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Abstract

An isotropic fractional Brownian field (with Hurst parameter H < 1/2) is observed in a family of
points in the unit square C = (—1/2,1/2]2. These points are assumed to come from a realization of a
homogeneous Poisson point process with intensity N. We consider normalized increments (resp. pairs
of increments) along the edges of the Delaunay triangulation generated by the Poisson point process
(resp. pairs of edges within triangles). Central limit theorems are established for the respective centered
squared increment sums as N — co.
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1 Introduction

Fractional Brownian motion is a self-similar stochastic process that sharply contrasts with traditional
Brownian motion, semimartingales and Markov processes. As a centered Gaussian process, it is distin-
guished by the stationarity of its increments and exhibits a medium- or long-memory property. Fractional
Brownian motion has gained popularity in applications where classical models fail to capture these com-
plex characteristics; for example, long memory, also referred to as persistence, is crucial in analyzing
financial data and internet traffic (see e.g. [12]).

There is no unique way to extend it to self-similar random fields parametrized by d-dimensional spaces
(d > 1), because there exist at least two ways to define increments for random fields (see e.g. Section

3.3 in [6]). In the following, we consider the case d = 2. A first natural extension of the stationarity of
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the increments of a random field W := (W (x)), g is to say that W has linear stationary increments
if the law of
(W (z + z0) = W (20)) ,cr>

does not depend on the choice of o € R%. An example of a self-similar random field with linear
stationary increments is the isotropic fractional Brownian field defined as the centered Gaussian random
field such that W (0) =0 a.s. and

0.2

cov(W (@), W(y)) = = (Il + llylI** = lly = =[[*7), (1.1)

for some H € (0,1) and 2 > 0, with ||z|| the Euclidean norm of z € R%. The parameter o is called the
scale parameter while H is known as the Hurst parameter and relates to the Hélder continuity exponent

of W. Rectangular increments for a 2-dimensional field W are defined as
W (x 4+ x0) = W (2161 + 20) — W (2262 + 20) + W (20) , (1.2)

where z = (71,22) € R%, 29 € R?, ¢; = (1,0) and ez = (0,1). A second extension of the stationarity of
the increments of W is to say that W has rectangular stationary increments if the law of the process of
the rectangular increments (1.2) does not depend on the choice of 7o € R?. An example of a self-similar
random field with rectangular stationary increments is the isotropic fractional Brownian sheet defined as
the centered Gaussian random field such that W (z) = 0 for any x in {(z1,22) € R? 21 = 0 or 25 = 0}
and )
cov(W (@), W(y) = 5 (ka7 o+ [P = lyn = 21 PT) (2227 + o P — g — o2

where x = (21,22), ¥y = (y1,%2), for some H € (0,1) and % > 0.

Quadratic variations of stochastic processes (also known as squared increment sums) play an im-
portant role in both stochastic analysis (e.g., [17], pp. 66-77) and applications such as estimation of
model parameters. For this reason the topic has been extensively studied in the literature, in particular
for fractional Brownian motions (see e.g. [13, 14]) or general Gaussian sequences (see e.g. the survey
[19]). Extensions of quadratic variations for random fields naturally depends on the retained definition
of increments. Quadratic variations based on rectangular increments observed on a regular grid have
been first considered. Strong laws of large numbers were studied e.g. in [8], while, more recently, [16]
obtained functional limit theorems for generalized variations of the fractional Brownian sheet. Quadratic
variations based on linearly filtered increments observed on a regular grid (generalizing rectangular incre-
ments) have been introduced in [20] in the case of fractional Brownian fields in order to build estimators
of their fractal dimension. For irregularly spaced data, the literature is relatively sparse. According to
[11], observations were assumed to be taken along a smooth curve in space (on a line transect), and
second-order quadratic variations were introduced to estimate the smoothness of certain Gaussian ran-
dom fields. But, to the best of our knowledge, there are no papers that study quadratic variations of
random fields when they are observed on points distributed randomly in space.

In this paper we consider an isotropic fractional Brownian field W with covariance given in (1.1) and,
independently of this, a Delaunay graph, denoted as Del(Py ), based on a homogeneous Poisson point
process Py with intensity N in R? (see e.g. p. 478 in [18] and Section 2 of our paper for a definition and
properties of the Poisson Delaunay graph). The originality of our article is twofold. On one hand, unlike
classical literature, we assume that we observe W not on a regular grid but on the points of Py that

belongs to the unit square C = (—1/2,1/2]%. On the other hand, the (normalized) increments (used for



the quadratic variations) are based on edges (or pairs of edges) of the Delaunay graph. The main results
of our paper provide central limit theorems (CLTs) for the centered squared increment sums as N — co.

The reason we consider the Delaunay triangulation arises from a statistical problem, specifically
inference for the parameters of a max-stable field, which is based on fractional Brownian fields. In
[4], we construct composite maximum likelihood estimators based on pairs and triples to estimate the
parameters of such a field. The pairs and triples are selected from the Delaunay triangulation. Choosing
such a triangulation is natural because it is the most regular in the sense that its minimal angle is
greater than the minimal angle of any other triangulation. The study of the asymptotic behavior of the
estimators requires establishing central limit theorems for a single fractional Brownian field, which is
the focus of this article. Assuming that the points from which we construct our increments are based
on a point process rather than on a deterministic grid is, in a certain sense, natural. Indeed, in terms of
inference, this means that our statistics are observed at random nodes. Moreover we chose the Poisson
point process because it is more natural and has a formula (the Slivnyak-Mecke formula) that allows for

the explicit calculation of expectations.

Squared normalized increment sums To state our main theorem, we first introduce some
notation. Let us remind that W is a fractional Brownian field with covariance given in (1.1) and Py is
a Poisson point process, independent of W, with intensity N in R2. When z1,z, € Py are Delaunay
neighbors, we write 21 ~ x5 in Del(Py). We denote by En the set of couples (21, x2) such that the

following conditions hold:
x1 ~ x9 in Del(Py), 1 € C, and z; = 9,

where < denotes the lexicographic order. Let DTy be the set of triples (1, 22, x3) satisfying the following
properties
A(z1,22,23) € Del(Py), x1€C, and z7 Xz <X zs3,

where A(z1, 2, 23) is the convex hull of {x1, 72, 23}. For any distinct points x1, 2 € R?, we denote by

UMW) = o~ d 5 (W (z2) — W (21))

x1,T2

the normalized increment between 1 and xo with respect to (w.r.t.) W, with dy 2 = ||z2 — 21]|. The
normalization o_ldfé{ has been chosen in such a way that Ug(;ll/‘,/gg)2 follows a standard Gaussian distribu-
tion. We consider two types of squared increment sums: on the one hand, the one based on the edges of

the Delaunay triangulation, defined as

v = 2 8,2 1),

2,N — - 1 ( T1,T2
|EN‘ ($1,$2)€EN

where |En| denotes the cardinal number of E, and on the other hand the one based on pairs of edges,
defined as

v _ 1
3,N |DTN|
—1
1 Ray oo W)
x (viR, vih,) ( " v ) ( s 2]
(z1,22,23)€EDTN T1,%2,T3 21,25



where oH | 2H _ 12H
_dip +diy —di3

Ry, 29,04 = COIT UJSWZ). ,UC,EWI) , 1.3
1,%2,T3 ( 1,T2 1, 3) 2(d1)2d173)H ( )
with dy 3 = ||xg — 21| > 0 and da 3 = ||z3 — 22]| > 0. Limiting increments in the definition of Ks(’v]\[;)

to pairs of edges (namely [z, 23] and [z1,x3]) rather than considering all edges of a Delaunay triangle
(including the edge [z2, 23]) is sufficient because the third increment can be deduced from the other two.

Notice that the term V3(VA[;) can be expressed as a sum of squared increments in the sense that

w 1 - .
NN =T L (08207 -0+ (O 1),
| Nl (z1,22,23)EDTN
where
Ua(:fl,/m)'g,m = (1 - Ril,xz,x3)71/2 (Ua(c‘l/‘,/ggz - Rxl,m,xs Ua(;YQS) and Ua(:f[,/a)-g = ;‘1/17/.’,8)3

According to [2], the quantity U;Y"x)m is a normalized increment based on the three points x1,z2, 23
and satisfying
(W Fr(W
COI‘I‘(Uw(17w)27I3, Uﬂghﬂgs) =0.
Main result Our main theorem states that the squared normalized increment sums satisfy central

limit theorems.

Theorem 1 Let W be a fractional Brownian random field with covariance given by (1.1), with H €
(0,1/2) and 0* > 0. There exist finite constants o3, > 0 and o3, > 0 such that, as N — oo,

‘/2(,‘/1‘\;) 2) N (07 0\2/2) and ‘/E’)(,‘]}[V/) 2} N (O’ 0-‘2/3) :

The rates of convergence of both sums are the same as in Theorem 3.2 of [2] or in Theorem 1 of
[20] where statistics based on square increments on regular grids have been considered. The asymptotic
variances appearing in the above theorem have explicit integral representations but are quite intricate.

