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Typical Problem:

Physical Model

↓

Nonlinear PDEs

↓

Discretization

↓

Linearization (Newton)

↓

Sequence of Sparse Linear Systems Ax = b
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What are sparse matrices?

Common definition: “..matrices that allow special techniques to

take advantage of the large number of zero elements and the

structure.”

A few applications of sparse matrices : Structural Engineering, Reser-

voir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, but L and U in the LU factor-

ization may be reasonably sparse (if a good technique is used).
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Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by  3 grid, 3 unk



PORES3: Unsymmetric MATRIX FROM PORES BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP
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ä Two types of matrices: structured (e.g. Sherman5) and unstruc-

tured (e.g. BP 1000)

ä Main goal of Sparse Matrix Techniques: To perform standard

matrix computations economically i.e., without storing the zeros

of the matrix.

ä Example: To add two square dense matrices of size n requires

O(n2) operations. To add two sparse matrices A and B requires

O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero ele-

ments of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of

nonzero elements is O(n).
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PROJECTION METHODS FOR LINEAR SYSTEMS



Projection Methods

Initial Problem: Ax = b A is large and sparse

Given two subspaces K and L of RN define the approximate prob-

lem:

Find x̃ ∈ K such that b−Ax̃ ⊥ L

ä Result: a small linear system (‘projected problems’)

ä With a nonzero initial guess x0, the approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. Leads to a system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L
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Matrix representation:

Let
• V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

Then letting x be the approximate solution x̃ = x0 + δ ≡ x0 + V y

where y is a vector of Rm, the Petrov-Galerkin condition yields,

W T (r0 −AV y) = 0

and therefore

x̃ = x0 + V [W TAV ]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a

simple structure [tridiagonal, Hessenberg,..]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases V = [v1, . . . , vm] for K and W = [w1, . . . , wm]

for L.

3. Compute

r ← b−Ax,

y ← (W TAV )−1W Tr,

x← x+ V y.
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Two important particular cases.

1. L = AK . then ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2
→ class of minimal residual methods: CR, GCR, ORTHOMIN,

GMRES, CGNR, ...

2. L = K → class of Galerkin or orthogonal projection methods.

When A is SPD then

‖x∗ − x̃‖A = min
z∈K
‖x∗ − z‖A.
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One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃← x+αd and Petrov-Galerkin condition r−Aδ ⊥ e yields

α = (r,e)
(Ad,e)

Three popular choices:

(I) Steepest descent.

(II) Minimal residual iteration.

(III) Residual norm steepest descent . [Same as (I) for ATAx = ATb]
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(I) Steepest descent. A is SPD. Take at each step d = r and e = r.

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

ä Each step minimizes

f(x) = ‖x− x∗‖2A = (A(x− x∗), (x− x∗))

in direction −∇f . Convergence guaranteed if A is SPD.
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(II) Minimal residual iteration. A positive definite (A + AT is SPD).

Take at each step d = r and e = Ar.

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

ä Each step minimizes f(x) = ‖b−Ax‖22 in direction r.

ä Converges under the condition that A+AT is SPD.
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Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• probably the most important class of iterative methods.

• many variants exist depending on the subspace L.

Simple properties of Km . Let µ = deg. of minimal polynomial of v

•Km = {p(A)v|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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Arnoldi’s Algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

For j = 1, ...,m do

• Compute w := Avj

• for i = 1, . . . , j, do

 hi,j := (w, vi)

w := w − hi,jvi
• hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j
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Result of orthogonalization process

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.
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Arnoldi’s Method (Lm = Km)

From Petrov-Galerkin condition when Lm = Km, we get

xm = x0 + VmH
−1
m V T

mr0

If, in addition we choose v1 = r0/‖r0‖2 ≡ r0/β in Arnoldi’s algo-

rithm, then

xm = x0 + βVmH
−1
m e1

Several algorithms mathematically equivalent to this approach:

* FOM [YS, 1981] (above formulation)

* Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].
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Minimal residual methods (Lm = AKm)

When Lm = AKm, we let Wm ≡ AVm and obtain:

xm = x0 + Vm[W T
mAVm]−1W T

mr0 =

= x0 + Vm[(AVm)TAVm]−1(AVm)Tr0.

