1. SÉRIES NUMÉRIQUES

Exercice 1. (1) Justifier que la série de terme général $\frac{1}{n(n+1)}$ converge et calculer la somme $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

- (2) Soit $x \in \mathbf{R}$. Pour quelles valeurs de x la série de terme général x^n converge? Calculer, le cas échéant, la somme $\sum_{n=0}^{\infty} x^n$.
- (3) Soit $x \in \mathbf{R}$. Pour quelles valeurs de x la série de terme général nx^n converge? Calculer, le cas échéant, la somme $\sum_{n=0}^{\infty} nx^n$.

Exercice 2. Donner la nature des séries numériques $\sum_{n>0} u_n$ suivantes :

- $(1) u_n = 1 \cos\left(\frac{\pi}{n}\right);$
- $(2) u_n = \left(\frac{n}{n+1}\right)^{n^2}.$

2. SÉRIES ENTIÈRES

Exercice 3. Déterminer le rayon de convergence des séries entières suivantes :

- $(1) \sum_{n\geq 1} \frac{1}{\sqrt{n}} x^n;$
- (2) $\sum_{n\geq 0} \frac{n!}{(2n)!} x^n$;
- (3) $\sum_{n\geq 0} \frac{n!}{2^{2n}\sqrt{2n!}} x^n$;
- $(4) \sum_{n\geq 1} (\ln n) x^n.$

Exercice 4. Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n \frac{1}{k}$. On désigne par R le rayon de convergence de la série entière $\sum_{n>1} S_n x^n$.

- (1) Montrer que R = 1.
- (2) Pour tout $x \in]-1,1[$, on pose $F(x) = \sum_{n=1}^{\infty} S_n x^n$. Montrer que, pour tout $x \in]-1,1[$, on a

$$(1-x)F(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}.$$

(3) En déduire la valeur de F(x) pour tout $x \in]-1,1[$.

Exercice 5. Développer en série entière au voisinage de 0 les fonctions suivantes puis préciser le rayon de convergence de la série entière obtenue.

- (1) $\ln(1+2x^2)$;
- (2) $\frac{1}{a-x}$ avec $a \neq 0$;
- $(3) \frac{e^x}{1-x}$.

1

3. Théorèmes d'intégration

Exercice 6. En appliquant le théorème de convergence dominée, déterminer la limite, lorsque n tend vers l'infini, des suites suivantes :

$$(1) \left(\int_0^{\pi/4} (\tan t)^n dt \right)_{n \ge 0};$$

$$(2) \left(\int_1^\infty \frac{\mathrm{d}t}{1+t^n} \right)_{n \ge 0};$$

$$(3) \left(\frac{e^{-x/n}}{1+x^2} \mathrm{d}x\right)_{n \ge 1}.$$

Exercice 7. Soit f la fonction définie pour tout $(x,y) \in \mathbf{R}^2$ par $f(x,y) = 2e^{-2xy} - e^{-xy}$. Montrer que

$$\int_0^1 \left(\int_{\mathbf{R}_+} f(x, y) dx \right) dy \neq \int_{\mathbf{R}_+} \left(\int_0^1 f(x, y) dy \right) dx.$$

Que peut-on en déduire?