Our result is stated within a fixed window and for a Poisson process with intensity tending to infinity.
By rescaling, this is equivalent to considering an arbitrarily large window with a fixed intensity for the
Poisson point process. Nonetheless, we chose to present our result within a fixed window, as it is in this
context that we will establish our results in two companion papers [5] and [4]. The main ingredient to
prove Theorem 1 is an extension of the Breuer-Major theorem due to Nourdin and Peccati (Theorem
7.2.4 in [15]). One of the challenges is to check the conditions of this theorem. Indeed, the latter are
expressed in terms of chaos decomposition and requires delicate estimates for the variances and mixing
properties for suitable marked point processes.

The weak convergences of V2(,VJ¥) and V;VJ\[;) to Gaussian limit distributions in Theorem 1 can only
be established for H € (0,1/2). The main reason is that the increments in the sums are of order 0 in
the sense of [2, 3]. In the univariate case, and in the context of regular grids, it was proved that under
a suitable normalization the limit is a Rosenblatt’s process [9] when H > 3/4. In dimension 2, it is
well known that there is a regime change depending on whether H is less than or greater than 1/2 (see
e.g. Remark 3.2 in [2]). In this spirit, with an appropriately chosen renormalization, we think that the
limit should also be a Rosenblatt distribution when H > 1/2 for the squared increment sums which
are considered in our paper. Furthermore, considering increments of order 1 (necessarily based on four

vertices) rather than of order 0 would lead to Gaussian limit distributions for any H € (0,1). Such a



result has already been established in the context of regular grids (see e.g. [1, 3]).

Our paper is organized as follows. In Section 2 we review some established concepts related to the
Delaunay triangulation. Section 3 contains a detailed proof of Theorem 1 for the squared increment sum
along the edges while Section 4 only presents a sketch of proof for the pairs of edges, since the arguments
are similar. We conclude our paper with technical results which will be used to prove Theorem 1.

Throughout the paper, for the sake of simplicity, we denote a := 2H.

2 Preliminaries

In this section, we recall some known results on Poisson-Delaunay triangulations.

Let Py be a Poisson point process with intensity N in R2. The Delaunay triangulation Del(Py) is
the unique triangulation with vertices in Py such that the circumball of each triangle contains no point
of P in its interior, see e.g. p. 478 in [18]. Such a triangulation is the most regular one in the sense that
it is the one which maximises the minimum of the angles of the triangles.

To define the mean behavior of the Delaunay triangulation (associated with a Poisson point process
Py of intensity 1), the notion of typical cell is defined as follows. With each cell C' € Del(P;), we associate
the circumcenter 2(C) of C. Now, let B be a Borel subset in R? with area a(B) € (0,00). The cell

intensity B2 of Del(Py) is defined as the mean number of cells per unit area, i.e.
1
= ——E[{C € Del(P) : 2(C) € B
B2 = Sy BIHC € Del(P1) = 2(C) € BH],

where we recall that | - | denotes the cardinality. It is well-known that 5y = 2, see e.g. Theorem 10.2.9.
in [18]. Then, we define the typical cell as a random triangle C with distribution given as follows: for

any positive measurable and translation invariant function g : 9 — R,

E[g(C)] = ——-F S o),

B20(B) | cepaiya(cren

where Ky denotes the set of convex compact subsets in R?, endowed with the Fell topology (see Section
12.2 in [18] for the definition). The distribution of C has the following integral representation (see e.g.
Theorem 10.4.4. in [18)]):

E[g(C)] = (13/00C /(s1)3 7'3677”“2(1(A(U1,U2,Ug))g(A('f"Uq,TUQ,TU3))O’(dU1)O’(dug)a’(dug)d'f’, (2.1)

where S! is the unit sphere of R? and o is the spherical Lebesgue measure on S! with normal-
ization o (S') = 2. In other words, C is equal in distribution to RA(Uy,Us,Us), where R and
(Uy,Us,Us) are independent with probability density functions given respectively by 27213~ and
a(A(uy,uz,uz))/(1212).

In a similar way, we can define the notion of typical edge. The edge intensity /51 of Del(Py) is defined
as the mean number of edges per unit area and is equal to 51 = 3 (see e.g. Theorem 10.2.9. in [18]).
The distribution of the length of the typical edge is the same as the distribution of D = R||U; — Us|.



Its probability density function fp satisfies the following equality

PID < (] :/l fo(d)dd
0

i / / e~ a(Aus, g, e [ un — ua|| < o (du)o(dus)dr,  (2.2)
0 (S1)2

where e; = (1,0) and ¢ > 0. Following Eq. (2.1), a typical couple of (distinct) Delaunay edges with
a common vertex can be defined as a 3-tuple of random variables (D1, D3, ©), where Dy, Dy > 0 and

© € [-7, 5), with distribution given by

P[(DlaDQ) / / 3 —wr? A(ulau27u3))
S1)3
x I[(r|jus — uz||, 7||ug — u1]|, arcsin (cos(0y, u,/2))) € Blo(du)o(dug)o(dug)dr,

where 6., ., is the measure of the angle (u1,u2) and where B is any Borel subset in R% x [-5, %)

2072/
The random variables D1, Dy (resp. ©) can be interpreted as the lengths of the two typical edges (resp.
as the angle between the edges). In particular, the length of a typical edge is equal in distribution to
D = R||Us — U;|| with distribution given in Eq. (2.2).

Throughout the paper, we identify Del(P;) to its skeleton. When 21, 29 € Py are Delaunay neighbors,
we write 21 ~ xo in Del(Py). For a Borel subset B in R?, we denote by En g the set of couples (21, 2)

such that the following conditions hold:
x1 ~x9 in Del(Py), 1 €B, and z1 = o,

where < denotes the lexicographic order. In particular, when B = C = (—1/2,1/2]?, we have Ey ¢ =
Ex. For a Borel subset B in R?, let DTy g be the set of triples (z1,z2,3) satisfying the following
properties

A(z1,x9,23) € Del(Py), 1 €B, and 1 <9 =< x3,

where A(x1, 2, x3) is the convex hull of (21, x2,x3). When B = C, we have DTy ¢ = DTy.

3 Proof of Theorem 1 for \/2(%)

Our aim is to prove that, when « € (0, 1), as N — oo, the statistic

1
Van' = S (@) -1)

(:Cl z2)EEN

converges in distribution to a Gaussian random variable with finite variance O'V Because N1/ 2PN P
and, by self-similarity property, (W (z))scre = (W(N—Y2g)/N—o/4) (W)
has the same distribution as

sER2 the random variable V,

1
N = s 2 (WER -,
| N|(zl,mz)€E;\,

where B, = Ej ¢, is the set of pairs (z1,22) of the Delaunay triangulation associated with P;, such
that 1 < xy and z; € Cy = (—~N'/2/2, N1/2/2]2,



We now denote by (Qp, Fp,Pp) the probability space associated with the data-site generating pro-
cess. The point process P; is defined on (Qp, Fp,Pp). We denote by wp an element of Qp. Let
(Qw, Fw, Pw) be the probability space associated with the fractional Brownian random field W. We de-
note by wy an element of Qy,. The triple (Q, F, P) is the product space (Qp x Quw, Fp @ Fw,Pp x Py)
and we denote by w an element of 2. All the random variables in this proof can be defined relatively
to the product space (2, F,P). Hence, all the probabilistic statements hold w.r.t. this product space,
unless it is stated otherwise.

We will first prove that, for almost all wp, the random variable Vg(fx)/ converges in distribution to
a Gaussian random variable with variance 0‘2/2 which does not depend on wp, i.e. E [exp(iqu(K)/)‘ Pl}
converges for almost all wp to exp (—0‘2,2 u?/ 2). Using the dominated convergence on (Qp, Fp,Pp), this
will show that E [exp(iu‘é(’vj\[;)/)} converges to exp (—op, u?/2).

Since, P; and (W(z)),cr2 are independent, the conditional distribution of the random variable

(Ué?&)( Jem given Pj is still Gaussian. The main idea to deal with VQ(’%)/ is then to apply a
T1,T2 N

modification of the Breuer-Major theorem (see e.g. Theorem 7.2.4 in [15]).

In what follows, F; g2 is the set of pairs (z1,22) of the Delaunay triangulation associated with Py,
such that x; < z5. Since there is a countable number of such pairs, there exists a one-to-one function
¢ : Z — E; g2 such that, for any (x,x2) € Eq g2, there exists a unique & such that Ugg‘;; = UgSYQQ. The
random variable U(%Z; is now denoted by U). Moreover we let ¢y = {k € Z : p(k) € E'y} and remark
that |e/y| = |Ely|-

For wp an element of Qp and according to Proposition 7.2.3 in [15], there exists a real separable
Hilbert space ), as well as an isonormal Gaussian process over $), written {X(h) : h € 9}, with the
property that there exists a set E' = {e : k € Z} C § such that (i) E generates 9; (ii) (ex,e1)g =
corr (UM, UW) for every k,l € Z; and (iif) U®) = X (ey) for every k € Z.

Let )
Iup=—== 3 "
|8N|k€e§\,

such that ‘/'2(}/]‘\;)/ = Iy (fn,2), where I5 is the second multiple integral of fx 2. Our CLT is a consequence

of a theorem due to Nourdin and Peccati (Theorem 6.3.1 of [15]). For sake of completeness, we rewrite

their result below using the same notations (see p. 205-206 in [15]).

