Exercice 1. Retrouver les valeurs de l'espérance et de la variance d'une variable aléatoire suivant :

- (1) la loi $\mathcal{B}(p)$, avec $p \in [0, 1]$;
- (2) la loi $\mathcal{B}(n,p)$, avec $n \geq 1$ et $p \in [0,1]$;
- (3) la loi $\mathcal{P}(\lambda)$, avec $\lambda \geq 0$.

Exercice 2. Soit (X_n) une suite de variables aléatoires indépendantes telles que $\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = \frac{1}{2}$ pour tout entier n. Pour $n \ge 1$, posons $S_n = X_1 + \cdots + X_n$.

- (1) Montrer que S_n admet une espérance et la calculer.
- (2) Soit $\lambda > 0$. Montrer que $e^{\lambda S_n}$ admet une espérance et la calculer.

Exercice 3. Une entreprise souhaite recruter un cadre. Un nombre n de personnes se présentent pour le poste. Chacun d'entre eux passe à tour de rôle un test, et le premier qui réussit le test est engagé. La probabilité de réussir le test est $p \in]0,1[$. On pose q=1-p. On définit la variable aléatoire X par X=k si le k-ième candidat qui réussit le test est engagé, et X=n+1 si personne n'est engagé.

- (1) Déterminer la loi de X.
- (2) En dérivant l'expression $\sum_{k=0}^{n} x^k$, calculer $\sum_{k=1}^{n} k x^{k-1}$ pour tout $x \neq 1$.
- (3) En déduire l'espérance de X.
- (4) Quelle est la valeur minimale de p pour avoir plus d'une chance sur deux de recruter l'un des candidats?

Exercice 4. Une entreprise pharmaceutique décide de faire des économies sur les tarifs d'affranchissements des courriers publicitaires à envoyer aux clients. Pour cela, elle décide d'affranchir, au hasard, une proportion de trois lettres sur cinq au tarif urgent, les autres au tarif normal.

- (1) Quatre lettres sont envoyées dans un cabinet médical de quatre médecins : quelle est la probabilité des événements :
 - A: "Au moins l'un d'entre eux reçoit une lettre au tarif urgent"?
 - B : "Exactement deux médecins sur les quatre reçoivent une lettre au tarif urgent"?
- (2) Soit X la variable aléatoire : "nombre de lettres affranchies au tarif urgent parmi 10 lettres". Quelle est la loi de X? Quelle est son espérance? sa variance?

Exercice 5. Soit (X_n) une suite de variables aléatoires indépendantes suivant la loi de Bernoulli de paramètre $p \in [0,1]$. On pose $Y_n = X_n X_{n+1}$ et $U_n = Y_1 + \cdots + Y_n$.

- (1) Quelle est la loi de Y_n ? Les variables aléatoires Y_n , $n \ge 1$, sont-elles deux à deux indépendantes?
- (2) Calculer l'espérance et la variance de U_n .

Exercice 6. Soit X une variable aléatoire admettant un moment d'ordre 2. Trouver le réel a minimisant la quantité $\mathbb{E}\left[(X-a)^2\right]$.

Exercice 7. Soient $n \geq 2$, $m \in \{1, 2, ..., n\}$. Soient X_1 et X_2 deux variables aléatoires indépendantes, définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, de loi uniforme sur $\{1, 2, ..., n\}$. Définissons la variable aléatoire Z par

$$\forall \omega \in \Omega, \quad Z(\omega) = \begin{cases} X_1(\omega) \text{ si } X_2(\omega) \leq m; \\ X_2(\omega) \text{ sinon.} \end{cases}$$

- (1) Comparer les espérances des variables aléatoires X_1 , X_2 et Z.
- (2) Déterminer les valeurs de m qui maximisent l'espérance de Z.

Exercice 8. Soient X_1, \ldots, X_n des variables aléatoires réelles, discrètes, indépendantes et de même loi et N une variable aléatoire à valeurs dans $\{1, \ldots, n\}$ indépendante de (X_1, \ldots, X_n) . Déterminer l'espérance et la variance de la variable aléatoire $S_N = X_1 + \cdots + X_N$, avec la convention $S_0 = 0$.

Exercice 9. On lance trois fois de suite une pièce de monnaie équilibrée. On note X la variable aléatoire prenant pour valeur le nombre de "face" parmi les deux premiers lancers et Y la variable aléatoire prenant pour valeur le nombre de "pile" parmi les deux derniers lancers.

