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ABSTRACT. We study the low-lying zeros of a family of L-functions attached to the CM
elliptic curves Eg : y? = 23 — dz, for each odd and square-free integer d. Writing the
L-function of E; as L(s — %75(1) for the appropriate Grossencharakter &g of conductor fq,
the family F; is defined as the family of L-functions attached to the Gréssencharakters &4 1,
where for each integer k > 1, &4 denotes the primitive character inducing 55. We observe
that the average root number over the family Fy is i, which makes the symmetry type of the
family (unitary, symplectic or orthogonal) somehow mysterious, as none of the symmetry
types would lead to this average value. By computing the one-level density, we find that Fy
breaks down into two natural subfamilies, namely a symplectic family (L(s,&q%) for k even)
and an orthogonal family (L(s,&q ) for k odd). For k odd, Fy is in fact a subfamily of the
automorphic forms of fixed level 4N (f4), and even weight &k + 1, and this larger family also
has orthogonal symmetry. The main term of the one-level density gives the symmetry and
we also compute explicit lower order terms for each case.

1. INTRODUCTION

Let d € Z be a fixed odd square-free integer, and let E; denote the complex multiplication
(CM) elliptic curve with affine equation E; : y? = 2° — dx. The L-function of Ey is

L(s.Eq) =[] <1 IC) >_1 Re(s) > 2,

S 2s—1
o2 P p 2

where for each prime p 1 2d, one writes a,(Eq) = p + 1 — #E4(F,). Because of com-
plex multiplication by Z[i], this L-function may be written in terms of the L-function of a
Grossencharakter on Z[i]. More specifically, we have

L(s, Eq) = L(s = 5,&),

where &; is the Grossencharakter defined in (2.13). For each fixed d, we consider the family
of L-functions

Fa = {L(s,6ar) : k>1},
where &, denotes the primitive character inducing the power &% of the Grossencharakter &;.
For the particular case d = 1, F; and its subfamilies have been used to study fine scale
statistics of Gaussian primes in sectors [1, 4, 14, 30].

In this paper we study, for fixed square-free odd d € Z, the low-lying zeros (i.e. the
zeros close to the central point s = %) across the family of L-functions ;. The Katz—Sarnak
density conjecture [21, 22, 31] states that the distribution of low-lying zeros may be predicted
by the symmetry type of the family in question. Precisely, the conjecture states that the zero
distribution corresponds to the distribution of eigenvalues close to 1 of random matrices in an
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appropriate classical compact group (unitary, symplectic or orthogonal). There is a lengthy
history of computing one-level densities, and more generally n-level densities, for various
L-function families including those of Dirichlet characters [2, 3, 16, 27], Hecke characters
[11, 15, 32], elliptic curves [12, 24, 33], and modular forms [5, 20, 29]. We refer the reader
to the paper [25] for an extensive survey of the existing results.

The symmetry type is also related to the distribution of the sign of the functional equa-
tion. Let W (&4x) = %1 denote the root number of L(s,&yy) (i.e. the sign of its functional
equation). As demonstrated in Lemma 2.6, one has, for any fixed odd square-free d € Z,
that

i TTALS kS K W) = -1} _ 1
We remark that this average value cannot be obtained as the average rank of a family with
one of the usual symmetry types. Indeed, we show by studying congruence classes of k
modulo 8 separately (see Theorem 1.1) that F, breaks down into two natural subfamilies
with different symmetry types.

In order to state our main result, let us first introduce some notation. Let ¢ be an
even Schwartz function such that ¢(s = [7_o(t)e 2™ dt, the Fourier transform of ¢, is
compactly supported. For each ﬁxed odd square-free d € 7Z, we wish to understand the
behaviour of the properly normalized low-lying zeros across the family F;. To this end, we
define

(1.1) D(¢.a) = >, ¢ <710g (k2N<fd’k))> ,

L 2w
L(5+iv,£4,,)=0

where N(fqx) is the norm of the conductor of 4, and where the normalisation factor is
chosen upon noting that the analytic conductor of L(s, ;%) is asymptotic to k*N(fsx) (for
further details concerning this chosen normalisation see the beginning of Section 3 below).