Use again v1 := r0/(β := ‖r0‖2) and: AVm = Vm+1H̄m

xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym

where ym minimizes ‖βe1− H̄my‖2 over y ∈ Rm. Therefore, (Gen-

eralized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

xm = x0 + Vmym where ym : miny ‖βe1 − H̄my‖2

Equivalent methods:
• Axelsson’s CGLS • Orthomin (1980)

• Orthodir • GCR
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EIGENVALUE PROBLEMS



Origins of Eigenvalue Problems

• Structural Engineering [Ku = λMu]

• Electronic structure calculations [Shrödinger equation..]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Bifurcation analysis [e.g., in fluid flow]

ä Large sparse eigenvalue problems are among the most demand-

ing calculations (in terms of CPU time) in scientific computing.
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New applications in information technology

ä Search engines (google) rank web-sites in order to improve

searches

ä The google toolbar on some browsers (http://toolbar.google.com)

- gives a measure of relevance of a page.

ä The problem can be formulated as a Markov chain – Seek the

dominant eigenvector

ä Algorithm used: power method

ä For details see:

http://www.iprcom.com/papers/pagerank/index.html
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The Problem

We consider the eigenvalue problem

Ax = λx or Ax = λBx

Typically: B is symmetric (semi) positive definite, A is symmetric

or nonsymmetric

Requirements vary:

• Compute a few λi ’s with smallest or largest real parts;

• Compute all λi’s in a certain region of C;

• Compute a few of the dominant eigenvalues;

• Compute all λi’s.
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Types of problems

* Standard Hermitian (or symmetric real) Ax = λx , AH = A

* Standard non-Hermitian Ax = λx , AH 6= A

* Generalized

Ax = λBx

Several distinct sub-cases (B SPD, B SSPD, B singular with

large null space, both A and B singular, etc..)

* Quadratic

(A+ λB + λ2C)x = 0

* Nonlinear

A(λ)x = 0
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A few popular solution Methods

• Subspace Iteration [Now less popular – sometimes used for val-

idation]

• Arnoldi’s method (or Lanczos) with polynomial acceleration [Stiefel

’58, Rutishauser ’62, YS ’84,’85, Sorensen ’89,...]

• Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-

zos for (A− σI)−1.]

• Davidson’s method and variants, Generalized Davidosn’s method

[Morgan and Scott, 89], Jacobi-Davidsion

• Emerning method: Automatic Multilevel Substructuring (AMLS).

Wimereux, 04/01/2008 25



Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto K orthogonal to L

ä Given: Two subspaces K and L of same dimension.

ä Find: λ̃, ũ such that

λ̃ ∈ C, ũ ∈ K; (λ̃I −A)ũ ⊥ L

Two types of methods:

Orthogonal projection methods: situation when L = K.

Oblique projection methods: When L 6= K.
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to

eigenvectors of A.

Question: How to extract good approximations to eigenvalues/

eigenvectors from this subspace?

Answer: Rayleigh Ritz process.

Let Q = [q1, . . . , qm] an orthonormal basis of X. Then write an

approximation in the form ũ = Qy and obtain y by writing

QH(A− λ̃I)ũ = 0

ä QHAQy = λ̃y
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Subspace Iteration

ä Original idea: projection technique onto a subspace if the form

Y = AkX

ä In practice: Replace Ak by suitable polynomial [Chebyshev]

Advantages:
• Easy to implement (in symmetric case);

• Easy to analyze;
Disadvantage: Slow.

ä Often used with polynomial acceleration: AkX replaced byCk(A)X.

Typically Ck = Chebyshev polynomial.
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KRYLOV SUBSPACE METHODS



Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces, i.e., on

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• probably the most important class of projection methods [for

linear systems and for eigenvalue problems]

• many variants exist depending on the subspace L.

Properties of Km. Let µ = deg. of minimal polynom. of v. Then,

•Km = {p(A)v|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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Arnoldi’s Algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 1 Arnoldi’s procedure

For j = 1, ...,m do

Compute w := Avj

For i = 1, . . . , j, do

 hi,j := (w, vi)

w := w − hi,jvi
hj+1,j = ‖w‖2;vj+1 = w/hj+1,j

End
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Result of Arnoldi’s algorithm

Let

Hm =



x x x x x

x x x x x

x x x x

x x x

x x

x


Hm =



x x x x x

x x x x x

x x x x

x x x

x x


1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m

3. V T
mAVm = Hm ≡ Hm− last row.
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Appliaction to eigenvalue problems

ä Write approximate eigenvector as ũ = Vmy + Galerkin condition

(A− λ̃I)Vmy ⊥ Km→ V H
m (A− λ̃I)Vmy = 0

ä Approximate eigenvalues are eigenvalues of Hm

Hmyj = λ̃jyj

Associated approximate eigenvectors are

ũj = Vmyj

Typically a few of the outermost eigenvalues will converge first.
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Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is

necessary

ALGORITHM : 2 Restarted Arnoldi (computes rightmost eigenpair)

1. Start: Choose an initial vector v1 and a dimension m.

2. Iterate: Perform m steps of Arnoldi’s algorithm.

3. Restart: Compute the approximate eigenvector u(m)
1

4. associated with the rightmost eigenvalue λ(m)
1 .

