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1 Introduction

1.1 The ubiquity of extremal spatial statistics

In many real-world applications, extremal statistics are crucial for understanding rare events
that can have significant impacts, particularly in systems governed by randomness and spatial
interactions. Random geometric models provide a natural framework to describe such systems,
where objects (such as random clouds of discrete points or more complex structures derived
from them) are distributed in space according to stochastic rules. By focusing on the locations
and “magnitude” of extreme behaviors observed within these models, we gain valuable insights
into rare but potentially catastrophic events across various fields.

Examples include the study of environmental extremes (such as floods and storms) [19], in-
frastructure and urban planning (spatial congestion and potential failures) [2], natural resource
exploration (rare but valuable discoveries) [15], public health (epidemics) [4], and financial risk
and insurance (catastrophic losses due to natural disasters or market crashes) [17].

1.2 Stochastic Geometry

Random geometric models are often studied within the framework of Stochastic Geometry
(SG) [13], a branch of probability theory. Similar in concept to Statistical Physics, SG fo-
cuses on analyzing large collections of randomly interacting particles, using ensemble averages
to derive macroscopic laws from local interactions. In this context, we will be particularly
interested in understanding the macroscopic laws governing extreme events.

To illustrate the problem of spatial extremal statistics in its simplest form, we can consider
a homogeneous, completely random distribution of discrete points in Euclidean space — this
is the well-known “spatial” Poisson point process [20]. Here, we can focus on identifying “iso-
lated” points, which are those that have no neighbors within an “excessively” large distance.
This provides a straightforward example of extreme behavior in random geometric models.

The example above helps illustrate how similar extremal statistics naturally arise in more
complex models studied in Stochastic Geometry. Notably, in random geometric graphs, tes-
sellations, and germ-grain models are extensively analyzed within this field. Figure[l| provides
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(a)

Figure 1: (a) A Boolean model. (b) The Voronoi tessellation.

examples of realizations for both Boolean models and random tessellations, highlighting the
diversity of structures examined in SG.

Stochastic Geometry has been actively developed across various countries. Notable efforts
are seen throughout Europe, including in the Czech Republic, Croatia, Germany, and Franceﬂ
as well as in the UK. Researchers in Australia, India, and the USA have also made signifi-
cant contributions. The international community regularly gathers at the biennial conference
“SGSIA”, with the most recent edition held in Germanyﬂ

1.3 Spatial statistics and their limits

Spatial statistics are functions that capture the local characteristics of individual points or
elements interacting within more complex random models. Examples include “score function”
such as the distance to the closest point (mentioned in the illustrative example in the previous
section), vertex degrees in random geometric graphs (corresponding to the number of balls
intersecting a given ball, see Figure [1] a), and characteristics of cells in random tessellations
(see Figure |1| b). These functions bridge theoretical models and the analysis of real-world
phenomena.

To understand the average behaviour of these statistics, we examine their sum within an
increasing window, beginning with the Law of Large Numbers (LLN). In Stochastic Geometry,
this process involves assessing the behaviour of the statistic for a typical point or element of

'For example, the Thematic Network “MAIAGES” (https://rt-maiages.math.cnrs.fr) focuses on the
Mathematics of Imaging, Learning, and Stochastic Geometry. This multidisciplinary research group aims to
promote new mathematical methods in imaging and geometric data modeling, both stochastic and deterministic.
The network encourages collaboration by supporting missions, invitations, and events, including its annual
conference.

’https://sgsia24.math.kit.edu/
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(d) Typical Poisson-Delaunay cell with a large circumradius

Figure 2: Large circumradius for a Poisson-Delaunay tessellation; see [12].

the model. Palm theory, as discussed in [0, Lesson 8-12], defines this concept by conditioning
the model on having the typical point at the origin, linking it to the LLN through ergodicity.

Next, the Central Limit Theorem (CLT) is employed to characterize fluctuations of these
statistics around the mean. A substantial body of literature addresses the CLT for geometric
statistics in models driven by Poisson or binomial point processes. Various methods are used
in this context, including the martingale approach and the Malliavin-Stein method, which
utilizes the concept of independence [I4]. For more general models, approaches based on
moments and cumulants are often employed [§].