As the root number W (&, ;) depends on the congruence class of k modulo 8 (see Lemma 2.6),
it is natural to study the family F,; according to the congruence class of k£ modulo 8. For
any « € Z/8Z, we thus define

o ={L(s,&qx) : k>1, k=a(mod8)}.
The one-level density of the family F¢ is then given for any K € N, by
8
(12) D(K7 (ba‘/__-c?) = ? Z D(¢7 fd,k)'
1<k<K
k=a (mod 8)

Our main theorem is as follows.

Theorem 1.1. Let d be an odd square-free integer, ¢ be an even Schwartz function with
supp(@) C (=1,1) and fir J € N and o € {1,2,...,8}. Let Myq := N(fua)?, where foo is
the conductor of €44 given by (2.19). When K — oo and « is even,

) A J A (d, a, ) 1 + log|d|
DK 6, F5) = __/¢ du+mZ:1 log KMM)) +OJ((1og(KJ\4d,a))J“)’




and when K — oo and « is odd,

3 (d, o, @) 1+ log |d|
K; ) = )d
D0, 7d) /¢ “*ZH%KMM)+Q«mgmmmH1’
where the Cy,(d, o, ¢) are given by (5.1).

Remark 1.2. Since supp(¢) C (—1,1), we have +1 fR u)du = +2 f 1(;5 u)du, which is
what is should for any ¢ by (1.3) and (1.4). Then, the result as stated would be false if the
support of gzﬁ was enlarged. But the contribution of the inert primes always gives +1 fR w)du

by Lemma 3.5, which explains why supp(¢) (—1,1) is a difficult barrier to break: one needs
to find a contribution from the split primes cancelling the wrong contribution from the inert
primes.

In [32], the third author computed the one-level density of the subfamily & = 0 (mod4)
for the particular case d = 1, for test functions ¢ such that 5 C (—1,1), up to an error
term of size O(1/(log K)?). In such a case, the root number is identically 1 for each element
in the family, and the one-level density has symplectic symmetry. Our work generalizes
this in three distinct directions. Specifically, we allow d € Z to be any odd and square-
free integer; we consider k = a (mod8) for any o € Z/8Z; and we explicitly compute all
lower order terms up to an arbitrary negative powers of log (KM, ). Contrary to the main
term, which follows the Katz—Sarnak prediction, the lower-order terms have no universal
behaviour, as they contain features which depend on the particular family in question. We
refer to [5, 9, 10, 28] for comparisons.

An additional interesting feature of this work is a very explicit description of the lower-
order contributions in terms of generalized Euler constants. Such a description enables
a concrete understanding of the speed of convergence to the conjectured distribution (see
Section 4 and Appendix A).

Note that Theorem 1.1 determines the symmetry type of the families F7. Indeed, by the
Katz—Sarnak density conjecture, we expect that for a family F, there exists some compact
group G € {U, Sp, 0, SO(even), SO(odd)} (depending on F) such that

1mDK¢Fa‘/m; )M:AWﬂWMt

where
(1 ifG=U
1 — ni2ro) if G = Sp
Wea(z) = 1+ 1do(2) ifG=0
1+ % if G = SO(even)
[ 1+ dp(x) — 222 if ¢ = SO(odd),
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and dg is the Dirac function. The Fourier transform of each such density is then given by

(0o(1) ifG=U
do(t) — 3n(t) if G =Sp
(1.3) We(t) = { So(t) + 1 if G =0
bo(t) + in(t) if G = SO(even)
(0o(t) +1 —3n(t) if G=S0(odd)
where
1 |t <1
(1.4) nit)=4¢3 t=1
0 t>1

By Theorem 1.1 and (1.3), F$ has symplectic symmetry when « is even, and orthogonal
symmetry when « is odd. In the latter case, the three orthogonal symmetry types can-
not be distinguished when supp(a) C (—=1,1). By differentiating the functional equation
(see (2.24)), we moreover observe that W ({,) = —1 if and only if ordS:%L(S,§d7k) is odd.