Theorem 2 (Nourdin & Peccati) Let (F,,)n>1 be a sequence in L*(Q), the space of square-integrable

random variables, such that E[F,] =0 for all n. Consider the chaos decomposition
Fo=> Iy(fnq) with fng€H%¢>1,n> 1.
q=0

Assume in addition that
a) for every fized ¢ > 1, ¢!||fn.all20, = 02 asn — oo (for some o2 > 0);
qllgoq q q
(b) 0% :=3 2 00 < 00;
c) forallg>2andr=1,...,q—1, ||fn.q ®r fn ®2q-2r — 0 as n — 0o;
4 4119
(d) Himpy o0 SUP,, >4 Z;C:NJrl q!||fn,q||523®q =0.

Then F, 3 N(0,0?) as n — oo.



To apply Theorem 2, we proceed in the same way as in Section 7.2 of [15], but only for ¢ = 2 and not
for every ¢ > 1 since our chaos decomposition has only one term: I5 (fy 2). Note that, given wp € Qp,

the quantity |e/y| is a sequence that tends to oo, since P [|e/y| — oo|P;] = 1 for almost all wp.

e Condition (a) holds according to Proposition 4 in Section 3.1 and the fact that, for almost all wp,
(W)r
2| fnallye: =E[VAN 1P| = od,;

e Condition (b) holds according to Lemma 3 in Section 3.1;
e Condition (¢) holds as proved in Section 3.2;
e Condition (d) holds since our chaos decomposition has only one term: I (fn,2)-

According to Theorem 2, this implies ‘/'2(7?\;)/ ZN (0, 0‘2/2) and therefore Vz(ff\,/) BN (0, 0‘2,2).

3.1 Checking Condition (a)

We begin by giving a decomposition of E[(VQ(% )?|P;] that will be used to provide an integral represen-

tation of the asymptotic variance of V2() N). We first notice that
g [Nz p 2 w) g Y)
{(V ) | 1} - |E/ ‘ Z Z <COI"1" (U$17$2’UI37$4))
N (z1,02)EE) (z3,14)EE)
The term above can be decomposed as follows:

> Y (e (v, 08

21€CxN x3:x4
T1~T2,T1 T2 T32T4

E[( W)/) |P1} |E2’ |

2 2
(W) (W)
|E ‘ Z Z (COI“I" (Uﬂﬂl T2 UZ37Z4
r1€CxN z3¢CnN
T1~VT2,T1 XT2 T3~T4,T3 Ty

This gives

E [( W)/) |P] Z Z (corr( i I2’U1(:?24))2]1[($1,5U2) # (73,24)]
xljglch,SlN<zz ii:ii

2 W W 2
B D YR CH GRS

r1€CN z3¢CnN
T1~vT2,T1 T2 T3~T4,T3 T4

2
1B



The first double sums appearing in the right-hand side can be written as:

B >3 (oo UL, U, )) Ti(er.w2) # (@)

1 Xr3~YT4
$1N$2 :cl <:C2 T3 =T

_ % 3 (corr (U972, 087, )) Tlra # 24

N

21€CN,T1~T2,T1~Ty,
132,21 3T4

] EQ N 3 (corr (U1, UQ(CZQAL))Q]I (21 # 4]

z1€CN,T1~T2,T2~ T,
T13T2,22 3Ty

b (oo (0, 00)) e £

z1€ECN,T1~T2,T3~T1,
T13T2,23 371

|E2 | Z (corr (UQ‘ZZQ, U,g?%))z]l [11 # z3)

21€CN,T1~T2,T3~T2,
T13T2,T3 T2

2 Z Z (corr (U;YQQ, U;?&)fﬂ {z1, 72} N {zs, x4} =10].

T B e

Ti~To,T1 =T T3IT
Notice that limy_,o0 |Ely|/N = 3 for almost all wp. Indeed, according to [10], the Poisson-Voronoi
tessellation, and thus the Poisson-Delaunay tessellation, satisfies a strong mixing property. This, together
with the stationarity of Pj, the ergodic theorem given in Corollary 12.2.V in [7] and the fact that the
1-face intensity of the Poisson-Delaunay tessellation is 3 (see e.g. Theorem 10.2.9 in [18]) leads to the
conclusion that limy_,o |E|/N = 3 for almost all wp. As a consequence, the asymptotic behaviors are

the same if we replace 2/ |E}| by 2/(3N).

We now need to introduce some probability functions to characterize 0‘2/2. For any distinct points

21,2, 23,24 € R? such that £; < 2 and 23 < x4, and any N > 0, we write
po,N(x1, T2, T3, 1) = Px1 ~ @2, x5 ~ x4 in Del(Py U {21, 22,23, 24}) and @1 =X @2, T3 = 24].

In this definition, it is implicit that the two edges (x1,z2) and (z3, z4) of Del(Py U {21, 22, x3, x4}) have
no points in common. To take into account the cases where they may have a common point, we define

P2 ={(3,1),(3,2),(4,1),(4,2)}.

The set Py deals with the couples (j,) for which z; = x; with x; € {z3,24} and z; € {z1,22}. Then
we define, for (j,i) € Pa,

qé N )(:c{l an{jy) = Plrr ~ w2, w3 ~ x4 in Del(Py U {21, 22,73, 24}), 71 X T2,73 X w4 and x; = x4,
(3.1)



where Zr1.41\ (1 = {21, 22, 73, 24} \{7;}. More specifically, we have

(3+»1)

Iy N (21,29, 24) =P[x1 ~ T2, 21 ~ x4 in Del(Py U{z1,29,24}) and 21 = 29,21 = 24) (3.2a)
q§31(\72)(x Xo,xy) = P[x) ~ X9, 29 ~ x4 in Del(Py U{z1,22,24}) and z1 < 29 < x4] (3.2b)
qgl;\?l)(x Zo,x3) = Plx1 ~ z9, 21 ~ 3 in Del(Py U {z1,z2,23}) and 3 < 1 < 1) (3.2¢)
q§4;\72)(:c1,x2,x3) Plxy ~ 29,22 ~ x3 in Del(Py U {x1,x2,23}) and x1 X 9,23 = x2]. (3.2d)

The following quantities are proportional to the correlations of the typical squared increments asso-
ciated with pairs of Delaunay neighbors accordingly to the different cases. When there are no common
points, let

ooy, = / corr(UW) UMW) V2po 1 (w1, w2, 23, 24) [y = 0]dZ 1.0\ 1)
(R2)3
and when there is one common point, let, for (j,%) € Pa,

2 — w (W) 2 (jeri) = . -
I1,(ji), V2 — /(R2)2COH(UTEW)Q’Uxm,f({g:m{j})) a3 (Fprap )z = 0)dT 1.y 1,5y

where (2(;), T({3.43\{;})) is the couple associated with the pair of points {x;, (.43 ;3 } W.r.t. the lexico-
graphic order (the first coordinate is the smallest point). More specifically, we have

0(2)7‘/2 = /(R?) (corr(Uom,Ux37x4))2p2,1(0,$2,zg,x4)dx2dx3dx4
‘7%,(3<—>1),V2 = /(R2) COI‘I‘(UO,mQ,U07I4)2q5?1<_)1)(0,.’132,.134)d1‘2d$4
U%,(za@z),vz = /(R2)2COI‘I’(UO,wQ,Ux2,$4)2q;?1<—>2)(07372,554)(11’2(211)4
O’i(4<_>1),v2 = /(R2) corr(Uo,zQ,U13,0)2q§4f_>)(0,x27x3)dx2dx3
U%»(4<—>2)»V2 - /(R2)2COH(UO’”’Uf’33»fﬂz)2qg41<_>2)(0>$2,9€3)d$2d$3~

We will prove in Proposition 4 that the asymptotic variance of Vz(vjz) is given by

2
0‘2’225 vt D Oigenw | T2
(i) EPa

Note that 2031‘,2 /3 corresponds to the case where the two edges (z1,22) and (x3,x4) have no common
points, 2 Z(m)e% Ui(ﬁ_)i)% /3 to the case where they have one common point. The value 2 corresponds
to the case where (x1,x2) = (x3,24), i.e. when they have two common points (since, for any distinct
points z1, x5 € R?, we have var[(Ung)ﬂ = 2). Let us first check that o7, is finite.

Lemma 3 With the above notation, o3, is finite.

Proof of Lemma 3. We prove only here that (70 v, is finite since we can deal with 01 (i) Va? (4, 1) € Pa,
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in a similar way. Let € € (0,1/2) and dy be as in Lemma 6 (i7). Let g be the function defined by
_ W) 17 (W) yy2 —
9(w2,w3,74) = 2(corr(Up ., , Uy, 2,)) P2,1(0, T2, 73, 24 [|[24 — 23] < [[22]]],

so that a&vz = f(R2)3 g(wa, 3, 14)dwodrsdry. To prove that 03"/2 is finite, we discuss three (non disjoint)
cases.

