4.7) implies that Rloc

T,Mc,M (z; ε) and Rloc
T,0,10M (z; ε) are equal.

Thus, we have proven that the event Gε(Mc, M) holds for some c ∈ S10. We can show in a
similar fashion that Gε(Mc′, M) also occurs for some c′ ∈ S80. Inclusion (4.6) is established.
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Proof of Lemma 4.6. Let M ≥ 1. Note that the occurrence of the event Gε(0, M) forces the
random set χε ∩ B(0, 10M) to be non-empty. Therefore,

P (Gε(0, M)) ≤ P (# (B(0, 10M) ∩ χε) ≥ 1)
≤ E [# (B(0, 10M) ∩ χε)]
=

∑
z∈B(0,10M)

E [1z∈χε ]

= #B(0, 10M)pε .

Using pε = 1 − e−ε ≤ ε and #B(0, 10M) ≤ CdMd−1, we get the desired result.

5 Proof of Theorem 1.2
Before giving the proof of Theorem 1.2, we give the following lemma:

Lemma 5.1. For any finite subset S ⊂ Zd,

P
(
S ⊂ A†

n[∞]
)

−→
n→∞

1.

Proof of Lemma 5.1. To do so, we will be using the Shape Theorem for standard idla, in the
case where exactly n particles are sent from the origin. Let us denote this aggregate by A(n).
We know from Theorem 1 of [19] that

P (S ⊂ A(n)) −→
n→∞

1. (5.1)

Now, recall that particles of A†
n[∞] are given according to a family of ppp’s in R+, denoted by

(Nz)z∈H. Let N0 = N0([0, n]) denote the number of particles sent from the origin. Since N0 is
a Poisson random variable of parameter n, we know from concentration inequality theory that
for all 0 < ε < 1/2,

P
(
N0 − n ≤ n1/2+ε

)
≤ exp

(
−n2ε

2

)
.

Hence, define En :=
{

N0 ≤ n − n1/2+ε
}

. Let S denote a finite subset of Zd. We write:

P
(
S ⊂ A(n − n1/2+ε)

)
≤ P

({
S ⊂ A(n − n1/2+ε)

}
∩ En

c
)

+ P (En)

≤ P
(
S ⊂ A†

n[0]
)

+ exp
(

−n2ε

2

)

≤ P
(
S ⊂ A†

n[∞]
)

+ exp
(

−n2ε

2

)
.

Hence, for any finite subset S ⊂ Zd, we have that

P
(
S ⊂ A†

n[∞]
)

≥ P
(
S ⊂ A(n − n1/2+ε)

)
− exp

(
−n2ε

2

)
.

Using (5.1), we have the desired result.
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Proof of Theorem 1.2. We begin by showing 1. For any n ≥ 0, Fn ⊂ F∞, so V (Fn) ⊂ V (F∞).
Now, consider S a finite subset of Zd. Since the vertex set of Fn is A†

n[∞], we have that for any
n ≥ 0,

P (S ⊂ V (F∞)) ≥ P (S ⊂ V (Fn)) = P
(
S ⊂ A†

n[∞]
)

.

This result is immediate using Lemma 5.1.
We move to the proof of 2. Consider a compact K of Rd. Fix k ∈ H and n ≥ 0. It is sufficient
to show that Fn and F∞ have the same probability of intersecting K. Assume that this holds
for Fn, that is:

P (Fn ∩ K ̸= ∅) = P (TkFn ∩ K ̸= ∅) . (5.2)

Note that for any subset C such that (C + B(0, 1)) ∩ Zd ⊂ A†
n[∞], then Fn ∩ C = F∞ ∩ C.

Again using Lemma 5.1, we have that

P
(
(K + B(0, 1)) ∩ Zd ⊂ A†

n[∞]
)

−→
n→∞

1.