Thus, upon defining
(1.5) Si(d) :={a € (Z/87) : W(&Y) = £1 when k = o (mod8)},

we expect (by heuristically taking ¢ = dg) that G = SO(even) when o € S, (d) and G =
SO(odd) when o € S_(d). The sets Si(d) are explicitly computed in (2.29).

Observe moreover that when a odd, F3 is in fact a subfamily of the automorphic forms
of fixed level 4N(f41) and varying even weight (see Remark 2.4). This larger family also has
orthogonal symmetry. This was proven in [20] by computing the corresponding one-level
density unconditionally for <$ supported in (—1,1), and with an extra averaging over the
weights, for g/b\ supported in (—2,2).

As an application of Theorem 1.1, we obtain a proportion for non-vanishing at the central
point in each family F¢. This partially answers a question in [4], posed in the cases d = +1.
The proportion depends upon the symmetry type of the family.

Corollary 1.3. Let d be an odd square-free integer.
When o € Z/87Z is even, the proportion of non-vanishing in F§ is at least

lim %#{1 <k<K,k=a(mod8) : L(3,&y) #0} > 75%.

K—oo

In the case «v is odd and o € S4.(d), we have

lim %#{lngK, k=a(mod8) : L(} &) #0} > 25%.

K—oo

Finally, if o is odd and o € S_(d), each L(s,&qy) vanishes at s = <, and we have

1
27

.8 _
Jim e #{1 <k <K, k=oa(mod8) : ordsZ%L(s,fdk) =1} > 75%.

The structure of this paper is as follows. In Section 2 we define the Grossencharakters &,
and explicitly compute the root numbers W ({,,) for all square-free d € Z and k > 1.

This leads to the observation (equation (2.28)) that W (&) = —1 for 1 of the k > 1,
4



and depends only on k(mod8) (with different congruences for different values of d). In
Section 3, we then employ the explicit formula to compute the contribution of the I'-factors,
of the ramified primes, and of the inert primes towards the one-level density computation,
for each £;5. This yields the symmetry of each family F3 (see Proposition 3.6), provided
one can show that the average of the contribution of the split primes (i.e. of Ugpit(¢, d, k)
over 1 <k < K) is small. In Section 4 we then offer alternative expressions for ¢;inert(k), the
contributions of the inert primes to C,,(d, a, ¢), helpful in order to compute such constants,
explicitly. Next, in Section 5 we provide a simple argument showing that Theorem 1.1 holds
for supp(¢) C (—3, %), and in Section 6 we extend this result to the range supp(¢) C (—1,1).
Finally, we prove Corollary 1.3 in Section 7.
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2. BACKGROUND

2.1. Quartic Residue Symbol. We refer to [17, Ch. 9] for the material of this section.
To begin, we define the norm of a Gaussian integer o € Z[i] to be N(«) := aa. To any
Gaussian prime 7 € Z[i] such that 7 1 2, we define the quartic residue symbol modulo 7 to
be the quartic character x(r) : (Z[i]/(7))* — {£1, £i} such that

(0%

(2.1) X(m (@) == (—) = oN™=D/ (mod 1),
/4

and extended to Z[i] by x(r) (o) = 0 when (a, 7) # 1. Consider a non-unit § € Z[i] with prime
decomposition given by 8 = 7{* ... 7¢. When (§,2) = 1, we may extend by multiplicativity
to then define, for any « € Z[i]*,

X (a) = (%)4 = 11 (%)4 :

In particular, we note [17, Prop. 9.8.5] that for odd d € N and n € Z such that (n,d) = 1,
we have

(2.2) X(@(n) =1.