Case 1. Assume that ||z2|| < ||x3]||¢ and ||z3|| > dp. Then, according to Lemmas 6 (i) and 7, we
have

2
g(x2, x5, 24) < c||@a] 572 |as| 20 e™ T2 [y — 23]| < [|22|]]

Integrating over xo, z3, x4, We get
_ 4 T 2
/ o772 ][22 e 2070 [[azg — | < [[aal | T[|Js|| > do] dwodzsday
R2)"

:ﬂ/ ||z |[B 20 e~ 5172l gy ></ ||z3]|2* 4T [ |z3]| > do] das.
R2 R2
Because a < 1, the right-hand side is finite, which proves that
[ atwnwawteal] < llaall VL foall > do] deadaadas < oc.
(R2)3
Case 2. Assume that ||z3]|| < dop. Then
- 2
g(wa, w3, 74) < 2| [Pe” T |ag — w| < ||z T]|[3]] < do] -
Because the right-hand side is in L', this proves that
/ g(xa, x3, 24)I[||23]]| < do] dzadzsdrs < .
(R2)3
Case 3. Assume that ||z2|| > [|z3]|°. Then
- 2
9(w2, 23,74) < cl|wa|Pe” T2 [[lzy — ws)| < [[as||) T [Hxs\l < [a2|V5) .
Since the right-hand side is also in L', this proves that
/ g(xa, x3, 24)1[||z2|| > ||23]||7] drodrsders < 0.
(R2)3

Splitting into the three cases discussed above, we conclude that 0(2)1‘,2 is finite. (Il

We are now well equipped to prove the following proposition.

Proposition 4 For a € (0,1), the second conditional moment ]E[(VQ(VVA[;)/)2|P1] converges for almost all

wp, as N — 00, to

2
0’\2/2:§ U%,vﬁ‘ Z Ji(j<—>i),Vg +2.
(J,1)EP2

We subdivide the proof of Proposition 4 into three steps. In the first one, we introduce marked point

11



processes {(x, ml’(jﬁi)’z) , T E Pl}, (4,7) € Pa, and {(x,mo4) , = € P1} whose marks are given as follows

2

= W) (W) - - _

M, (i) = 2w1~x;;3~3:4 (corr (Ux(i)vf(l:m\{i}’U$(i)7£({3:4}\{i}))> I [x{lﬂ}\{i} 7 z{3¢4}\{i}} Ia; = 2],
1 =T0, w35y

and

mo,g = 2 Z Z <COI‘I‘ (UCEVQ, UCEZ[QAL))Q]I {x,z2} N {z3, 24} = 0].

XTVI T3VT4
T=2w2 x3 374

More specifically, we have

ml,(3<—>1),a¢ = 2 Z (COIT (Um,127 U:c,x4))2 I [$2 # (E;d )

TT2,TTa,
T2T2, 3T

mione = 2 Y (cort (Usay Us, o))’ Tas # 23]

T2, T3,
T=T2,T33T

MiGone = 2 Y. (orr (Usy .z, Use,)* T[zy # 24]

T1~T,TVTa,
13T, 23Ty

Mione = 2 Y (orr (Usy .z, Usya))’ Tz # 23]

T1~T,T3~T,
132,23 3T

We prove that the above stationary marked point processes satisfy the mixing property in the sense of

[7]. In a second step, we apply Corollary 12.2.V in [7] and show that
2 a.s. 9 2 d 2 a.s. 9 2
N 2 MuGena v 2igeay, ad 5o D mos 200y,
zeP1NCN zePINCyN
In a third step, we prove that
1 ) g V) ey
N Z Z (corr (le,waxs,u)) Njoo 0.

1€CxN z3¢CnN
T1~VT2,T1 3T2 T3~ Ty, L3 =Ty

3.1.1 Mixing of the marked point processes

We prove only the mixing property of the marked point process {(z,mg ),z € Pi} since the mixing
property of {(z,m1, (jei)x) @ € P}, (j,7) € P2, may be derived with the same types of arguments.
First note that

Mo,z = Mo,1,0 +M0,2,2,

where

2
mose =23 3 (corr (UM, UM, ) Tl{w, 2} 0 {s, 20} = O]1[llzg — 5] < [z — ]

Xr~VIL 3~YT4
TRT2 T3ZTY

and

moze =23 3 (corr (U, US,)) T w2} 1 (s, 4} = 0] — ] < flea — ).

I~VT2 X3~YT4
r=XT2 x3=3T4

We only consider the marks mg 1, because the same reasoning holds for the marks mg 2 . To simplify

12



the notation, we replace mg,1,, by mg. Let

S

zePINA

be the random measure associated with {(z,m,),z € P;}. By Theorem 10.3.VI in in [7], to prove that
{(x,m,),x € P} is mixing, it suffices to show that, for any measurable, positive and bounded functions
hy and ho

Llhi+Tyhs] — Llhi]L[hs],

lyll—o0

where L [h] = E [exp (=Y. cp, h(x) m,)] is the Laplace functional of &, and T), is the shift operator
defined by Tyh (z) = h(z + y).
For any x € Py, let

m =23 3 (corr (UM UF,)) Lllrs 2] < flrs ]

X~VITo T3VTY
=9 T3=Ty

T{zy, 22} N{xs, 24} = 0] 1 [xo, 23,24 € B (x, |ly]| /4)] .

v) s very close to the one of m,, except that we only consider sites

Notice that the expression of m("
To, X3, T4 in a neighborhood of x.

Let hy (z) =[xz € A] and hy (z) = I [z € B] for two bounded sets A, B C R?. We have

Li+Th] = Elexp|— > me— > m,
i zePINA zePiN(B—y)
= E |exp - Z m;yLRff)—R%’)
i a;erA zePN(B—y)
with
RY = 3 (my-m®)>0 and RY Y (me—m) >0
zePINA z€P1N(B—y)
Therefore
Ll + Tyho] =B fexp | = > m = 3 mi (eXp(_Rg)_Rg))_Q
zePINA zePiN(B—y)
4E |exp | — Z m;y)_ Z mgy) . (3.3)
zePINA zePiN(B—y)

Let us start by showing that the top term of Eq. (3.3) converges to 0. Since mg(yy), Rf,i’) and Rg) are

positive, we have

exp | — Z m{y) — Z my) (exp(—REi’) - R%’)) - 1) < (1 - exp(—RE.‘i’) - R%)>

z€P1NA zeP1N(B—y)

<RY +RY.

13



We now prove that E {Rﬁf)} and E [ng)} converge to 0 as ||y|| — oco. To do this, we will prove that

E [Rg/)} is bounded by ¢ ||y||72(17a). First, we notice that E {Rfj’)} =E {ZmerA (mg — m;y))] is equal
to

2E[ Z Z Z corr ( JE952,U‘/I‘,S,;,[;Al))Q]I[||gc4—363||§||9L‘2—:10H]

zEPINA INIz T3~y
=2 x3=T4q

xT[Fj:2< 5 < 405 ¢ Byl /9],

which implies

4
E[Rfﬂsz; [ 2 > (o (Ua, Ungw))* Llllas — 2] < a2 — ]

TEPLNA TT2 T3~vTy
=T T3Ty

Lz; ¢ B (. |yl /4)]]-

By Lemma 7, the term for j = 2 tends to 0 exponentially fast in ||y||, and the terms for j = 3 and 4

are of the same order. So we now consider

B[ 3 5 3 (com (U0, U8,)) Tllws — sl < lles — el Tfws ¢ B a, Iyl /4)] ).

TEPINA TYT2 L3724
=T T3Tq

Thanks to the Slivnyak-Mecke formula (see e.g. Theorem 3.2.5 in [18]), the last term can be expressed

2
/ s (comr (U822, U82,) ) Tl =l < s =l Ells =1 > ol /Ao, )7

By Lemmas 6 and 7, this term is bounded by

_ — _z —zl||2
e[ [ G =l o = 2al)* s = ol g = af el
A J(R2)3
Illzs — xs]| < llz2 — || L{llog — =l > [ly]| /4] dF

oo
< C/ rrdr = ey 0,
lull/4

where ¢ denotes a generic constant. This proves that E [R( )} converges to 0 as ||y|| — oo. The same
reasoning holds for E [Rg )}.

Let us now consider the bottom term of Eq. (3.3). Note that > _p m{ and > e Pin(B-y) m¥)

are independent since - p a m? is measurable wr.t. o (P, N A ® B (0, ||yl /4)), Y e Pin(B—y) mY
is measurable w.r.t. o (P, N (B —y) ® B (0, |ly]| /4)) and

A s B0yl /49N B-y)& B0 |yl /4) =0
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for large ||ly||. Therefore we have

E [exp | — Z m{y) — Z my)

zEPINA zeP1N(B—y)

=E

exp ( Z mfj”)] xE || — Z my)

z€EPINA zeP1N(B—y)

Let us now prove that [E [exp (— Y cePinA m;(vy)ﬂ converges to E [exp (=Y., cpna )] We have

Elexp <— Z m;y)> exp (— Z m$>H
zEPINA rEPINA

=E

—E

exp <— Z m;y)> (1 — exp(—R%)))

zePiNA

Once again, we note that mc(py) >0 and RX’) > 0 so that

exp (— Z mg’”) (1 — exp(—R%’h)

zePINA

< RY

and we conclude using the fact that lim, o E [Rff)} = 0. In conclusion this proves that the marked

point process {(z,mo ),z € Pi} has the mixing property.

3.1.2 Ergodic means

The main ingredient to deal with ergodic means is the following result, which is a direct consequence of
Corollary 12.2.V in [7].

Proposition 5 Let {(x,m,), = € P} be a stationary marked point process with P C R? and with marks
mg in Ry. Let Py be the Palm mark distribution, i.e.