Thus, there exists an integer n0 such that P
(
(K + B(0, 1)) ∩ Zd ⊂ A†

n0 [∞]
)

≥ 1 − ε. We have:

|P (F∞ ∩ K ̸= ∅) − P (Fn0 ∩ K ̸= ∅) | ≤ P (F∞ ∩ K ̸= Fn0 ∩ K)

≤ P
(
(K + B(0, 1)) ∩ Zd ̸⊂ A†

n0 [∞]
)

≤ ε. (5.3)

Similarly, we can show that

|P (TkF∞ ∩ K ̸= ∅) − P (TkFn0 ∩ K ̸= ∅) | ≤ ε. (5.4)

We can now conclude for F∞, since

|P (F∞ ∩ K ̸= ∅) − P (TkF∞ ∩ K ̸= ∅) | ≤
|P (F∞ ∩ K ̸= ∅) − P (Fn0 ∩ K ̸= ∅) | + |P (Fn0 ∩ K ̸= ∅) − P (TkFn0 ∩ K ̸= ∅) |

+|P (TkFn0 ∩ K ̸= ∅) − P (TkF∞ ∩ K ̸= ∅) |.

Now, from (5.2), we know that the middle term is equal to 0, and from (5.3) and (5.4), we get
that the first and third term are bounded by ε. Thus,

|P (F∞ ∩ K ̸= ∅) − P (TkF∞ ∩ K ̸= ∅) | ≤ 2ε.

It now remains to show (5.2). Fix n ≥ 0. Take M ≥ 1 sufficiently large such that K ∩Zd ⊂ ZM .
From Theorem 1.1, there exists a random integer N0 such that for any N ′ ≥ N0, with probability
greater than 1 − ε, we have

Fn[N ′] ∩ ZM = Fn ∩ ZM , TkFn[N ′] ∩ ZM = TkFn ∩ ZM . (5.5)

Then, we have:

|P (Fn ∩ K ̸= ∅) − P (TkFn ∩ K ̸= ∅) | ≤
|P (Fn ∩ K ̸= ∅) − P (Fn[N0] ∩ K ̸= ∅) | + |P (Fn[N0] ∩ K ̸= ∅) − P (TkFn[N0] ∩ K ̸= ∅) |+
|P (TkFn[N0] ∩ K ̸= ∅) − P (TkFn ∩ K ̸= ∅) |

≤|P (Fn[N0] ∩ K ̸= ∅) − P (TkFn[N0] ∩ K ̸= ∅) | + 2ε.

Now, we grow the forests Fn[N0] and TkFn[N0] to obtain two forests F1 and F2. We obtain F1
by sending the particles used to build Fn[N0], and add the additional particles from (TkHN0) ∩
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HN0
c. To build F2, consider the forest induced by particles used to build Fn[N0] and additional

particles from (T−kHN0) ∩ HN0
c. Let F denote this forest. We define F2 as the translation of

vector k of this forest, that is F2 := TkF. Now, from (5.5), we know that F1 and Fn[N0] coincide
on the strip ZM (and hence on K) with probability greater than 1 − ε. The same is true for F2
and TkFn[N0]. Therefore, we have

|P (Fn ∩ K ̸= ∅) − P (TkFn ∩ K ̸= ∅) | ≤ |P (F1 ∩ K ̸= ∅) − P (F2 ∩ K ̸= ∅) | + 4ε.

Lemma 5.2. The set of sources used to build F1 and F2 are identical.

Now, the forest F1 and F2 are built using the same idla protocol, using the same set
of sources, with i.i.d Poisson clocks over the time interval [0, n]. They therefore have same
distribution, which implies that

|P (Fn ∩ K ̸= ∅) − P (TkFn ∩ K ̸= ∅) | ≤ 4ε,

which concludes the proof.
We now prove 3. We show that for any compacts C1, C2 of R2

lim
k∈H, ∥k∥→∞

P (F∞ ∩ (C1 ∪ TkC2) = ∅) = P (F∞ ∩ C1 = ∅)P (F∞ ∩ C2 = ∅) . (5.6)

Fix ε > 0 and let C1, C2 be two compact sets of R2. Let r > 0 be such that C1 ∪ C2 is included
in B(0, r − 1). From Lemma 5.1, we can pick n large enough such that

P
(
B(0, r) ∩ Z2 ⊂ A†

n[∞]
)

≥ 1 − ε.