Recall that the conductor of a character x : (Z[i]/m)* — S! refers to the smallest
divisor flm such that x factors through (Z[i]/f)* via the projection (Z[i]/m)* — (Z[i]/f)*. If
the conductor of x is m, then y is referred to as a primitive character mod m. In particular,
we note that if 3 € Z[i] as above is square-free, then x(g) is a primitive quartic character

with conductor (/).
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A non-unit Gaussian integer o € Z[i] is said to be primary if o =1 (mod (2 4 2)). As in
[17, Lem. 7, Sect. 9.8], we find that any proper ideal («) € Z[i] coprime to (2) has precisely
one primary generator & € {+«, tia}. In what follows, we denote the primary generator o
of an ideal (a) by a bold letter. We cite from [17, Ch. 9, Thm. 2] the following reciprocity
law:

Proposition 2.1 (Law of Quartic Reciprocity). Let o, 3 € Zl[i] be primary such that
(a,8) =1. Then

§),- ()0

We will also use quadratic and quartic characters modulo even ideals. More precisely, we
introduce the character x (o) : (Z[i]/(2)) — {1} given by

(2.4) Xe(a) = {1_1 Zi:éifj;))

the character x(o42:) : (Z[i]/(2 + 2i))" — {1, i} given by

1 a=1(mod2+ 2i)
1 a=—1(mod2 + 2i)
—i  «a=1i(mod?2 + 2i)

i a = —i(mod 2 + 2i),

(2'5) X(2+2i)(0é) =

and the character x4 : (Z[i]/(4))" — {=£1, +i} given by

1 a=1,—(3+2¢) (mod4)
(2.6) Xy(@) = Z.—l Zi; Ei((?;,izzi)f(i(fi?)

—i o= —i,i(3+ 2i) (mod4).

Note that x(2), X(24+2i) and x() are primitive characters on Z[i|, with conductors given by
(2), (24 2i), and (4), respectively. We further remark that for o € Z[i], with («, 2) = 1, the
primary generator of («) is given by

7) & = Xasa0(@) .
Finally, by [23, Thm. 6.9] (see also [17, Ch. 9 Ex. 32—33]), we note that for odd d € Z\ {1},
(2.8) Xy (1 + 1) = i@ D/,

where d denotes the primary generator of (d).

2.2. L-functions of Elliptic Curves. Much of the following material on elliptic curves may
be found in [17, Ch. 18]. Let E be an elliptic curve over Q with conductor Ng. For p{ Ng,
let a,(E) := p+1—#E(F,). By the Hasse’s bound, a,(£) < 2,/p. The L-function attached
to E is then defined by

Y

DO | o

(2.9) L(s,E) := [[ Lo(s,E)™",  Re(s) >
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where

(1—a,(E)p~* +p'~2%) if p has good reduction at p
L(s,E): (1—-p~7) if p has split multiplicative reduction at p
PRI (T+p7%) if p has non-split multiplicative reduction at p
1 if p has additive reduction at p.
In the case F,; : y*> = 2® — dx, the conductor is Ng, = 2°d?, and all primes p | Ng, have

additive reduction, which gives
E 1\
(2.10) L(s, Ey) = H (1 _ %(Ea) + ) ,  Re(s) >

by ps p287 1

The following result will enable us to express L(s, E4) as the L-function of a Grossencharakter

over Q(7).

Proposition 2.2. Let d be an odd square-free integer. For p = 1(mod4), p { d, write
pZ[i] = pp and let w, be the primary generator of p. Then on Re(s) > 3/2, we have

[\CR GV

(211) L(s,E)= [ +p>H" ] (1—M>_1<1—M)_1.

p=3(mod 4) p=1(mod 4) P P
ptd (p)=pp
pid

Proof. Let us first remark that the contribution of the primes p = 1 (mod4) is well defined
because 7, is the primary generator of p. Indeed, since m, is primary, there exists some
a+ bi € Z[i] such that

™, = 1+ (a+ bi)(2 + 2i),
from which it follows that
=1+ (a+0bi)(2+2i) =1+ (—a—bi)(2+2i) =1 (mod (2 + 27)).

