Algèbre – Examen

Calculatrices interdites
Documents interdits
Durée: 3h

Exercice 1 (2 points). Calculer le douzième polynôme cyclotomique $\Phi_{12,\mathbb{O}}$.

Exercice 2 (2 points). Soient K un corps et a, b deux éléments de K tels que [K(a):K]=m et [K(b):K]=n où m et n sont des entiers premiers entre eux. On pose L=K(a,b).

- **a.** Donner un majorant de [L:K(a)] puis de [L:K].
- **b.** Déterminer le degré de [L:K].

Exercice 3 (2 points). Soient K un corps et a un élément algébrique sur K tels que [K(a):K] soit impair.

- **a.** Montrer que $b = a^2$ est algébrique sur K et établir $[K(a) : K(b)] \le 2$.
- **b.** En déduire K(b) = K(a).

Exercice 4 (4 points). Soient $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ et $\alpha = \sqrt{2} + \sqrt{3}$.

- **a.** Montrer $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. En déduire le degré de K/\mathbb{Q} .
- **b.** Montrer $K=\mathbb{Q}(\alpha)$. On pourra considérer $\alpha^3-9\alpha$.
- **c.** Quel est le polynôme minimal $P = \operatorname{Irr}(\alpha, \mathbb{Q})$ de α sur \mathbb{Q} ?
- **d.** Quel est le polynôme minimal de α sur $\mathbb{Q}(\sqrt{2})$? Et sur $\mathbb{Q}(\sqrt{3})$?

Exercice 5 (3 points). Le but de cet exercice est de trouver un générateur de \mathbb{F}_q^* .

a. Montrer que $X^2 - X - 1$ est irréductible dans $\mathbb{F}_3[X]$.

Posons $K = \mathbb{F}_3[X]/(X^2 - X - 1)$ et $\alpha = \overline{X} \in K$.

- **b.** Montrer que K est un corps d'ordre 9
- **c.** Déterminer l'ordre de α dans K^* .
- d. Conclure.

Exercice 6 (7 points). Posons $P = X^3 - 2$ et soit α une racine réélle de P. Notons $K = \mathbb{Q}(\alpha)$.

- **a.** Quel est le degré de l'extension K/\mathbb{Q} ?
- **b.** Déterminer en fonction de α les deux autres racines de P dans \mathbb{C} .
- **c.** L'extension K/\mathbb{Q} est-elle normale? Justifier.
- **d.** Déterminer les \mathbb{Q} -isomorphismes de K dans \mathbb{C} .
- **e.** On pose L = K(j) où $j = e^{\frac{2i^{\pi}}{3}}$.
 - **i.** Déterminer $Q = Irr(j, \mathbb{Q})$.
 - ii. Établir Irr(j, K) = Q puis $[L : \mathbb{Q}] = 6$.
- **f.** Montrer que l'extension L/\mathbb{Q} est galoisienne.
- **g.** Décrire avec leurs ordres les éléments du groupe de Galois $G = \operatorname{Gal}(L/\mathbb{Q})$.
- **h.** Montrer que G est non-commutatif. À quel groupe bien connu G est-il isomorphe?