5. If satisfied stop, else set v1 ≡ u(m)
1 and goto 2.
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Example:

Small Markov Chain matrix [ Mark(10) , dimension = 55]. Restarted

Arnoldi procedure for computing the eigenvector associated with

the eigenvalue with algebraically largest real part. We use m = 10.

m <(λ) =(λ) Res. Norm

10 0.9987435899D+00 0.0 0.246D-01

20 0.9999523324D+00 0.0 0.144D-02

30 0.1000000368D+01 0.0 0.221D-04

40 0.1000000025D+01 0.0 0.508D-06

50 0.9999999996D+00 0.0 0.138D-07
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Hermitian case: The Lanczos Algorithm

ä The Hessenberg matrix becomes tridiagonal :

A = AH and V H
m AVm = Hm → Hm = HH

m

ä We can write

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


(1)

ä Consequence: three term recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1
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ALGORITHM : 3 Lanczos

1. Choose an initial vector v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo

Hermitian matrix + Arnoldi→ Hermitian Lanczos

ä In theory vi’s defined by 3-term recurrence are orthogonal.

ä However: in practice severe loss of orthogonality;
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Observation [Paige, 1981]: Loss of orthogonality starts suddenly,

when the first eigenpair has converged. It is a sign of loss of linear

indedependence of the computed eigenvectors. When orthogonal-

ity is lost, then several the copies of the same eigenvalue start

appearing.
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Reorthogonalization

ä Full reorthogonalization – reorthogonalize vj+1 against all previ-

ous vi’s every time.

ä Partial reorthogonalization – reorthogonalize vj+1 against all pre-

vious vi’s only when needed [Parlett & Simon]

ä Selective reorthogonalization – reorthogonalize vj+1 against com-

puted eigenvectors [Parlett & Scott]

ä No reorthogonalization – Do not reorthogonalize - but take mea-

sures to deal with ’spurious’ eigenvalues. [Cullum & Willoughby]
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APPLICATIONS: ELECTRONIC STRUCTURE



General preliminary comments

ä Ingredients of an effective numerical simulation:

+ 
Approximations
Physical Model

Efficient Algorithms High performance
Computers

+

+

=

Simulation 

Numerical
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Most of the gains in speed combine advances from all 3 areas:

simplifications from physics, effective numerical algorithms, and

powerful hardware+software tools.

ä More than ever a successful physical simulation must be cross-

disciplinary.

ä In particular, computational codes have become too complex to

be handled by ’one-dimensional’ teams.

ä Will illustrate the above with experience of cross - disciplinary

collaboration
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Electronic structure and Schrödinger’s equation

ä Determining matter’s electronic structure can be a major chal-

lenge:

Number of particules is large [a macroscopic amount con-

tains≈ 1023 electrons and nuclei] and the physical problem

is intrinsically complex.

ä Solution via the many-body Schrödinger equation:

HΨ = EΨ

ä In original form the above equation is very complex
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ä Hamiltonian H is of the form :

H = −
∑
i

~2∇2
i

2Mi

−
∑
j

~2∇2
j

2m
+

1

2

∑
i,j

ZiZje
2

|~Ri − ~Rj|

−
∑
i,j

Zie
2

|~Ri − ~rj|
+

1

2

∑
i,j

e2

|~ri − ~rj|

ä Ψ = Ψ(r1, r2, . . . , rn, R1, R2, . . . , RN) depends on coordinates

of all electrons/nuclei.

ä Involves sums over all electrons / nuclei and their pairs

ä Note∇2
iΨ is Laplacean of Ψ w.r.t. variable ri. Represents kinetic

energy for i-th particle.

Wimereux, 04/01/2008 44



A hypothetical calculation: [with a “naive approach”]

ä 10 Atoms each having 14 electrons [Silicon]

ä ... a total of 15*10= 150 particles

ä ... Assume each coordinate will need 100 points for discretiza-

tion..