Moreover, since d € Z, we have x3(d)x,(d) = x(»)(d) = 1, that is x3(d) = x,(d).
The proof then follows directly from [17, Thm. 5 in Ch. 18] which ensures that for p { 2d
and p = 3 (mod4), we have #E4(F,) = p+ 1, while for p{2d and p =1 (mod4) we have

#Ea(Fp) =p+1—ap(Eq) = p+ 1= xp(d)mp — Xp(d)70y.
The definition (2.10) concludes the proof. O

We will now describe Grossencharakter (or Hecke character) whose L-function is L(s, Ey).

2.3. Grossencharakters. Fix a non-zero integral ideal m of Q(i), and let J™ denote the
group of fractional ideals in Q(7) coprime to m. As in [26, VIL.6.1], we say that £ : J™ — S!
is a Grossencharakter modulo m on Q(7), if there exists a pair of characters

& © (Z[I]/m)* — ST, £ : CC— 5!
such that
(2.12) {((a) = 5ﬁ7n<04)§oo(04)7



for every v € Z[i] coprime to m. &g, is referred to as the finite component of £, while &
is referred to as the infinite component of £. The infinite component &, may moreover be
written in the form

«

¢
Eoolar) = ( > la*,  with ¢ € Z,t € R,

in which case ¢ is said to be of type (¢,t), and we refer to £ € Z as the frequency of . The
L-function attached to the Grossencharakter & is

L(s,§) = H (1 - 1\?835) , Re(s) > 1.

The conductor of & refers to the conductor of &g, and similarly £ is said to be a primitive
Grossencharakter when &g, is primitive.

Fix d € Z to be odd and square-free. For any prime ideal p C Z[i] with primary genera-
tor my,, define

|

p prime

‘:_—p’ “Xp(d)  when (m,,2 + 2i) =1,
(213) G =1
0 when (7,2 + 2i) # 1,

and extend by multiplicativity to all ideals a C Z[i]. &; then defines a Grossencharakter
character modulo d(2 4 2i). Indeed, for any ideal («) C Z[i] coprime to d(2 + 2i), we may
write &4((a)) = uan(@)én(@), where & 1 C* — ST and &g, ¢ (Z]i]/(d(2 + 21))) — ST are
given by

@ —
(2.14) §oo t QU m, d fin © O > X(a)(d> X(2+20) (@)

By (2.7), this matches (2.13) when («) # (1 + ) is prime.
As the primary generator of a prime p = 3 (mod4) is equal to —p, we find by (2.2) that
¢4((p)) = —1. Upon comparing Euler factors with (2.11), we see that

1 l I fd(p> o
. L(s— 556d) — - T =L S,Ed .

2.4. Computing Conductors. Let us proceed by providing a more user-friendly expression
fOF §d7ﬁn-

p prime

Lemma 2.3. Let d € Z be an odd and square-free integer, and &g, as in (2.14). One has

X(d) X (2+2i) if d =1 (mod8)

(2.16) Coin = X(d)X@)Y@) %f d = 3 (mod8)
7 X@Xe+2pX@ if d=5(mod8)

X(d)X (4) if d =7 (mod8).