Extremal statistics is a specialized area within statistical analysis that focuses on under-
standing and modeling the behaviour of exceptional events or values within a dataset. In our
context, it examines the exceptional values and locations of score functions (a.g. cells with
large circumradius in Poisson-Delaunay, see Figure . Depending on the “degree of excep-
tionality” of these statistics, we can begin by applying the CLT to capture the fluctuations
around a fixed amount above the mean. By increasing this degree of exceptionality, we can
reach Poisson limits for rare occurrences of these statistics [1]. This framework leads one to the
concept of large deviationsﬂ where the probability of these rare events decreases exponentially
fast to zero.

3see e.g. (C. Hirsch’s Large deviations project.
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2 Research project

Our focus is on the extreme values of spatial statistics in large random geometric models. We
propose the following areas of investigation.

Extremal characteristics of typical objects. The concept of a typical point or simple
element in a large model captures the interactions of an “average” element with the rest of the
model. To analyze its extremality, we explore the tail distribution of various characteristics
of this typical object, which is formally defined using Palm theory. A notable example is
the study by [I0], which examines the structure of large cells within the typical cell of a
Poisson-Voronoi tessellation. Understanding the Palm distribution is critical in such cases. A
challenging question arises when extending the analysis beyond the Poisson assumption. In
this context, capturing the spatial dependence of the statistics of interest becomes crucial —
one of the key areas of investigation we address below.

Gaussian Fluctuation of Extremal Statistics The statistics of the typical object in
Palm theory, through ergodic arguments, are typically related to the spatial frequency of the
observed values of these characteristics within a large network. This is the essence of the spatial
laws of large numbers. Consequently, the decay of the tail distributions of the characteristics
of the typical object allows us to capture the rate of “sparsity” of these observations within
the large model. When this rate approaches zero but does not do so too quickly (meaning
the threshold value of a given statistic we are investigating in an increasing population is not
rising too rapidly), we may still observe Gaussian fluctuations of these extreme value statistics
around an asymptotically null rate. A challenging question arises in establishing such Central
Limit Theorems that go beyond previous results, where the law of large numbers provides a
non-null rate. In attempting to develop a new framework for such “moderate” deviations
(which is similar but not identical to the works [16, [I8]), we can explore a new approach
proposed in [7] that offers a novel type of stabilization for the score functions, enabling us to
capture their asymptotically extreme values.

Ezxamples of this approach include carefully selected problems, such as examining large de-
gree values in geometric models as discussed in [9], or analyzing the size of cells in tessellations
within models based on point processes that exhibit attraction or repulsion.

Extreme statistics via Poisson germ-grain approximations. When extreme observa-
tions in the large model appear genuinely rare in terms of their low spatial frequency, their
analysis might be feasible through a limiting approach using Poisson limit theory. In spatial
statistics, when the regions with large values of the statistics in question are independently
scattered throughout space, the limit is a compound Poisson process, see e.g. [I1]. This
conceptualization not only captures the spatial frequency of these events, identified by the
intensity of the compound Poisson process, but also the distribution of the size of a cluster of
exceedances. In this PhD thesis, we propose to also study the geometry of the clusters. The
idea would then be to approximate the exceedance process using a Poisson germ-grain model.
This type of result may not be directly accessible through the Palm study of the statistics of



the typical point. Aldous’book [I] introduces an approach which leverages various techniques
to prove Poisson convergence, including the Chen-Stein method (see e.g. [14]). Similar to the
case of the CLT, the Poisson limit is expected to hold for a large class of non-Poisson models
exhibiting reasonably weak dependence and/or true sparsity of extreme observations. This
approach could be applied to specific examples of extreme statistics, with a particular emphasis
on addressing the geometry of regions exhibiting extreme statistical behavior.

Capturing spatial dependence in SG models is a crucial aspect of limiting analyses, be
it the CLT or Poisson limit. This connection is inherently linked to ergodicity, and several
sufficient conditions are explored in this domain. These range from classical mixing consider-
ations to various conditional properties and Brillinger mixing. Also, in recent developments
in the theory of point processes, the concept of “de-correlation” was introduced in [8]. This
concept, based on the evaluation of moment measures, aims to capture the joint “asymptotic
independence” of the structure. It has proven useful in establishing the CLT and is expected
to be beneficial in proving the Poisson limits mentioned earlier.