Po(B) =E Z I[m, € B]
z€PNI0,1]2

for any Borel subset B C Ry. Let h: Ry — R be an integrable function w.r.t. Py. Then, a.s.,
~ > h(mg) — h(m)dPo(m).
rePNCx

Now, consider the marked point process {(z,mo ) : * € P;}. Since P; is a stationary point process,
it is clear that {(x,mo ) ,x € P} is also a stationary marked point process. According to Section 3.1.1,

we know that it has a mixing property and thus that it is ergodic. It follows from Proposition 5 that

3 m] |

zeP1NCy

- Z
mo, — E
N T Nooo
xePiNCxn
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Moreover, according to the Slivnyak-Mecke formula, we have

g

zePNCy

I S (oo (U, U87,)) Tiena) 0 (s, it =0

21€C1,21~T2,T3~Ty,
T13T2,T3 3Ty

2
= 2/ / - corr (UCEYQQ,UQQAL) p2.1(21, %2, T3, x4)dredrsdasde,
C; J(R2?)

2
2/ / corr (Uév;;)frl, UéVQfIl) 2.1(0, 22 — 1,23 — 1, x4 — x1)dwadrzdaydey
c, J(R2?) ' '
2

2
/ corr (Uévp,UiYV;) p2,1(0, x5, x5, ) )dwhdahda)
(R2)3 2 374
2
= 20’0,‘/2.

It follows from the definition of my , that

% Z Z (corr (U:E:YQQ’ Ug‘%))Q T[{x1, 22} N{xs3, 24} = ) Naf>oo 20(2)"/2.

z1ECN 13214
T1~T2,T1 T2 T32T4

We proceed in a similar way for the marks my (j«i),q, (j,7) € Po. This implies

2 2 a.s.
N Z Z (COIT (UCEI;Qw Ug‘;h)) I [($17$2) 7& (SE3,$4)] N—> Z Ui(gx_n'),vg + US,VQ.

—00
z1€Cy  T37T4 (4,1)EP2
Ty ~T2 T XD T3ZT4

3.1.3 Deviations in z3.

We prove below that

2 2
il (W) (W) a-g3.
N E E (corr (Uml,xszms,m N:)OO 0.
z1€CN z3¢CnN
T1~T2,T1 T2 T3~T4,T3 =Ty

To do it, it is sufficient to show that

2 w w 2 4. 2
)i Z Z (corr (Uél’gﬁ)Q,U;:%A)) Njoo 20y, (3.4)

1€CN z3€CnN
T1~T2,T1 T2 T3~T4,T3 T4

Ford > 0 and N > (2d)?, let Ay (d) = (—N'/?/2+4d, N*/2/2 —d]? and denote by Dy (z1) the square

of R? with center z; and edges of size 2d parallel to the 2- and y-axis. We have

% Z Z (corr (U:,(;YVI)Q ) UQEZVA) ) 2

:C1EAN(d) :CgEDd(:Cl)
T1~T2,T1 T2 T3~T4,T3 T4

< % Z Z (corr (UJEYQQ , UJEEV£4) ) ’

z1€CN z3€CnN
T1~T2,T1 T2 T3VT4,T3 3T



and

% Z Z (corr (UJEYVQZ ) Uﬂgvﬂﬂ)fl) ) 2

z1€CnN z3€CnN
2 Z $ w) g )
< i (corr (le,nym,u))

T1~T2,T1RT2 T3VT4,T3 3T
1€CxN T3~T4,T3 3T

T1~T2,T1 ZT2
According to (3.4), we get

2 w) v )Y’ v
2 Z Z (corr (Um(l’x)Q;Uz(37$)4)> Neroo 207,

1€CN  T3~T4,23=XT4
T1~T2,T1 T2
for almost all wp € Qp. Using the same arguments as above, we can also prove that

2y Y (e (U, 00,)) o 208 @),

z1€EAN(d) x3€Dg(x1)
T1~VT2,T1 XT2 T3~T4,T3 3Ty

for almost all wp € Qp, where

2
0\2/2 (d) =2+ 3 Ug,vz(d) + Z Uf,(]«—n‘),vg )

(4,1)€EP2
with
gy, (d) = /(RQ)3 corr(UM) UM) V2pa 1 (w1, @2, 23, 24)[ [w3 € Dy (21)] I[z1 = 0]d& 2.4
and
, Wy (W) 2 (&)
Ui(jei),\/g (d)=1[j =3 /(R2)2 COI‘I‘(Uggl’gZQ, Ux(i),f({&“\{j})) q2J,1 ' (5”{114}\{3'})

x I[z; € Da (z1)]1]z1 = 0] dZ 1.4\ (1.5}
) w j<>1) [ -
+1[j =4] /(Rz) COH(U’EYQW U9E<i>?f<{s:4}\{j}))quf_> )(${1:4}\{j})
x I[zs € Dy (z1)]I[z1 = 0] dZ(1.a)\ (1,5

More specifically, we have

Ug,Vz (d) = /(R2)3 (COI‘I‘ (UO,zza U$37w4))2p2,1 (07 T2, T3, 334)]1 [333 S Dd (0)] d$2d$3d]}4,
o? (d = o?
1,(361),Vs 1,(361),Va0
Ui(SHQ)’% (d) = /(R2)2 corr(Up gz, , Um’u)zqé‘?f}z) (0,22, 24)I[x2 € Dg (0)] dzoday,
0’%’(4(_)1))‘/2 (d) = /(R2)2 corr(Up 4, , Um3’0)2q§ﬁ_’1)(0,x2, z3)l[zs € Dy (0)] daodes,
0%7(492)7‘/2 (d = /(R2)2 corr(Up 4, , Ur37m2)2q§11<_>2) (0, z2,23)I[z3 € Dg (0)] dwedzs.
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By the monotone convergence theorem, we also deduce that 0‘2/2 (d) d% 0‘2,2 for almost all wp € Qp.
—00

We therefore derive that

2 2
il (W) (W) 2
N E E (corr (le,IZ,UI3J4 N 207,
r1€CxN zeCn
T1~T2,T1 X T2 T3~T4,T3 3Ty

for almost all wp € Qp.

Proof of Proposition 4. From the previous sub-sections and the fact that impy_,o |Efy|/N = 3 for

almost all wp € Qp, we derive that

]E{(‘/Z(VVI\Z)’)Qpl}'EQ;V' S Y (o (0, 00,))
(

z1,22)EEY (z3,04)EL Y

converges for almost all wp € Qp to 0‘2,2. O

3.2 Checking Condition (c¢)

Since VQ(VJ&)' = I (fn,2), we only consider the case r = 1. Because

1
fno2®1 fne = Z Z £9? @ P2

!/
el keely lee)y

we have

2
[fn2 ®1 [N 2lges

1 Z corr (U(k), U(l)) corr (U(i), U(j)) corr (U(k), U(i)) corr (U(l), U(j)) .

=
] kL i,jeely

Let dj; denote the distance between the first point in R? of the pair ¢(k) and the first point in R? of
the pair ¢(l), and let |le,,|| be the distance between the points of the pair p(m) for m =i, j, k,l.
Let € € (0,1/2) and dy be as in Lemma 6 (i7). We assume that the terms appearing in the sums are
such that
di,1,dij, di,i, di; > max{do, ||€i\|1/a},

with ||e;]| > |le;]|, |lex| , ||e:]]. The above assumption is not restrictive since it deals with the most difficult

case. According to Lemma 6, is is sufficient to prove that

1

a— a— a— a— 8(2—«
AR ST A dra > do] 2 [diy > do) A 2L dw.: > do] g 2L[dy s > do] [|es|** ™)

kJi,jeely

converges a.s. to 0 as N goes to infinity.

We consider two cases depending on whether ||e;|| is larger or smaller than N<° for some g > 0.

18



Case 1. Assume that |le;|| > N®°, with €9 > 0. Then

> Ay [dg > do] d§5 T [di ;> do) AT [dks > do) df T [dy; > do]

2
|€N¢ k,li,jeely

X [leall* = [Jles]| > N=0]
82—«
< clei] Do el P T leil] = N
i€ely

According to Lemma 7 (given in Section 5) and the Slivnyak-Mecke formula, we can easily show that

N Y el L e = N = 0 (=¥,

icely
which is the term of a convergent series. According to the Borel-Cantelli lemma, this shows that

8(2—«
NS el * 1 lfes]| > N*0]

, ’
€€y

converges to 0 a.s.. The same holds for c|e/y| Ziee’N Heng@_a) I{||e;]] > N=°] since Lj{}[l oL 3 a.s..