In particular the conductor of &g is given by
- {((2+ 2i)d) if d = 1 (mod4)

(4d) if d = 3 (mod4).
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Proof. If d = 1 (mod4), then d is primary, and noting that N(d) — 1 = 0 (mod 8), it follows
from quartic reciprocity (Proposition 2.1) and (2.7) that

X(@) (D) = Xx (@) (4) = Xa) (X120 (@) ).
Thus, by multiplicativity,

_ _ _ _ N@p-1)
ain(a) = X(d)(a) X(d) (X(2+2z’) (@) X(2+2z‘)(04) = X(d) () X(2+2z‘)(04)1 Zplaa

Moreover, observe that for p = 3 (mod 4), one has N : . .
2 (mod4) if p= 3,11 (mod 16)

Np-1 _ )0 (mod4) if p=1(mod38)
Plp 4 2(mod4) if p=—3(mod8)

()-1 _ {O (mod4) if p=7,15(mod 16)

Similarly for p = 1 (mod 4), one has >
These together imply that

Z% =2#{p|d:p=+3(mod8)} (mod4) =

{0 (mod4) if d = +1 (mod8)
pld

2 (mod4) if d =43 (mod8).
Upon noting that X(2+21) = X(2), one has

5 -1 Xo ifd=+1(mod8)
(2.17) X(2+2pz‘)d ifd= 43 d

where o is the trivial character modulo (2 + 2i). Regrouping, (2.16) now follows for the
case d = 1 (mod4).

Next, suppose d = 3 (mod4). Then —d is primary, and similarly to above we find that

€a,in (@) = X(a)(—1) X()(—d)X(2120) (@)
= X(a)(—1) X—ay (@) X(—a) (X(2120) (@) X (2120) (@)
= Xy (1) Xy (@) 22 (@) Zwe =4

Since

X (—1) = (—1)N@-1/4 _ 1 a=+1,4+i(mod4)
: 1 o= =£(3+2i), (3 + 2i) (mod 4),

it follows from (2.5) and (2.6) that

X(a)(_l)X(2+2i)(a> = Y(4)(04)-
Combining the above with (2.17), the lemma follows. O

Finally, for any k£ > 1, we consider

(215) & (a) - e5u(0) (m)



Let ;5 denote the primitive character inducing £%. Noting that x%Q Loy = X(@) = X{y has

conductor (2), it follows from (2.16) that &, is a character with frequency & and conductor
fa kodd

(2.19) fng = (2d) k=2 (mod 4)
(1)  k=0(mod4).

Since the same set of primes divide the conductors of both £, and &; whenever k #
0 (mod 4), it follows that

( k
£h(p) = (%) Xp(d)* i p
(2.20) Eax(p) =10 if p | fs and k£ # 0 (mod 4)
k
<ﬂ) if p = (m,) | §4 and k = 0 (mod 4),
(7]

where, in the last case, we further note that £, (p) does not depend on the chosen genera-
tor m, of p.

Remark 2.4. When £ is odd, the Hecke character ; can be used to build an automorphic
cusp form of weight k + 1 and level 4N(f;), and with nebentypus given by the quadratic
character modulo 4 multiplied by the restriction of £, to Q (see [18, Theorem 12.5]).

We conclude this section with the following definitions of the angle of the Gaussian primes
with respect to the character &;.

Definition 2.5. Let d be an odd square-free integers, and p = 1(mod4). We write (p) = pp

and recall that £4(p) = E4(p). We define 04, and z4, by
(221) fd(p) + £d(ﬁ) 1= 2cos ed,Pv ed,P € (07 7T)
(2.22) Zap = \/per € Z[i].

For example, if d = 1, then z;, = a + 2bi is primary with b > 0, and p = a? + 4b*>. We
note that, in general, for p = 1 (mod4), p 1 d, with (p) = pp, we have that

(2.23) Eak(p) + Ean(P) = 2co8 klay,
where 6,4, € (0,7) is the angle defined by (2.21).