On the event
{
B(0, r) ∩ Z2 ⊂ A†

n[∞]
}

, F∞∩Ci and Fn∩Ci are equal for any i ∈ {1, 2}. Since the
distribution of A†

n[∞] is invariant with respect to Tk, we have that for any k ∈ H (independent
of ε),

P
(
Tk(C1 ∪ C2) ⊂ A†

n[∞]
)

≥ 1 − ε.

This implies:
P (F∞ ∩ (C1 ∪ TkC2) = Fn ∩ (C1 ∪ TkC2)) ≥ 1 − 2ε.

Therefore,

|P (F∞ ∩ (C1 ∪ TkC2) = ∅) − P (F∞ ∩ C1 = ∅)P (F∞ ∩ C2 = ∅) |
≤ |P (Fn ∩ (C1 ∪ TkC2) = ∅) − P (Fn ∩ C1 = ∅)P (Fn ∩ C2 = ∅) | + 4ε.

It remains to show that Fn is mixing with respect to Tk. From Theorem 1.1, there exists N0
such that

P (Fn ∩ C1 ̸= Fn[N0] ∩ C1) ≤ ε and P (Fn ∩ C2 ̸= Fn[N0] ∩ C2) ≤ ε. (5.7)

We have, by shifting all the random clocks by a vector −k ∈ H:

P (Fn ∩ C2 ̸= Fn[N0] ∩ C2) = P (Fn(ω) ∩ C2 ̸= Fn[N0](ω) ∩ C2)
= P (Fn(ω − k) ∩ C2 ̸= Fn[N0](ω − k) ∩ C2)
= P (Fn(ω) ∩ TkC2 ̸= Fn[B(k, N0)](ω) ∩ TkC2) .

Hence, from (5.7), for any k ∈ H (independent of ε), there exists N0 such that

P (Fn(ω) ∩ TkC2 ̸= Fn[B(k, N0)](ω) ∩ TkC2) ≤ ε. (5.8)
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Now, we write:

|P (Fn ∩ (C1 ∪ TkC2) = ∅) − P (Fn ∩ C1 = ∅)P (Fn ∩ C2 = ∅) |
= |P ({Fn ∩ C1 = ∅} ∩ {Fn ∩ TkC2 = ∅}) − P (Fn ∩ C1 = ∅)P (Fn ∩ C2 = ∅) |
≤ |P ({Fn ∩ C1 = ∅} ∩ {Fn ∩ TkC2 = ∅}) − P ({Fn[N0] ∩ C1 = ∅} ∩ {Fn[B(k, N0)] ∩ TkC2 = ∅}) |
+ |P ({Fn[N0] ∩ C1 = ∅} ∩ {Fn[B(k, N0)] ∩ TkC2 = ∅}) − P (Fn ∩ C1 = ∅)P (Fn ∩ C2 = ∅) |.

Lemma 5.3. Let A, A′, B, and B′ denote 4 events. Suppose P (A ̸= A′) ≤ ε and P (B ̸= B′) ≤ ε.
Then

|P ({A = ∅} ∩ {B = ∅}) − P
({

A′ = ∅
}

∩
{
B′ = ∅

})
| ≤ 2ε.

To alleviate notation, we define the following sets: A = Fn ∩ C1,

B = Fn ∩ TkC2,
and

 A′ = Fn[N0] ∩ C1,

B′ = Fn[B(k, N0)] ∩ TkC2.

We can rewrite the previous inequality as:

|P (Fn ∩ (C1 ∪ TkC2) = ∅) − P (Fn ∩ C1 = ∅)P (Fn ∩ C2 = ∅) |
≤ |P ({A = ∅} ∩ {B = ∅}) − P

({
A′ = ∅

}
∩
{
B′ = ∅

})
|

+ |P
({

A′ = ∅
}

∩
{
B′ = ∅

})
− P (A = ∅)P (B = ∅) |.