Case 2. We now assume that ||e;|| < N®0. Then, taking &9 = 8¢¢(2 — ), we have HeiHS(Z_a) < N®o,

It is sufficient to prove that, a.s.,

|]6VN2 MZJ)EN dg *Tldes > do] d7 7 °T(ds ;> do] it 7T [dyes > do] 47T [dy; > do] — 0.
Since
A 20 [dey > do] AT [dk s > do] < di DTk > do] + di ¢ L [dys > do],
we have

> eI dgg > do] A9 T [di ;> do] dft T [dks > do) df T [dy; > do]

k,li,j€ely

< Y A > do] 4Ty > do] (4T 2 do] + 4Ty > do])

kJli,jeely
= 3 A%M[dsy > do) A7 [dry > do] dy TP T dg > do]
k,li,jEely
+ Y dYdi > do] AP [y > do] dpe Tk > do)
k,l,i,j€ey
2 N T Pdrg > do] A2 [dsy > do] d§ L[y > do).
k,li,j€ey

Let us prove that, for 0 < a < 1 and for any n > 0,

N~" sup Zd (o= [ko > dp] e 0, a.s..

leely &

In this way, we will be able to bound supe., > dj 2(a i [dk,; > do] by N for N large enough. To do
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this it is sufficient to prove that, for any n > 0,

N7 sup Dy =2V Illy —all 2 do] 0, as.

yeP1NCn zeP;

To establish this convergence, we will use the Borel-Cantelli lemma. Let € > 0 be fixed. We have

PN sup Y fly—a* P I]ly -] > do) >«
yerCNzePl

=P [Hy ePNCy NN ly— 2P 2 I[lly — z]| > do] > g]
zeP;

<E| >

yePINCnN

=/C [N Yy — e [Ily—mlzdo]>€]dy

zEP

NSy — 2?2 1 lly — 2]l > do] > ]

TEP

)

— NP [N‘" ST PP I |lal| > do] > &
zEP;

where, in the last line, we used the fact that P; is stationary. According to Chernoff’s inequality, we

have

PN Z Ha:||2(a_2) >e| <exp(—eNME
z€P,NB(0,/2N1/2)

eXp (Z 2”2 1 [Jl2]] = do])] :

zEP,
By Theorem 3.2.4 in [18], we have
[exp (Z 222 1|2 > dg])] = exp (/ (||w||2(a—2) T[] > do] — 1) dm) ,
r€EP; R2

which is finite. We can easily deduce that

P[ sup Y fly— 2?7V I[ly — 2] > do] >E]

yePNCnN zeP;
is the term of a convergent series and consequently that

N~ sup ZdQ(a b [dk,; > do] N—> 0, a.s..

leely 1 oo

Therefore, we have, for large IV,

>0 5Tk > do] PN [di > do] A7 T [dr; > o)

ki, j€ey

SNT Y APy > doldf P [dr, > do],  as.

Lijeey
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Then, note that

> dfIdiy > do] A7y > do) = Y Y AT [di > do] T [dy; > do)

jEe Lige)

li,jeely
2
Y| T amecw
j€ey \ieB(j,V2N1/2)
Let n9 > 0 and &g be such that &y + (o — 1) + 19/2 < 0. It remains to prove that
2
NEo+m0/2
TAE 2 | 2 I 2 dd
N jeely \ieB(jv/aN1/2)
converges to 0 as N — oo a.s.. Since L]{,VI N*} 3 a.s., we have to prove that, a.s.,
— 00
2
1 a—2
NZT G2 Z Z ly — 2" " Illy — || = do] o0
yePINCN xEPlﬁB(y,ﬁNl/Q)
Because IPLNCM N—> 1 a.s. and 0 < a < 1, it is sufficient to prove that, for any n > 0, a.s.,
hade el
N=(@/Z sup > ly — =" T[lly — 2|l > do] — 0.
yeEP1NCn N—oo

z€EP1NB(y,V2N1/2)

To do this, we will use again the Borel-Cantelli lemma. Let € > 0 be fixed. We have

—(« a—2
Pp, |N~(/2H1 sup S lly—a*?Tly — 2l > do] > €
y€P1ﬁCN xeB(y,\/iNl/Q)
<Ep | Y L[N~/ 3 ly — 221 lly — | > do] > ¢
yeEPINCy z€P1NB(y,v/2N1/2)
- / Pp [N-@ED STy Ty — 2 > do] > | dy
Cn

z€PINB(y,v/2N1/2)

= NPp, |N~(/2tm) > |2]|* 2 T[]l > do] > €|
z€P1NB(0,/2N1/2)

where, in the last line, we used the fact that P; is stationary. According to Chernoff’s inequality, we
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have

P | N~ /2 > 2|2 T[] > do] > &
z€P1NB(0,/2N1/2)

< exp (—eN*/2)E fexp oo el Pl > do)
z€PINB(0,/2N1/2)

= exp (—ENC“/Q'H’) E exp 1;/ 3?72]1 [Rz > do]

= exp (—eN/21) E | (B[ ‘2H[Ri2doJDN } ,

where N = |P1 N B(0, \/§N1/2)| has a Poisson distribution with parameter 27N and R, = ||U;|| for
i > 1 with (U;);»; a sequence of i.i.d. random variables with uniform distribution on B(0,v2N1/2).
Note that the random variables R;’s have the same distribution as in Eq. (5.1). By Lemma 8, we know
that, for large NV,

E [eRTzH[RlZdO]} <1+ cl(\/ﬁ)o‘_2 + N1

It follows (by using the moment generating function of Poisson distributions) that, for large N,
o=2 >d N
E [(]E {eRl I R f] = D]]) ] < exp (27rcl(\/ﬁ)a + 27r02) .

Therefore

P | N—(@/240) Z |2]|“7? > e| <exp (—ENO‘/2+" + 21e1 (VN)® + 271'62) .
z€P;NB(0,V2N1/2)

Since n > 0, the bound converges to 0 exponentially fast in N. This proves that

P | N~(@/2)  qup Z ly —z||*? > e
yePnCy wEB(y,\/iNl/Q)

is the term of a convergent series and consequently that

N—@/2m gup E ly — )2 o2 Oas.
—
YERINON e By, vaN1/2) -

Considering the two above cases, we deduce that a.s. ||fn2 ®1 fN,2||32~3®2 — 0 as N — oo, which
shows that Condition (¢) is satisfied.

4 Proof of Theorem 1 for VE,)(VA[?)

We proceed in the same way as ‘/2(7‘%). Let P; be a Poisson point process of intensity 1 in R2. Because

NY/2py L Py and, by self-similarity property, (W (x)),er2 L (W(N’l/zx)/N*a/‘l)xeRQ, the random
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variable V},(,V]l\;) has the same distribution as

wy _ 1

3,N =
VIDTR]
—1
1 Ryizsa vl
x oy (vi2, vih,) ( " S ) ( s 2]

1
(Il,wz,l'g)GDT;V 21,T2,23 Z1,T3

where DT}, = DT ¢, is the set of triples (z1, 2, z3) of the Delaunay triangulation associated with P,
such that A(x1, w2, 23) €Del(Py), 21 < 29 < 23, and 7, € Cx = (-NV2/2, NV/2/2]2.
With

oW —(1- R )-1/2 (U<W> —Rxl,m,wsU(W)) and TW) — gw)

T1,22,T3 x1,T2,T3 x1,T2 Z1,23 1,23 x1,T37

we have

o~ S (- U+ (@ - ).

1
Vin' = =Tt
|DTN‘ (Il,xg,mg)EDTll\,

The correlations between the terms appearing in the sum can be made explicit in the following sense.

First, for any (z1,x2,x3) € DT}, we have

corr (U(W) o) ) = 0.

T1,22,T37 7 T1,T3

Second, for any (z1,x2,x3) € DTy and (24, x5, 26) € DT}, we have

°

corr (UJEY[%’ZS,U;YQ?SJG) =(1- Ril,ﬂ?z,xg)_l/2(1 — Ri4,l‘5,13)_1/2

. corr (Ugﬁ‘fﬁz, Uéf‘%) — Ry, s 24 COIT (Uémz,UQfﬁe)
w w w w
=Ry, x5 cOTT (Uw(hx)?’ﬂ Ug£4,325 + Ry w25 Ry ws,36 COIT <U$(17$)37 Ug£4,925>)
.
(W (W
corr (Uw(l,ﬂi)z,ais ’ U9(3475126)
= (1 _ Ril,mg,mg)il/z |:COIT (Uéll/‘,/z)2, U:l()}:[,/m)s) - R:l)l,irg,xgcorr (Ux(‘l/‘,/m)gﬂ Ua(:}:‘,/m)6>} ’

.

corr (U'(W) o) ) = (171’32 )*1/2 {corr (U(W) uw) ) — Ry, 25, zC0IT (U(W) uw) )} ;

T1,T37 7 T4,T5,%6 T4,25,T6 Z1,T37 7 T4,Ts T1,T37 7 Ty4,Te

corr (ﬁ(w) o) ) = corr (U(W) uWw) ) ,

T1,T37 7 Tyq,Te x1,T37 7 Tq,Te

where the correlations appearing in the right-hand side of the equalities are given in Section 3.

Let DTj g2 be the set of triples (z1, 22, x3) in Py, such that A(z1, z2,23) € Del(P;) and 1 < 22 = 3.
Let EDTy g2 = {((x1,22,23), (x1,23)) : (x1,22,23) € DT} g2}. Since there is a countable number of
triangles, there exists a one-to-one function ¢ : Zx{1,2} — EDT) g2 such that, for any (z1,zs,23) €

DT g2, there exists a unique (k,4) € Zx{1,2} such that USEZ)D = ﬁm(‘ljva22m3 and Uw(k,2) = Uy, z,. For
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simplicity, the quantity U(‘Ev?i) is now denoted by U*9). Moreover we let edty = {(k,i) € Z x {1,2} :
o(k,i) € EDT} } where EDT), = EDT) ¢, and remark that |edt’y| = |[EDTy|.