ä ... you will get

# Unknowns = 100︸︷︷︸
part.1

× 100︸︷︷︸
part.2

× · · · × 100︸︷︷︸
part.150

= 100150

ä Methods based on this basic formulation are limited to a few

atoms – useless for real compounds.
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The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole chemistry

are thus completely known, and the difficulty is only that the

exact application of these laws leads to equations much too

complicated to be soluble. It therefore becomes desirable that

approximate practical methods of applying quantum mechanics

should be developed, which can lead to the explanation of the

main features of complex atomic systems without too much

computations. Dirac, 1929

ä In 1929 quantum mechanics was basically understood

ä Today, the desire to have approximate practical methods is still

alive
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Approximations/theories used

ä Born-Oppenheimer approximation: Neglects motion of nuclei

[much heavier than electrons]

ä Density Functional Theory: observable quantities are uniquely

determined by ground state charge density.

Kohn-Sham equation:

[
−
∇2

2
+ Vion +

∫
ρ(r′)

|r − r′|
dr′ +

δExc

δρ

]
Ψ = EΨ
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The three potential terms

Effective Hamiltonian is of the form

−
∇2

2
+ Vion + VH + Vxc

ä Hartree Potential VH = solution of Poisson equation:

∇2VH = −4πρ(r)

where

ρ(r) =
∑occup

i=1 |ψi(r)|2

ä Solve by CG or FFT once a distribution ρ is known.

ä Vxc (exchange & correlation) approximated by a potential in-

duced by a local density. [LDA]. Valid for slowly varying ρ(r).
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In the end: [
−∇2

2
+ Vion + VH + Vxc

]
Ψ(r) = EΨ(r)

With

• Hartree potential (local)

∇2VH = −4πρ(r)

• Vxc depends on functional. For LDA:

Vxc = f(ρ(r))

• Vion = nonlocal – does not explicitly depend on ρ

Vion = Vloc +
∑

aPa

• VH and Vxc depend nonlinearly on eigenvectors:

ρ(r) =
∑occup

i=1 |ψi(r)|2
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Self Consistence

ä The potentials and/or charge densities must be self-consistent:

Can be viewed as a nonlinear eigenvalue problem. Can be solved

using different viewpoints

• Nonlinear eigenvalue problem: Linearize + iterate to self-consistence

• Nonlinear optimization: minimize energy [again linearize + achieve

self-consistency]

The two viewpoints are more or less equivalent

ä Preferred approach: Broyden-type quasi-Newton technique

ä Typically, a small number of iterations are required
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Self-Consistent Iteration

Initial Guess for V , V = Vat

Solve (−1
2
∇2 + V )ψi = εiψi

Calculate new ρ(r) =
∑occ

i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

V = Vnew

?

?

?

?

?

?

6

�

-



ä Most time-consuming part = computing eigenvalues / eigenvec-

tors.

Characteristic : Large number of eigenvalues /-vectors to

compute [occupied states]. For example Hamiltonian matrix size

can be N = 1, 000, 000 and the number of eigenvectors about

1,000.

ä Self-consistent loop takes a few iterations (say 10 or 20 in easy

cases).
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Real-space Finite Difference Methods

ä Use High-Order Finite Difference Methods [Fornberg & Sloan

’94]

ä Typical Geometry = Cube – regular structure.

ä Laplacean matrix need not even be stored.

Order 4 Finite Difference

Approximation:

x

yz
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The physical domain
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Pattern of resulting matrix for Ge99H100:
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Domain Mapping:

Domain i

mapped to

processor i

A domain decomposition approach is used



Problem Setup

Non-linear step

Master
V

ρ

v1 v2 v3 v4 v5  ... 

worker p 

...

worker 5 

worker 4 

worker 3 

worker 2 

worker 1 

wavefunctions and potential



Sample calculations done: Quantum dots

ä Small silicon clusters (≈ 20 − 100Angst. Involve up to a few

hundreds atoms)

• Si525H276 leads to a matrix size of N ≈ 290, 000 and

nstates = 1, 194 eigenpairs.

• In 1997 this took ∼ 20 hours of CPU time on the Cray T3E,

using 48 processors.

• TODAY: 2 hours on one SGI Madison proc. (1.3GHz)

• Could be done on a good workstation!

ä Gains: hardware and algorithms

ä Algorithms: Better diagonalization + New code exploits symme-

try
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Si525H276



Current work on diagonalization
Focus:

ä Compute eigen-space - not individual eigenvectors.