Note that for the last term, we replaced P (Fn ∩ C2 = ∅) by P (B = ∅). We can do so since the
distribution of Fn is invariant with respect to Tk, so Fn has same probability of intersecting C2
or TkC2.
Notice that for any k such that ∥k∥ > 2N0, the events A′ and B′ are independent, since the two
forests considered are built using disjoint sets of sources. Additionally, from (5.3) and (5.4), we
have that P (A ̸= A′) ≤ ε and P (B ̸= B′) ≤ ε. Therefore, using the result of Lemma 5.3, we
get, for any ∥k∥ > 2N0:

|P (Fn ∩ (C1 ∪ TkC2) = ∅) − P (Fn ∩ C1 = ∅)P (Fn ∩ C2 = ∅) |
≤ |P

(
A′ = ∅

)
P
(
B′ = ∅

)
− P (A = ∅)P (B = ∅) | + 2ε.

Now, since P (A ̸= A′) ≤ ε and P (B ̸= B′) ≤ ε, one can show (in the same spirit of Lemma 5.3)
that

|P
(
A′ = ∅

)
P
(
B′ = ∅

)
− P (A = ∅)P (B = ∅) | ≤ 2ε.

Therefore,

|P (F∞ ∩ (C1 ∪ TkC2) = ∅) − P (F∞ ∩ C1 = ∅)P (F∞ ∩ C2 = ∅) | ≤ 8ε,

which concludes the proof.

A Appendix: Proof of Proposition 2.2
Before proving Proposition 2.2, we must first introduce a new family of random aggregates.
Let n ≥ 1. Just like for A†

n[∞], we begin by building a family of finite random aggregates
(A∗

n[M ])M≥0. Like A†
n[∞], the number of particles sent from each source z is random, given

this time by a Poisson random variable Nz of parameter n, but unlike A†
n[∞], these are sent
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in a predetermined order. Let (Nz)z∈H denote a family of i.i.d Poisson random variables of
parameter n. When M = 0, A∗

n[0] is the aggregate obtained after launching N0 particles from
the origin. Given a realization of An[M − 1], we throw Nz particles from each source z of
level M according to the lexicographical order. So A∗

n[M ] is defined as the aggregate produced
by A∗

n[M − 1] and the new sites added by particles launched at level M . By construction,
(A∗

n[M ])M≥0 is increasing with respect to inclusion, so we can define A∗
n[∞] as

A∗
n[∞] :=↑

⋃
M≥0

A∗
n[M ] a.s.

A consequence of the Abelian Property (see [9], p. 97) is that for all M ≥ 0,

A†
n[M ] law= A∗

n[M ]. (A.1)

Since both families of aggregates (A∗
n[M ])M≥0 and (A†

n[M ])M≥0 are increasing, we deduce from
(A.1) that A†

n[∞] law= A∗
n[∞].

The global upper bound provided by Proposition 2.2 is a refined version of Theorem 4.1
of [5]. Although our result is finer and deals with a random number of emitted particles, the
strategy of the proof is essentially the same.

We will be proving Proposition 2.2 by induction over n. Since A†
n[∞] law= A∗

n[∞], we will
show the result for A∗

n[∞] instead, since this aggregate is built by sending particles in the usual
order. We define the event Over∗

α in the same way as Over†
α in (2.1) but with respect to the

aggregate A∗
n[∞]. We show that if for some fixed n, the aggregate A∗

n[∞] is contained within C α
ε

for some ε > 0, and if we launch N ′
z additional particles from each source z of H, where (N ′

z)z∈H
is an independent family of Poisson variables of parameter 1, then the resulting aggregate is
contained within a slightly larger cone C α

ε′ (ε′ > ε) with high probability. We keep the same
notations as in the proof of Theorem 4.1 of [5] and define the sequences (Mn)n≥0 and (εn)n≥0 in
the same way. Just like for Theorem 4.1 of [5], it is sufficient to prove the following proposition:

Proposition A.1. For all α ∈ (1 − 1/d, 1), for all ε > 0, for all n ≥ 1, there exists a constant
C = C(ε, n, α, d) > 0 such that for all M ≥ 1 and all L > 1,

P (Over∗
α(Mn, εn)) ≤ C

ML
.