When not only asymptotic but also local capturing of dependence is required, a notion
involving the comparison of moments and void probabilities with those of a Poisson point
process was suggested in [6]. This comprehensive approach aims to capture the impact of
positive and negative dependence among points and their effects on characteristics like cover-
age and percolation in random geometric models. Both the local and asymptotic approaches
are naturally applicable to determinantal and permanental processes [3, Chapter 5]. These
processes, inspired by fermions and bosons in statistical physics, respectively, exhibit inherent
repulsion or attraction in point processes.

Our goal is to explore these two approaches to establish limiting or Palm results for some
extreme statistics. The latter technique, directly related to moment measures and void proba-
bilities, may be particularly relevant for studying extreme degree values in random geometric
graphs and characteristics of large cells in tessellations.

References

[1] D. Aldous. Probability approximations via the Poisson clumping heuristic, volume 77.
Springer Science & Business Media, 2013.

[2] F. Baccelli and B. Blaszczyszyn. Stochastic Geometry and Wireless Networks, Volume
1I: Applications. Now Publishers Inc., 2009.

[3] F. Baccelli, B. Blaszczyszyn, and M. Karray. Random Measures, Point Processes, and
Stochastic Geometry. 2020. In preparation.

[4] A. Baddeley and R. Turner. Spatial point patterns: Methodology and applications with R.
Chapman and Hall/CRC, 2005.

[5] B. Blaszczyszyn. Lecture Notes on Random Geometric Models — Random Graphs, Point
Processes and Stochastic Geometry. 2017.



[6]

[18]

[19]

[20]

B. Btaszczyszyn and D. Yogeshwaran. Clustering comparison of point processes with
applications to random geometric models. In V. Schmidt, editor, Stochastic Geometry,
Spatial Statistics and Random Fields: Models and Algorithms, volume 2120 of Lecture
Notes in Mathematics, chapter 2, pages 31-71. Springer, 2014.

B. Blaszczyszyn, D. Yogeshwaran, and J. E. Yukich. Limit theory for statistics of lipschitz-
localized stochastic processes in spatial random models. private communication.

B. Blaszczyszyn, D. Yogeshwaran, and J. E. Yukich. Limit theory for geometric statistics
of point processes having fast decay of correlations. Ann. Probab., 47(2):835-895, 2019.

G. Bonnet and N. Chenavier. The maximal degree in a Poisson-Delaunay graph.
Bernoulli, 26(2):948-979, 2020.

P. Calka, Y. Demichel, and N. Enriquez. Large planar Poisson-Voronoi cells containing
a given convex body. Ann. H. Lebesgue, 4:711-757, 2021.

N. Chenavier and M. Otto. Compound poisson approximation under S-mixing and sta-
bilization. Awvailable at https://arziv.org/pdf/2310.15009.pdf, 2023.

N. Chenavier and C. Y. Robert. Cluster size distributions of extreme values for the
poisson—voronoi tessellation. The Annals of Applied Probability, 28(6):3291-3323, 2018.

S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic geometry and its appli-
cations. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester,
third edition, 2013.

L. Decreusefond, M. Schulte, and C. Thile. Functional Poisson approximation in
Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geome-
try. Ann. Probab., 44(3):2147-2197, 2016.

P. J. Diggle and P. J. G. Ribeiro. Model-based Geostatistics. Springer, 2007.

P. Eichelsbacher and T. Schreiber. Process level moderate deviations for stabilizing func-
tionals. ESAIM: Probability and Statistics, 14:1-15, 2010.

P. Embrechts, C. Kliippelberg, and T. Mikosch. Modelling Extremal Events for Insurance
and Finance. Springer Science & Business Media, 2013.

M. Fenzl. Asymptotic results for stabilizing functionals of point processes having fast
decay of correlations. arXiv preprint arXiv:1909.13274, 2019.

7. Kabluchko, M. Schlather, and L. de Haan. Stationary max-stable fields associated to
negative definite functions. The Annals of Probability, 37(5):2042—2065, 2009.

G. Last and M. Penrose. Lectures on the Poisson Process. Institute of Mathematical
Stat. Cambridge University Press, 2017.



	Introduction
	The ubiquity of extremal spatial statistics
	Stochastic Geometry
	Spatial statistics and their limits

	Research project