ä Take into account outer (SCF) loop

ä Future: eigenvector-free or basis-free methods

Motivation:
Standard packages (ARPACK) do not easily take

advantage of specificity of problem: self-consistent

loop, large number of eigenvalues, ...
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Example: Partial Reorth. Lanczos - PLAN

ä Compute eigenspace instead of individual eigenvectors

ä No full reorthogonalization: reorthogonalize when needed

ä No restarts – so, much larger basis needed in general

Ingredients: (1) test of loss of orthogonality (recurrence relation)

and (2) stopping criterion based on charge density instead of

eigenvectors.
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Partial Reorth. Lanczos - (Background)

ä Recall the Lanczos recurrence:

βj+1vj+1 = Avj − αjvj − βjvj−1

ä Scalars βj+1, αj selected so that vj+1 ⊥ vj, vj+1 ⊥ vj−1, and

‖vj+1‖2 = 1.

ä In theory this is enough to guarantee that {vj} is orthonormal.

+ we have:

V TAV = Tm =



α1 β2

β2 α2 β3

. . . . . . . . .

βm−1 αm−1 βm

βm αm
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Reorthgonalization: a small example
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Levels of orthogonality of the Lanczos basis for the Hamiltonian

(n = 17077) corresponding to Si10H16. Left: no reorthogonalization.

Right: partial reorth. (34 in all)
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Second ingredient: avoid computing and updating eigenvalues /

eigenvectors. Instead:

Test how good is the underlying eigenspace without knowledge

of individual eigenvectors. When converged – then compute

the basis (eigenvectors). Test: sum of occupied energies has

converged = a sum of eigenvalues of a small tridiagonal matrix.

Inexpensive.

ä See:

“Computing Charge Densities with Partially Reorthogonalized Lanc-

zos”, C. Bekas, Y. Saad, M. L. Tiago, and J. R. Chelikowsky; to

appear, CPC.
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Partial Reorth. Lanczos vs. ARPACK for Ge99H100.
Partial Lanczos ARPACK

no A ∗ x orth mem. secs A ∗ x rest. mem. secs

248 3150 109 2268 2746 3342 20 357 16454

350 4570 184 3289 5982 5283 24 504 37371

496 6550 302 4715 13714 6836 22 714 67020

ä Matrix-size = 94,341; # nonzero entries = 6,332,795

ä Number of occupied states : neig=248.

ä Requires more memory but ...

ä ... Still manageable for most systems studied [can also use

secondary storage]

ä ... and gain a factor of 4 to 6 in CPU time
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CHEBYSHEV FILTERING



Chebyshev Subspace iteration

ä Main ingredient: Chebyshev filtering

Given a basis [v1, . . . , vm], ’filter’ each vector as

v̂i = Pk(A)vi

ä pk = Low deg. polynomial. Enhances wanted eigencomponents
The filtering step is not used

to compute eigenvectors accu-

rately ä

SCF & diagonalization loops

merged

Important: convergence still

good and robust −1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Deg. 8 Cheb. polynom., on interv.: [−11]
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Tests: – 3 examples only shown

ä Tests performed on an SGI Altix 3700 cluster (Minnesota super-

computing Institute). [CPU = a 1.3 GHz Intel Madison processor.

Compiler: Intel FORTRAN ifort, with optimization flag -O3 ]

method # A ∗ x SCF its. CPU(secs)

ChebSI 124761 11 5946.69

ARPACK 142047 10 62026.37

TRLan 145909 10 26852.84

Si525H276, Polynomial degree used is 8. Total energies agreed to

within 8 digits.
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Larger tests

ä Large tests with Silicon and Iron clusters –

Si9041H1860

nstate # A ∗ x # SCF total eV
atom

1st CPU total CPU

19015 4804488 18 -92.00412 102.12 h. 294.36 h.

# PEs = 48; nH =2,992,832. m = 17 for Chebyshev-Davidson;

m = 8 for CheFSI.
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Iron clusters [symmetry of 12 in all cases]

Fe388

nstate # A ∗ x # SCF total eV
atom

1st CPU total CPU

2328× 2 18232215 187 -795.247 16.22 247.05 h.
Fe388

#PE= 24. nH = 3332856. m = 20 for Chebyshev-Davidson;

m = 18 for CheFSI.
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DATA MINING



Dimension reduction

ä Dimensionality Reduction (DR) techniques pervasive to many

applications

ä Techniques depend on desirable features or application: Pre-

serve angles? Preserve a graph? Maximize variance? ..