- (1) Donner, sous forme d'un tableau, la loi de probabilité du couple (X, Y).
- (2) Donner les marginales de (X,Y). Les variables aléatoires X et Y sont-elles indépendantes?
- (3) Calculer les espérances et les variances de X et de Y.
- (4) Calculer la covariance du couple (X, Y).

Exercice 10. On lance deux dés équilibrés et on note U_1 , U_2 les variables aléatoires correspondant aux résultats obtenus. On pose $X = \min\{U_1, U_2\}$ et $Y = \max\{U_1, U_2\}$.

- (1) Donner la loi de X. En déduire $\mathbb{E}[X]$.
- (2) Exprimer X + Y en fonction de U_1 et U_2 ; en déduire $\mathbb{E}[Y]$.
- (3) Exprimer XY en fonction de U_1 et U_2 ; en déduire la covariance du couple (X,Y).
- (4) Les variables aléatoires X et Y sont-elles indépendantes?

Exercice 11. Soient X_1 et X_2 deux variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et de loi géométrique de paramètre $p \in]0,1[$. On pose $q=1-p,\ U=X_1+X_2$ et $T=X_1-X_2$.

- (1) Déterminer la loi de U.
- (2) Soit un entier naturel $n \geq 2$. Déterminer la loi conditionnelle de X_1 sachant l'événement $\{U = n\}$.
- (3) Déterminer la loi de T.
- (4) (a) Calculer Cov(U, T).
 - (b) Les variables aléatoires U et T sont-elles indépendantes?

Exercice 12. (1) Déterminer la fonction génératrice d'une variable aléatoire suivant une loi de Bernoulli de paramètre p; puis une loi binomiale de paramètres n et p.

- (2) Démontrer que deux variables aléatoires discrètes finies X et Y ont même loi si et seulement si $G_X = G_Y$.
- (3) Montrer que $\mathbb{E}[X] = G'_X(1)$ et $\mathbb{V}[X] = G''_X(1) + G'_X(1) (G'_X(1))^2$. Retrouver l'espérance et la variance d'une variable aléatoire suivant une loi binomiale.

Exercice 13. En utilisant les fonctions génératrices, montrer que :

- (1) si X et Y sont deux variables aléatoires indépendantes et suivent les lois $\mathcal{P}(\lambda)$ et $\mathcal{P}(\mu)$ respectivement (avec $\lambda, \mu \geq 0$), alors X + Y suit la loi $\mathcal{P}(\lambda + \mu)$;
- (2) si X et Y sont deux variables aléatoires indépendantes et suivent les lois $\mathcal{B}(n_1, p)$ et $\mathcal{B}(n_2, p)$ respectivement (avec $n_1, n_2 \geq 1$ et $p \in [0, 1]$), alors X + Y suit la loi $\mathcal{B}(n_1 + n_2, p)$.

Exercice 14. Construisons récursivement une suite (G_n) de graphes aléatoires :

- G_2 est le graphe avec deux sommets numérotés 1 et 2 avec une arête les joignant;
- pour tout $n \geq 2$, G_{n+1} se déduit de G_n en ajoutant un sommet numéroté n+1 et une arête entre le nouveau sommet et un sommet X_{n+1} choisi aléatoirement dans $\{1, 2, \ldots, n\}$ de sorte que $\mathbb{P}(X_{n+1} = k)$ soit proportionnel à $\deg(k)$ pour tout $k \leq n$ et X_{n+1} est indépendante de la construction précédente.

On étudie la variable aléatoire D_n , définie comme le degré du sommet 1 dans le graphe G_n .

- (1) Etant donnée une réalisation du graphe G_n , que peut-on dire de la somme des degrés des sommets du graphe G_n ?
- (2) Justifier que $\mathbb{P}(X_{n+1} = 1 | D_n = k) = \frac{k}{2(n-1)}$ pour tout $k \leq n-1$.
- (3) En remarquant que $D_{n+1} = D_n + \mathbf{1}_{X_{n+1}=1}$, montrer que

$$\mathbb{E}\left[D_{n+1}\right] = \mathbb{E}\left[D_n\right] \left(1 + \frac{1}{2(n-1)}\right).$$

- (4) En déduire une expression de $\mathbb{E}[D_n]$.
- (5) Montrer que $\mathbb{E}[D_n] \sim C\sqrt{n}$, où C > 0 est une constante à déterminer.

