II. Intégration

Exercice 1. A l'aide d'une intégration par parties, calculer :

1.
$$\int_0^1 x e^x dx$$
 2. $\int_{-12}^{12} x^2 e^x dx$ **3.** $\int_0^3 2x^2 e^{\frac{x}{3}} dx$ **4.** $\int_0^y (x^2 - x) \ln(x) dx$ **5.** $\int_0^y 2x^2 \cos(x) dx$

Exercice 2. Déterminer une primitive de $f(x) = \ln(x)$. On pourra écrire

$$f(x) = 1 \times \ln(x) = u'(x)v(x)$$

puis utiliser l'intégration par parties. Employer la même pour calculer une primitive de $g(x) = \arctan(x)$.

Exercice 3. Pout $y \in \mathbb{R}$, on dénote I(y) l'intégrale $\int_0^y \cos(x) \sin(x) dx$. A l'aide d'une intégration par partie déterminer une equation satisfaite par I. En déduire une valeur de I.

Exercice 4. A l'aide d'un changement de variable, calculer les intégrales suivantes :

1.
$$\int_{2}^{5} \frac{1}{2t-3} dt$$
 avec $u = 2t-3$;

2.
$$\int_0^y \frac{3t}{t^2+5} dt$$
 avec $u=t^2+5$;

3.
$$\int_1^y \frac{dt}{t\sqrt{1+t}}$$
 avec $u = \sqrt{1+t}$ (on pourra utiliser $\frac{1}{u^2-1} = \frac{1}{2} \left(\frac{1}{u-1} - \frac{1}{u+1} \right)$.);

4.
$$\int_0^y \frac{2dt}{e^t + e^{-t}}$$
 avec $u = e^t$ (utiliser l'identité $\frac{u^2}{u^2 + 1} = 1 - \frac{1}{u^2 + 1}$);

5.
$$\int_{9}^{y} \ln\left(\sqrt{t}-1\right) dt$$
 avec $u=\sqrt{t}$;

6.
$$\int_1^y \frac{\ln(t)dt}{t + t(\ln t)^2} dt \text{ avec } u = \ln t;$$

7.
$$\int_0^1 \sqrt{1-t^2} dt$$
 avec $u = \sin(t)$;

8.
$$\int_0^1 t^2 \sqrt{1-t^2} dt$$
 avec $u = \sin(t)$;

Exercice 5. Déterminer des nombres réels a et b tels que pour $x \in \mathbb{R} \setminus \{-1, 2\}$:

$$f(x) = \frac{(x+2)}{(x+1)(x-2)} = \frac{a}{x+1} + \frac{b}{x-2}.$$

En déduire une primitive de la fonction f(x).

Exercice 6. Déterminer des nombres réels a, b et c tels que pour $x \in \mathbb{R} \setminus \{1\}$:

$$f(x) = \frac{1}{(x-1)(x^2+2)} = \frac{a}{x-1} + \frac{bx+c}{x^2+2}.$$

En déduire une primitive de la fonction f.

Exercice 7. Déterminer des nombres réels a, b et c tels que pour $x \in \mathbb{R} \setminus \{-1, 0, 1\} =$

$$f(x) = \frac{x^2 + x}{x(x-1)(x+1)} = \frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1}.$$

En déduire une primitive de f.

Exercice 8. Calculer une primitive pour chacune des fonctions suivantes :

1.
$$\frac{1}{t^2-t-12}$$
 2. $\frac{1}{t^2+5t+6}$ 3. $\frac{1}{t^2+5t+6}$ 4. $\frac{1}{4t^2-4t-3}$ 5. $\frac{1}{t^2+t+1}$

Exercice 9. L'objectif de cet exercice est d'approcher la valeur de $\ln(1+a)$ par un polynôme de 5 pour $a \in [0, +\infty[$. Pour $a \in [0, +\infty[$ et $k \in \mathbb{N}^*$, on note :

$$I_0(a) = \int_0^a \frac{1}{1+t} dt$$
 et $I_k(a) = \int_0^a \frac{(t-a)^k}{(1+t)^{k+1}} dt$.

- 1. Calculer $I_0(a)$ en fonction de a.
- **2.** A l'aide d'une intégration par parties, exprimer $I_1(a)$ en fonction de a.
- 3. A l'aide d'une intégration par parties, démontrer la relation :

$$I_{k+1}(a) = \frac{(-1)^{k+1}a^{k+1}}{k+1} + I_k(a)$$
 pour tout $k \in \mathbb{N}^*$

Soit P le polynôme définie sur \mathbb{R} par :

$$P(x) = \frac{1}{5}x^5 - \frac{1}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{2}x^2 + x.$$

4. Calculer $I_2(a), I_3(a), I_4(a)$ et en déduire l'égalité suivante :

$$I_5(a) = \ln(1+a) - P(a).$$

- 5. Soit $J(a) = \int_0^a (t-a)^5 dt$. Calculer J(a).
- **6.** Démontrer que pour tout $t \in [0, a]$: $\frac{(t-a)^5}{(1+t)^6} \ge (t-a)^5$.
- 7. Démonter que pour tout $a \in [0, +\infty[: J(a) \le I_5(a) \le 0.$
- **8.** En déduire que pour tout $a \in [0, +\infty[: |\ln(1+a) P(a)| \le \frac{a^6}{6}]$.
- 9. Déterminer, en justifiant votre réponse, un intervalle sur lequel P(a) est une valeur approchée de $\ln(1+a)$ à 10^{-3} près.