1. Dérivabilité

Exercice 1. Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction définie, pour tout $x \in \mathbf{R}$, par :

$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

Montrer que f est dérivable sur $\mathbf R$ mais n'est pas de classe $\mathcal C^1$.

2. Intégration

Exercice 2. Justifier que l'intégrale suivante existe et la calculer :

$$I = \int_0^{\pi} x \cos(x) \mathrm{d}x.$$

3. Equations différentielles linéaires d'ordre 2

Exercice 3. Résoudre l'équation différentielle linéaire du second ordre suivante :

$$y'' + y = 3$$

avec condition initiale y(0) = y'(0) = 0.

4. Concepts divers sur les fonctions

Exercice 4. Donner un exemple de fonction définie sur [0,1] à valeurs dans [0,1] qui est :

- (1) continue, injective mais pas surjective;
- (2) continue, surjective mais pas injective;
- (3) bijective mais pas continue.

Exercice 5. (1) Montrer que toute fonction $f: \mathbf{R} \to \mathbf{R}$ est somme d'une fonction paire et d'une fonction impaire.

(2) Expliciter la décomposition lorsque f est la fonction exponentielle puis tracer les graphes de la partie paire et de la partie impaire.

Exercice 6. Donner un exemple de fonction convexe non croissante.

5. Probabilités

Exercice 7. (1) Déterminer l'espérance et la variance d'une loi de Bernoulli de paramètre $p \in [0, 1]$.

(2) Déterminer l'espérance et la variance d'une loi binomiale de paramètre $(n, p) \in \mathbf{N}^* \times [0, 1]$.

Exercice 8. Enoncer le théorème de Moivre-Laplace.