Exercice 15. Soit X une variable aléatoire à valeurs dans $\mathbf N$ de fonction génératrice égale à

$$G(z) = a \exp(1 + z^2),$$

pour $z \in \mathbf{R}$ et pour un certain $a \in \mathbf{R}$.

- (1) Trouver la valeur de a.
- (2) Déterminer la loi de X.
- (3) Est-ce que X admet une espérance et une variance? Si oui, les calculer.

Exercice 16. Soit X une variable aléatoire à valeurs dans \mathbf{N} de fonction génératrice égale à $G_X(z) = 1 - \sqrt{1-z}$ pour |z| < 1.

- (1) Calculer $\mathbb{P}(X = n)$ pour $n \ge 0$.
- (2) Soit Y une variable aléatoire indépendante de même loi que X, définie sur le même espace probabilisé que X. Calculer $\mathbb{P}(X + Y = n)$.
- (3) La variable aléatoire X admet-elle une espérance?

Exercice 17. Montrer qu'il n'est pas possible de truquer deux dés à six faces numérotés de 1 à 6 de façon à ce que la somme des points obtenus en les lançant indépendamment suive la loi uniforme sur l'ensemble $\{2,3,\ldots,12\}$. Indication : utiliser le fait que si X est une variable aléatoire à valeurs dans $\{1,\ldots,6\}$ alors sa fonction génératrice est un polynôme de degré 6.

Exercice 18. Soit X une variable aléatoire prenant ses valeurs dans $\{0,1,\ldots,N\}$. Démontrer que

$$\mathbb{E}\left[X\right] = \sum_{n=0}^{N-1} \mathbb{P}\left(X > n\right).$$

Exercice 19. Soit X une variable aléatoire à valeurs réelles et $1 \le k \le p$ deux entiers. Supposons que $\mathbb{E}\left[|X|^p\right] < \infty$. Montrer, en introduisant une indicatrice judicieusement choisie, que $\mathbb{E}\left[|X|^k\right] < \infty$.

Exercice 20. Soit X une variable aléatoire réelle.

(1) Montrer que, pour toute fonction strictement croissante $f: \mathbf{R}_{+}^{*} \to \mathbf{R}_{+}^{*}$,

$$\forall a > 0, \quad \mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}[f(|X|)]}{f(a)}.$$

(2) Supposons, de plus, que X est à valeurs positives et que pour tout t>0, la variable aléatoire e^{tX} admet une espérance. Montrer que

$$\forall a > 0, \forall t > 0, \quad \mathbb{P}(X \ge a) \le e^{-ta} \mathbb{E}\left[e^{tX}\right].$$

Exercice 21. Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- (1) Supposons que X admet une espérance. Montrer que $\mathbb{P}(X > 0) \leq \mathbb{E}[X]$.
- (2) Supposons que X^2 admet une espérance non nulle. Montrer que $\frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]} \leq \mathbb{P}(X > 0)$ et que $\mathbb{P}(X = 0) \leq \frac{\mathbb{V}[X]}{\mathbb{E}[X^2]}$.

Exercice 22. (1) Soit X une variable aléatoire suivant une loi binomiale $\mathcal{B}(n,p)$ et soit $\epsilon > 0$. Démontrer que

$$\mathbb{P}\left(\left|\frac{X}{n} - p\right| \ge \epsilon\right) \le \frac{p(1-p)}{n\epsilon^2}.$$

(2) On lance un dé cubique parfait. Déterminer un nombre de lancers à effectuer pour pouvoir affirmer avec un risque inférieur à 5% que la fréquence d'apparition du 6 au cours de ces lancers diffère de 1/6 d'au plus 1/100.

Exercice 23. Soient X et Y deux variables aléatoires à valeurs dans \mathbf{N} . On note $X \leq Y$ si, pour tout $t \in \mathbf{R}$,

$$\mathbb{P}(X > t) < \mathbb{P}(Y > t)$$
.

- (1) Montrer que $X \leq Y$ si et seulement si, pour toute fonction $h : \mathbf{N} \to \mathbf{R}_+$ croissante et bornée, $\mathbb{E}[h(X)] \leq \mathbb{E}[h(Y)].$
- (2) On suppose que X et Y suivent des lois de Poisson de paramètres λ et μ . Montrer que $X \leq Y$ si et seulement si $\lambda \leq \mu$.
- (3) On suppose que les variables aléatoires X et Y sont indépendantes et que $X \leq Y$. Montrer que $\mathbb{P}(X \leq Y) \geq \frac{1}{2}$.