Proof of Proposition A.1: We show our result by induction over n. Take L > 1. Our induction
statement is the following:
∀n ≥ 0, P(n) : ∀α ∈ (1 − 1/d, 1), ∀ε ∈ (0, 1), ∀M ≥ 1, ∃C = C(ε, n, α, d) > 0,

P (Over∗
α(Mn, εn)) ≤ C

ML
.

When n = 0, this is clear since A∗
n[∞] a.s= ∅, hence A∗

n[∞] ∩ Zc
M

a.s
⊂ C α

ε .
Let n ≥ 1 and suppose P(n) holds. Fix α ∈ (1 − 1/d, 1). We write:

P (Over∗
α(Mn+1, εn+1)) ≤ P (Over∗

α(Mn+1, εn+1) ∩ Over∗
α(Mn, εn)c) + P (Over∗

α(Mn, εn)) .

The last term is handled by our induction hypothesis. We switch our focus to the first term.
On the event Over∗

α(Mn+1, εn+1) ∩ Over∗
α(Mn, εn)c, we have A∗

n[∞] ∩ Zc
Mn

⊂ C α
εn

, but when
launching N ′

z new particles from each source z ∈ H, the new aggregate obtained spills over C α
εn+1

on Zc
Mn+1

. This implies the existence of three random sites (Z, Z∗, Zn+1) ∈ Zd, and aggregates
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AZ∗ and A−
Z∗ , defined just like in [5], but defined with respect to C α

ε rather than Cε. Note now
that we have : Zn+1 = Z ± (εn+1∥Z∥α) · e1, where e1 = (1, 0, . . . , 0).

We must control that no unreasonable amount of particles is emitted from H. To do so, we
introduce the following event:

EM (γ) :=
⋂
l≥0

{
∀z ∈ H, ∥z∥ = l, N ′

z ≤ 1 + max{l, M}γ} ,

We can show using (2.5) that P (E c
M (γ)) decreases faster than any power of M−1. Fix γ ∈ (0, 1)

such that γ < (α − 1)d + 1 (such a value exists since α ∈ (1 − 1/d, 1)). We explain this choice
later. We write

P (Over∗
α(Mn+1, εn+1) ∩ Over∗

α(Mn, εn)c)
≤ P (Over∗

α(Mn+1, εn+1) ∩ Over∗
α(Mn, εn)c ∩ EM (γ)) + P (E c

M (γ))
≤

∑
l≥Mn+1

∑
∥z∥=l

P (Z = z, Over∗
α(Mn+1, εn+1) ∩ Over∗

α(Mn, εn)c ∩ EM (γ)) + O(1).

Fix l ≥ Mn+1 and z ∈ H such that ∥z∥ = l, and let zn+1 = z ± (εn+1∥z∥α) · e1. We consider the
case where a ball of particles has settled around zn+1, and the case where a thin tentacle reaches
out to zn+1. We use an adaptation of Lemma 2 of [15] to deal with the event of tentacles.

Lemma A.2. There exist positive universal constants b, K0, c such that for all real numbers
r > 0 and all z ∈ H with 0 /∈ B(zn+1, r),

P
(
Z = z, Over∗

α(Mn+1, εn+1) ∩ Over∗
α(Mn, εn)c, # (AZ∗ ∩ B(zn+1, r)) ≤ brd

)
≤ K0e−cr2

.

We apply this Lemma with r = rn+1 = εlα

2n+1 , in the same spirit as in [5]. This gives:

P (Z = z, Over∗
α(Mn+1, εn+1) ∩ Over∗

α(Mn, εn)c ∩ EM (γ))
≤P (Z = z, Over∗

α(Mn+1, εn+1) ∩ Over∗
α(Mn, εn)c,

EM (γ), # (AZ∗ ∩ B(zn+1, rn+1)) > brd
n+1

)
+ K0e−c1l2α

, (A.2)

where c1 = c1(n, ε) = cε2

4n+1 . The term (A.2) requires a little more work than in the deterministic
global upper bound. Note that rd