ä Mapping can be explicit or

implicit

ä Important class of meth-

ods: linear projections.
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Linear Dimensionality Reduction

Given: a data set X = [x1, x2, . . . , xn], and d the dimension of the

desired reduced space Y .

Want: a linear transformation from X to Y

v Y

x

T
d

m

m

n

n

d

X ∈ Rm×n

V ∈ Rm×d

Y = V >X

→ Y ∈ Rd×n

ä m-dimens. objects (xi) ‘flattened’ to d-dimens. space (yi)

Constraint: The yi’s must satisfy certain properties

ä Optimization problem
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Linear Dimensionality Reduction: PCA

PCA: the projected data must have maximum variance

ä Leads to maximizing

Tr
[
V >X̄X̄>V

]
over all orthogonal m× d matrices V – where X̄ = X(I − 1

n
eeT ) -

origin-recentered version of X

ä Solution V = { dominant eigenvectors } of the covariance

matrix

ä Also V == set of left singular vectors of X̄
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PCA and reduced rank matrix vector product
Often it is required to approximate the original data (matrix) by a

low rank matrix before attempting to solve the original problem.

ä In Latent Semantic Indexing (LSI), the “query” is performed in

the dominant singular space of A

ä Methods utilizing Principal Component Analysis, e.g. Face Recog-

nition.

Technique:
Replace A (or A†) by a lower rank approxima-

tion Ak before solving original problem.
ä This approximation captures main features of the data & gets

rid of noise and redundancy

Wimereux, 04/01/2008 75



Information Retrieval: Vector Space Model

ä Given a collection of documents (columns of a matrix A) and a

query vector q.

ä Collection represented by an m×n term by document matrix A

ä aij = some scaled frequency of term i in document j

ä A query q is a set of terms (a ‘pseudo-document’) – represented

similarly to a column
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Vector Space Model - continued

ä Problem: find columns of A (documents) that best match q

Vector Space model: similarity metric = cosine of angle between a

column and q

cTq

‖c‖2‖q‖2
ä To rank all documents we need to compute similarity vector

s = ATq

ä Many problems with literal matching: polysemy, synonymy, ...

ä Need to extract intrinsic information – or underlying “semantic”

information –
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Use of the SVD

ä Solution (LSI): replace matrix A by a low rank approximation

using the Singular Value Decomposition (SVD)

A = UΣV T → Ak = UkΣkV
T
k

ä Uk : term space, Vk: document space.

New similarity vector:

sk = AT
kq = VkΣkU

T
k q

Issues:

ä How to select k?

ä Problem with computational cost (memory + computation)

ä Problem with updates
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IR: Use of the Lanczos algorithm

ä Lanczos is good at catching large (and small) eigenvalues: can

compute singular vectors with Lanczos, & use them in LSI

ä Can do better: Use the Lanczos vectors directly for the projec-

tion..

ä First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005].

Use Lanczos bidiagonalization.

ä Use a similar approach – But directly with AAT or ATA.
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IR: Use of the Lanczos algorithm (1)

ä Let A ∈ Rm×n. Apply the Lanczos procedure to M = AAT .

Result:

QT
kAA

TQk = Tk

with Qk orthogonal, Tk tridiagonal.

ä Define si ≡ orth. projection of Ab on subspace span{Qi}

si := QiQ
T
i Ab.

ä si can be easily updated from si−1:

si = si−1 + qiq
T
i Ab.
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IR: Use of the Lanczos algorithm (2)

ä If n < m it may be more economial to apply Lanczos to M =

ATA which is n× n. Result:

Q̄T
kA

TAQ̄k = T̄k

ä Define:

ti := AQ̄iQ̄
T
i b,

ä Project b first before applying A to result.

Wimereux, 04/01/2008 81



Tests: IR

Information

retrieval

datasets

# Terms # Docs # queries sparsity

MED 7,014 1,033 30 0.735

CRAN 3,763 1,398 225 1.412
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Average query times

Med dataset
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Cran dataset.
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Average retrieval precision

Med dataset
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Conclusion

ä Many interesting sparse matrix problems in various applications

ä Still much to do in “solvers” [parallel implementations, robust

techniques, ...]

ä In data mining: quite a bit of data and software freely available..

My web-page:

http://www.cs.umn.edu/∼saad
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