Given wp an element of Qp, according to Proposition 7.2.3 in [15], there exists a real separable
Hilbert space §), as well as an isonormal Gaussian process over §), written {X(h) : h € 9}, with the
property that there exists a set E = {ey,; : k € Z,i € {1,2}} C $ such that () E generates $; ()
(ekis€lj)g = corr (U(k’i),0(57j)) for every k,l € Z,i,j € {1,2}; and (i) U*) = X (e ;) for every
keZ,ie{1,2}. Let

®2

1
fN,2=W Z ki
Vi€dty (k,i)€edt’y

so that V( - = I (fn,2), where I is the 274 multiple integral of fn.2. The construction is therefore
similar to the one that we used for VZ(’V;)/.

As in the previous section, we need to introduce additional probability functions to characterize the

)

asymptotic variance of VS(IJ/IV/ . For any distinct points x1, z2, 3, 24, T5, ¢ € R? and N > 0, we write

ps.N(Z1, T2, T3, Ta, T5, Tg) = P[A($1,$2,1‘3), A(xy, z5,26) in Del(Py U {1, 22, 3, T4, %5, T6}),

with 1 <29 <23 and z4 < x5 =< xg}.

It is assumed that the two triangles A(zq,22,23) and A(xg,x5,26) of the Delaunay triangulation
Del(Py U {z1, xa, x3, 24, T5,26}) have no points in common, i.e. x1,xo,x3 and x4,xs5,x¢ are distinct

points. We also have to take into account the cases where they have one or two common points. Let
P51 ={(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(6,1),(6,2), (6,3)},
resp.
P32 ={((4,1),(5,2)), ((4,1),(5,3)), ((4,1),(6,2)), ((4,1), (6,3)), ((4,2), (5,3)),
((4,2),(6,3)), ((5,1),(6,2)), ((5,1), (6,3)), ((5,2), (6,3)) }

The above quantities deal with the couples (resp. the set of pairs of couples) for which A(z1, 22, x3) and
A(z4, x5, 26) have one (resp. two) common points: i.e. for (j,7) € P31, ¢; = x; with z; € {z4, 25,26}
and x; € {z1,22,23} (vesp. for ((4,7),(l,k)) € Pso (i < k,j < 1), x; = z; with z; € {z4,25,26}

and x; € {1,292, 23} and x; = xp with x; € {z4,25, 26} and xp € {x1,22,23}). Then we define, for
(j,1) € P31,
(J;g, N )(90{1 6n\{i}) = P|A(z1, 29, 23), A2y, x5, 26) in Del(Py U {x1, x2, 23, 24,25, T6}),

with 1 2 29 2 23,24 2 5 2 w6 and z; = ;
and, for ((4,%),(l,k)) € P32,

qé‘fﬁ“m’“) (Triepngay) = P|A(z1, 22, 23), A(2g, 25, 76) in Del(Py U {x1, 22,73, 24, 75, T6 }),

with 21 2 29 223,24 X x5 2 w6 and v; = x;, 77 = mk]

The following quantities are proportional to the correlations of the typical squared increments asso-

ciated with pairs of Delaunay neighbors accordingly to the different cases. When there are no common
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points, we define
N . 2
Tb vy :/ (COH (UJEYQZ,QW U;ZQS@G)) p3,1(T1, T2, T3, 24, T5, T6)[[21 = 0]dT(2:61,
(R2)5
. . 2
OGven = / (COYT (UQEYQZM’ U;ZQG)) p3,1(1, 2, T3, 24, T5, 26)[[21 = 0]dZ (2.6},
(R2)5
N . 2
0(2),V3,3 = / (corr (UQEYQS, UQEZQE,,%)) p3,1(71, T2, T3, 24, 75, 26)[[21 = 0]dZ2:63,
(R2)5

. . 2
0(2),\/3,4 = /(R2)5 (COH" (Uz(ll/l,/z)37 UQEZVI)6>) p3,1(21, T2, 13, 24, 25, T6) 21 = 0]dT (9.6

When there is one common point, for (j,7) € Ps 1, we define

= (W 2 (i) = "
G%,(j<—>i),V3,1 = /(R2)4 (COI‘I‘ (Uﬂgyﬂgzxs’ Ui(i)?f({z;;e}\{j}))) qf(fﬁ_) (I{liﬁ}\{j})ﬂ[xl = O]dx{lﬁ}\{ld}’

Ui(jm)ygz =1[j= 5]/

R
1l #5] |

(R

- - 2 (o) - S
2y (Corr (U;QNS,U;ZQG)) a5 Fonp)ller = 01 dFpuep 1,5}

(W (W) 2 o) = —ala=
" (COTY (U£1,22,z37Uw<,;),f<{4:6}\“,5}>)) a5 (Ernep )Lz = 0] di ey (1,51

_ : (W) (G54 = _ ol
OF (i), Va3 = /(R2)4 (COH" (UCEY,%Ux(i>,f<{4:6w)) t5x " (Fep gy llen = 01dZ wop 1,5

O'i(j<—>i)7V3,4 =1[j = 5]/

~ ~ 2 . Do .
(R2)4 <COH <U£Y33’Uﬂgm)e)) qg{f))(x{lﬁ}\{j})ﬂ[xl = 0ldZ(1:63\ (1,9}

, S(W) (W) 2 (i) _ e
Tl /(R2)4 (Corr (U"’El’”gi’" Um(i)vfums}\u,s}))) a5 (Fuep iy Iz = 0] d¥uep (1,5
When there are two common points, for ((4,17), (I,k)) € P32, we define

2
(W) (W)
2)3 <C0rr (Uﬂ”lv“vm’U%)vf<k>»f<{4=e}\{j,z})

A

2 _
09, (jeil<rk), V3,1 —
(R

Trrep ()L [z = 01 dZ 16y (1,50

and

2
09,(jri,lk), V5,2

~ ~ 2 C
=1 [j = 4,l = 5} /(R2)3 (COI‘I‘ ( Tgyﬂgz,xs’ UJEYE/I)G)) qé{f”ﬁk)(5{1:6}\{]‘71})]1 [fEl = 0] df{l:ﬁ}\{l,j,l}

)

~ ~ 2 Geoilok) - S
. (corr (Ugfgz,xs,Ungk» a7 (@ e )T (21 = 0] dZ 16y 1.5

)

~ ~ 2 Geoilok) - S
. (Corr (Ué%zm,U;mk)) q:(ij © )(:v{1;6}\{j,z})ﬂ[x1 = 0] dZ 160\ (1.5,
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and

2
09,(j i, l<k), V5,3

2 .
_ (W) (W) (ji,lerk) [ — . -
B /(R2)3 (Corr (Uiglvx)ii’ Ux(i)7w(k)7f({4:6}\{j,l}))) q3‘?1 (I{lﬁ}\{Jal}>H [Il - 0] dx{l;ﬁ}\{l,jJ}

and

2
09, (ji,l<3k), V3,4

3,1

2
i, k) /- =

(082, 08%,) ) S P @ op gLl = 0] dFquop iy
: Wy vy Y\ Geilek) - B

+ I[[] = 4,l = 6] . (COI‘I‘( 1,237 UI7 fbk)) q371 (x{1:6}\{j7l})]l[x1 = 0} dx{1:6}\{17j,l}
~ ~ 2 eilek) o -

( QEYV;C)J’U;ﬁ?/;gk)) qgj,f_} < )(56{1:6}\{]',1})]1 [z1 = 0] d¥ {163\ {1,513

For example, for ((4,17), (I, k)) = ((4,1), (5,2)), we have

2
2 _ (4¢+1,54+2)
03,(4451,5¢32),V5,1  — CO”( Ozg,wg,’ omz,mﬁ)) 3.1 (0, x2, x5, x6)dradrsdas
(R2)3
2
2 _ (44+1,5¢32)
02, (4431,5¢+2), V5,2 — / COYT( m2,$3a )) 431 (0, z9, x3, Tg)drodrsdre
(R2)3

2
U(W) U(W) )) qf(;l;_)L&_)Q)(O,$2,1’3,$6)dl’2df£3d$6

0,237 ¥ 0,x2,x6

2
02, (4¢31,5¢32),V3,3 /(RH(CO”

U%,(4<—>1,5<—>2),V3,4 = - corr (USVQ,USVQ)) qgﬁ_ﬂ’&_ﬂ)(ﬂ,I2,$3,x6)dx2dx3dx6.

The asymptotic variance of VSEVZI\;) is then defined as

4
oy, = Z Tb vym + Z Z ot Goi),Va,m T Z Z Jg,(jHi,H—)k),Vg,m +4.

(4,1)€P3,1 m=1 ((4,9),(L,k))EP3,2 m=1

In the same spirit as Lemma 3, we can show that o7, is finite. The CLT for Vg(,vpl is then proved in the

same way as for \/2("/]5)/, by addressing the correlations given above.

5 Technical lemmas

In this section, we establish technical results which are useful to derive Theorem 1.

5.1 Asymptotic correlations between pairs of normalized increments

Let 1,22, 23,24 € R2. The following lemma deals with the asymptotic behavior of

1
corr (UMW) UMW) ) = _cov (W (z2) — W (1), W (z4) — W (23))
( e 4) 02 (d1 2d3,4)""*

as the distance between x; and x3 goes to infinity.
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Lemma 6 (i) Let di2 and ds4 be fized and let x1,x2,23,24 be such that ||xo —z1]| = di2 and

x4 — z3]| = d3 4. Then
1
corr (U;YQQ, UQEZV924) My §(d172d374)1*’l/2d?§2 (cos Bcosf — (1 — o) sin Bsinb)
: : S ;

where d 1= dy 3 := ||x3 — z1||, 6 = angle(d, z1x3) € [0,27) and § = angle(u, z3x4) € [0,2m) with 4
a vector orthogonal to Tzxi such that (4, T3x1) is a direct coordinate system.

