TD 4 – Extensions normales et séparables

Exercice 1. Montrer que toute extension quadratique est normale.

Exercice 2. Soit $d \in \mathbb{Q}^* \setminus (\mathbb{Q}^*)^2$. On note $K = \mathbb{Q}(\sqrt{d})$, $\theta = a + b\sqrt{d} \in K^* \setminus (K^*)^2$ où $(a, b) \in \mathbb{Q} \times \mathbb{Q}^*$ et $L = K(\sqrt{\theta})$. On suppose que ces trois corps sont inclus dans une clôture algébrique $\overline{\mathbb{Q}} \subset \mathbb{C}$ de \mathbb{Q} .

- **a.** Construire tous les \mathbb{Q} -isomorphismes de L dans $\overline{\mathbb{Q}}$.
- **b.** Montrer que L/\mathbb{Q} est une extension normale si et seulement si $a^2 db^2 \in (K^*)^2$.
- **c.** Déterminer $\mathbb{Q}^* \cap (K^*)^2$.
- **d.** On suppose $a^2 db^2 = x^2$, $x \in \mathbb{Q}^*$.
 - i. Montrer que tous les automorphismes de L sont d'ordre 1 ou 2.
 - ii. Montrer que L contient d'autre sous-corps quadratiques que K.
- **e.** On suppose $a^2-db^2=dx^2, x\in\mathbb{Q}^*$. Montrer qu'il existe un \mathbb{Q} -automorphisme de L d'ordre 4.
- **f.** Appliquer ce qui précède avec d=2 et $\theta=2-\sqrt{2}$.
- **g.** Si L/\mathbb{Q} n'est pas normale, quelle est la plus petite extension normale M qui la contient et que vaut $[M:\mathbb{Q}]$.

Exercice 3.

- **a.** Soit $P = X^4 2 \in \mathbb{Q}[X]$, montrez que P est irréductible.
- **b.** Soit $L = \mathbb{Q}(\sqrt[4]{2})$, montrez que L contient une extension quadratique K de \mathbb{Q} .
- **c.** Soit $\overline{\mathbb{Q}}$ une clôture algébrique de \mathbb{Q} , construire les \mathbb{Q} -isomorphismes de L dans $\overline{\mathbb{Q}}$.
- **d.** Montrer que le corps de décomposition N de P sur \mathbb{Q} est une extension de degré 8 et qu'il contient une extension normale de degré 4.
- e. Construire les prolongements à N des \mathbb{Q} -isomorphismes de L dans N.

Exercice 4. Soit p un nombre premier et K un corps fini de caractéristique p.

- **a.** Montrer que l'application F définie par $F(x) = x^p$ est un automorphisme de K.
- **b.** Monter que si $K = \mathbb{F}_p$ alors F est l'identité.

Exercice 5. Soit p un nombre premier et n > 0 un entier.

- **a.** Soit L/\mathbb{F}_p une extension de corps de degré n. Déterminer le cardinal de L.
- **b.** Montrer que s'il existe un corps à p^n éléments alors c'est le corps de décompostion d'un polynôme P que l'on déterminera
- c. En déduire que s'il existe ce corps est unique à isomorphisme près.
- **d.** Soit Ω une clôture algébrique de \mathbb{F}_p et M l'ensemble des racines de P. Montrer que M est un corps à p^n élements contenant \mathbb{F}_p .

Exercice 6.

- **a.** Soit $n \in \mathbb{N} \setminus \{0\}$.
 - i. Montrer que pour tout diviseur d de n, $\mathbb{Z}/n\mathbb{Z}$ a exactement un sous groupe d'ordre d.
 - ii. Montrer qu'on a $n = \sum_{d|n} \varphi(d)$.
- **b.** Soit K un corps finis à q éléments. On pose n = q 1.
 - i. Soit d un diviseur de n. Montrer que le nombre N(d) d'éléments d'ordre d dans K^* est 0 ou $\varphi(d)$.
 - ii. En déduire que K^* est un groupe cyclique d'ordre n.
- **c.** Plus généralement montrer que tout sous-groupe fini du groupe multiplicatif d'un corps est cyclique.

Exercice 7. Soit K un corps de caractéristique $p \neq 0$ et L/K une extension finie. Montrer qu'il existe $\alpha \in L$ tel qu'on ait $L = K(\alpha)$.

Exercice 8. Montrer que si K est de caractéristique $2, d \in K^*/(K^*)^2$ et $L = K(\sqrt{d})$ alors l'identité est le seul isomorphisme de L dans une clôture algébrique de Ω .