n+1 is of order lαd. We are working on the event where (roughly)
more than lαd particles have settled around zn+1, knowing that each source z̃ ∈ H has emitted
at most 1 + ∥z̃∥γ particles. We show that this implies that ∥Z − Z∗∥ ≥ Klη, where η > 1 and
K denotes some positive constant. Let us now explain why η > 1. Suppose, contrary to our
claim, that η ≤ 1. The number of sources inside B (z, Klη) ∩ H is of the order lη(d−1) since H
is a hyperplane of dimension d − 1. Working on the event EM , the largest amount of particles
emitted by a single source within this (d − 1)-dimensional ball is 1 + (l + Klη)γ , which is of
the order lγ when η ≤ 1. In the worst case scenario, if all of the sources within B (z, Klη) ∩ H
emit of the order of lγ particles, the total number of particles emitted will be of the order of
lη(d−1) × lγ = lη(d−1)+γ . Now, for this to be of the order (or greater) than lαd, it is thus necessary
that

η(d − 1) + γ ≥ αd ⇐⇒ η ≥ αd − γ

d − 1 .

However, due to our choice of γ, this necessarily implies that η > 1, which contradicts our
assumption that η ≤ 1. Therefore, in order for more than lαd particles to settle inside
B (zn+1, rn+1), it is necessary that one of these particles has been emitted from a source outside
of B (z, Klη) ∩ H, with η > 1. It is thus necessary that ∥Z − Z∗∥ ≥ Klη. Since Z∗ is defined as
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the source from which the first overflowing particle is emitted, this implies that the aggregate
before sending from Z∗ is strictly contained within C α

n+1, allowing us to use a donut argument
(similar to the one used in the proof of Lemma 4.4) to control the trajectory of the overflowing
particle. This implies that one of the particles sent from z′, with ∥z′ − z∥ ≥ Klη, has crossed
multiple donuts. We detail below how we compute a lower bound on the total number of donuts
a particle needs to cross from z′ to z. Fix h ≥ Klη and z′ such that ∥z′ − z∥ = h. We build
donuts from level ∥z′∥ to ∥z∥ = l. The first donut, which is the largest donut, has dimensions
at most 2εn+1(l + h)α ≤ 2εn+1(2h)α ≤ 4εn+1hα. All other donuts will have smaller dimensions,
which implies that the number of donuts k = k(h, l, εn+1, α) between z′ and z is such that

k ≥ h

4εn+1hα
= h1−α

4εn+1
.

Now, the number of particles sent from z′ at distance h of z is (up to a multiplicative factor)
at most hd−2+γ . Therefore, the donut argument gives:

∑
h≥Klη

∑
∥z′−z∥=h

P


 a particle sent from z′ reaches level l

while staying within C α
εn+1

 ∩ EM (γ)


≤Kd

∑
h≥Klη

hd−2+γ(1 − c)k = Kd

∑
h≥Kdlη

hd−2+γ exp
(
−c0 (εn+1) h1−α

)
,

where c0 (εn+1) = − log(1−c)
4εn+1

. Throughout the rest of the proof, Kd will denote a generic constant
depending only on d, whose value may vary from line to line. Now, using the fact that 1−α > 0,
standard computations yield:

Kd

∑
h≥Klη

hd−2+γ exp
(
−c0 (εn+1) h1−α

)
≤ Kd exp

(
−1

2c0(εn+1)lη(1−α)
)

.

Combining this result with (A.2), we get

P (Over∗
α(Mn+1, εn+1) ∩ Over∗

α(Mn, εn)c ∩ EM (γ))

≤
∑

l≥Mn+1

∑
∥z∥=l

K0e−c1l2α +
∑

l≥Mn+1

∑
∥z∥=l

Kd exp
(

−1
2c0(εn+1)lη(1−α)

)

≤ Kd

∑
l≥Mn+1

ld−2e−c1l2α + Kd

∑
l≥Mn+1

ld−2 exp
(

−1
2c0(εn+1)lη(1−α)

)

≤ Kd exp
(

−
c1M2α

n+1
2

)
+ Kd exp

(
−1

4c0(εn+1)Mη(1−α)
n+1

)
.

Since M ≤ Mn+1, it is clear that both of these terms can be bounded by C′

ML for some constant
C ′ = C(ε, n, α, d) > 0.
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