(ii) Let ¢ € (0,1/2). Then, there exist two constants ¢ and do such that, for any x1, 2, 23,74 € R?

with 0 < ||zg — x3|| < ||z2 — 21|| < ||23 — 21||° and ||x3 — z1]| > do, we have

|corr(USY), U < e llag — 2|27 - [l — |72

Proof of Lemma 6.
(i). Since

cov (W (z2) = W (z1) ,W (x4) — W (23))
= cov (W (z2) = W (21), W (z4) = W (21)) — cov (W (22) = W (21) , W (23) — W (21))
= 207 ([ 4§y — g — (05 + s — i)

1
= 502 (( ?,4 - d(ll,:s) - (dg,4 - dg,s)) ’

we have )
w w a « a «
corr (US17, UL, ) = 2 (dy.ads.q)"" e = dia) = (= o))
Let ¢4 = ||z1 — x2|| and {3 = ||x3 — 4] be fixed. Without loss of generality, we assume that the points

have coordinates x1 (0, d), z2 (¢1 cos6,d + {1 sin6), x5 (0,0), x4 (¢2 cos B, f2 sin 3) with 8, 8 € [0,27). This

gives

diy = d

dia = \/lacos B2+ (d— oo P = /3 — 20y sin § + a2
dos = /(lreos0 + (d+ im0 = /3 + 2dt, sin 0 + @2
dag = /(facos B — €1 cos0)2 + (d— lysinB + £ sinh)>

- \/Z% + 03 + 2 (—{5 cos By cos 0 — Uy sin B4y sin ) + 2d (—l2 sin 3 + £; sin 0) + d2.

Now note that

1 a2 ala—2 . 1 _
Tqa—dfg=d" (1—a€2s1nﬂd—|—2d§+(8)(2€2s1n5)2dz—|—0(d 2)—1)
o— . « . 2 _
=d 1(faégsmBJrﬁ(€§+(a—2)(€281nﬂ) )Jro(d 1))
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and

1
dg4dg73da<1+0é(6281n6+£181110)d+d2<2
a(a—2)

—(2(— égblnﬁ—l-ﬁlblnﬁ)) 5 +o (d~ ))

2
L 52 — ¥5 cos Bl cos O — {5 sin B4 sin 9)

* 8
02 1
-4 (1 +ah 51n9 + ;? % (201 smH) — +o (d 2)) )
Thus
34— dys=—d* (af? sinff + = (52 + 02 42 (L3 cos By cos O — Ly sin By sin 0)
+ (04 —2)(—lysin B+ 44 sir19)2 — é% —(a— 2)@%(51n9)2 o (d_g) ))

This implies

[(d5y —dy) — (dS, — dgs)] )/ (dH%) — 20,05(cos Bcosf — (1 — a) sin Bsin ) + o(1).

It follows that
(dfy —dfs) — (d54 —dSs) ~ d* 2alils(cosBcosf — (1 —a)sinBsind),
’ ’ ’ —00

and therefore that
1
corr (Uéf‘gz,UgEZA) oy §(d1 2d3.4) 72d%2 (cos fcosf — (1 — o) sin Bsin b)),

which concludes the proof of (i).
(11). We use the same notation as in (3). First, we write dy 4 = d® f(1/d), with

= /B + 2dtysin p + 2.

Now, take h = 1/d. Provided than d is large enough, we have f(h) > 0. In particular, the function f
admits a third derivative and, according to the Taylor-Lagrange inequality,

1 -2
f(h) =1+ alahsinp + §a€§h2 + %(262 sin 8)%h* + R.(h),

with )
R < s [FO0)][1
Moreover
a /o o . o .
f(3)(y) =3 (5 — 1) (5 — 2) (1 + 205 sin By + E%yz) 23 (205 8in 5 + Q@y)g

+da (5 1) (1+26sin By + By?) T (Gasin B+ By)E3.

Taking h < 271/(1=2) we can prove that 1 + 2{ysin By + (3y> > 1 — 2h'~¢ and that |[lysin 3 + 3y| <
lo(1 + h'=2%) for any y € [0,h]. When h is small enough, these inequalities implies |R.(h)| < cl3h3.

— 9)(fysin 5)2)) + RW(q),

Therefore
o a—1 : « 2
—dy3=d (afgsmﬁ—i—ﬁ (63 + («
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with ‘Rgl)(d)‘ < cf3d®~3. Proceeding in the same spirit as above, we can prove that the rest Rg)(d) in

the Taylor expansion of d3 4 — d§ 3 with order 3 is such that ‘Rg)(d)‘ < cf203d*~3. Following the same
lines as in (i), this shows that

corr(UW) UMW) ) = %(4152)1%/201&*2@% Bcosh + (1 — a)sinfsinb) + R.(d),

x1,%T2? T T3,Tq

with
|R.(d)] < c(lrly)™/20205d 3 < e£372g~3,

This together with the fact that
(01£5)r =242 (cos Bcos O + (1 — a) sin Bsin )| < 2027 4>~

concludes the proof of (ii). O

5.2 Bounds for the density functions of Delaunay neighbors

Lemma 7 (i) Let x1,22,23,74 € R?. Let qé?;l)(xl,xg,m), qé‘?ﬁZ)(xl,xg,m), qé%;l)(xl,xg,xg) and

qgfl;\?m(xl,xg,xg) be as in Eq. (3.2a), (3.2b), (3.2¢) and (3.2d) respectively.

o With R =max{|[zz — o], |los — 2]},
4 w
qégﬁl)(xl,x%m) <aN (1 + N) R2e—ZNR2.
7 Vs

o With R = max{|[e2 - a1 |les — aa]l},
4 s
q§?1<\72)(x17x27m4) <N (1 + 71_]\[) Rze_zNR2.
(] WZth R = maX{HxQ — ,:ElH’ ||:1j3 — xl”}; then
4 P
Q§4J(\7)1)($1,$27$3) <N (1 + N) R2e iR,
' ™

o With R = max{||xs — 1], ||x3 — 22|}, then

4 x
qéﬁ?z)(ml,x%xg) <N (1 + 7rN) RQe_zNR2.

(ii) Let x1,x2,23,74 € R? and let ps (21,72, 23,74) be as in Eq. (3.1). Assume that ||z4 — x3]| <
||ze — z1||. Then

4 _ _ 2
po,N(T1, T2, 73, 24) < TN (1 + WN) ||zg — a1 ||2e TN 2=l

Proof of Lemma 7.
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We prove only (i) as the proof of (i) follows similar steps. First, we notice that

P[zy ~ 22, 3 ~ x4 in Del(Py U {1, 22,23, 24}) and 21 < 2, T3 < 4]
Px; ~ x2 in Del(Py U {z1,22})]
P[Jy € Py : A(z1,22,y) € Del(Py U {z1, 22})]

p27[\/’($1,.’1327x3,1‘4) -

IN

<E | I[Py Bx1,x2,y) =0
yEPN

- N e—Na(B(ﬂh,~"r327y))cly7
R?2

where B(x1,x9,y) denotes the disk passing through x1, x5 and y and where a(B) denotes the area of
any Borel subset B C R2. Since the radius of this disk is larger than § max{||zo — z1]|, ||y — 21][}, we
get

—La N max{||za—z1||,||ly—z1]|}>
po,N(T1,22,23,24) SN [ e7d Uz =l lly=o gy,
R2

This gives

_1 _ 2
po,N (21, T2, 23, 74) < Ne gmN||z2—z1] /QE[HQ—%H§||$2_$1||]dy
R

N [ e NI Ly — | > g =]l dy,
R?2

and consequently,

4 _ _ 2
pa.n(x1, T2, 23, 24) < TN (1 + 7TN) ||x2 —z1||23 TN|lwz—z1[|”

5.3 Bounds for some exponential moments of a uniform distribution over a
disc

Let N > 0 and R be a positive random variable with probability distribution function given by

—, ifo<r<vN
PR<r]={ N =" ="= (5.1)
1 ifr>N

Lemma 8 Let 0 < a < 1 and dy > 0. There exist two constants ¢c; and cy (only depending on o and
do) such that, for large N,

E [exp(R*2I[R > do])] <1+ ci(VN)* 2 +coN71
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Proof of Lemma 8. We have

E [exp(R*?I[R > do))] = /d exp((rvVN)*~2)2rdr

o/VN

1 1 > k(a—2)
<14 2/ (rvVN)*2rdr + 2/ > %rﬂ[r > do/V'N|dr
do/VN 0 p—o k!

The first integral is lower than 2(v/N)*~2. For the second one, we write

/ r\F k(a=2) rlfr > do/VN] < (VN)**=?) / Z 2(a2) (VN7 “F) e rlfr > do/V/N]dr
0 0

= k=0

= (VN)*e=2) /1 72973 exp ((r\/ﬁ)o‘_2> I[r > do/V/N]dr

0

< exp(d$~2)(VN)2 =2 /1 r2°=31[r > do/VN]dr

0
exp(dg—*)dg "

0 —1
= N~
2(1 — )
a—2
This proves Lemma 8 with ¢; = % and ¢y = %dg(afl). O
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