2.5. Computing Root Numbers. From the work of Hecke [13], L(s,&;x) has analytic
continuation to C. Noting that the discriminant of Q(i) is equal to —4, we define the
completed L-function

A(s,€qp) == (AN(fa0))* (2m)~°T (5 + g) L(s, &)

where fgr is as in (2.19). As in [19, Theorem 3.8], we note that A(s,&y)) satisfies the
functional equation

(2.24) A(s,&ar) = W(Ear) AL — 5,€45) = W(Eaw) AL = s, &ap),
where the sign of the functional equation is denoted by the root number W (&) = £1, and

where the last equality follows upon noting that £, ,(a) = £4(a).
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We now proceed to compute W (&, ) explicitly, for any given k£ € N and square-free odd
deZ.

Lemma 2.6. Let d be an odd square-free integer. If k is even, the root number of &4, is
(2.25) W) = 1.
If d =1 (mod4), then it satisfies

—sgn(d) ifd=5,9(mod16) and k£ = 1,3 (mod 8)
sgn(d) if d =5,9(mod 16) and k£ = 5,7 (mod 8)
sgn(d) if d=1,13(mod 16) and k£ = 1,3 (mod 8)
—sgn(d) if d =1,13 (mod 16) and k = 5,7 (mod 8),

and if d = 3 (mod 4), we have

(2.26) W (&) =

sgn(d) if d =3 (mod8) and k =1 (mod4)
—sgn(d) if d=3(mod8) and k£ = 3 (mod 4

—sgn(d) if d =7 (mod8) and k =1 (mod4)
sgn(d) if d =7 (mod8) and k = 3 (mod4).

For any fixed square-free odd d € 7, we therefore conclude that

o H#HILSELSK W () =1 1
(2.28) A K T

In particular, recalling definition (1.5), we have

({5,7} ifd=1,13(mod16) and d > 0.
{1,3} ifd=1,13(mod 16) and d < 0.
{1,3} ifd=5,9(mod16) and d > 0.
{5,7} ifd=5,9(mod16) and d < 0.
(3,7} ifd=3(mod8) and d > 0.
{1,5} ifd =3 (mod8) and d < 0.
{1,5} ifd=7(mod8) and d > 0.

({3,7} ifd=7(mod8) and d < 0.

(2.29) S_(d) =

Proof of Lemma 2.6. Asin [19, (3.85), (3.86)] (see also [4, Section 4]), we will use the formula

W(gd,k’) = i_kN(fdvk)_%fd,k,oo(’de) Z §d7k,ﬁn($)627riTr(7d,k)

z€Z[i]/fa.k

where we take 74, € Z[i] to be any generator of the ideal 2f;x, and ¢ = Z[i], so that

(¢, far) = L and (2)cfar = (Van)-
First, we treat the case k = 0 (mod4). By (2.19) we may choose v4x = 2, from which it
follows that

W (Ea) = eQwiTY(%) 1
11



For k # 0 (mod 4), we note by Lemma 2.3 that

Eaesin(T) = X(ay(2) - Mk (2),

where

X(2) when k = 2 (mod 4
X](€2+21) when d = 1 (mod 8) and k is odd
Mak = 4 X{:

and k is odd
and k is odd,

X](“4) X(2) when d = 3 (mod 8

( )
( )
212yX(2)  When d =5 (mod8) and k is odd
( )
| X when d = 7 (mod 8)

is a primitive character modulo (g) with

2 when k = 2 (mod 4)
g:=142+2i when k=1 (mod2) and d =1 (mod4)
4 when k£ =1 (mod 2) and d = 3 (mod 4).

Write |d| = [] ;Pj; where p; run through the distinct rational primes dividing the square-
free odd integer d. Since (g,d) = 1, by the Chinese remainder theorem there exists a ring
isomorphism

9) x [T 2[00/ (p)) = Zl/(9d) (w0, (x));) = uzo + Y vz,

pjld J

where u = 1 (mod g) and u = 0 (mod d), while v; = 1 (mod p;) and v; = 0 (mod f}—c_l) for all j.
Upon choosing yqr = 2¢|d|, we find that

(2.30)

S Y )

€L /fa,k z€Z[i]/(gd)

uTO+D_; V;T; >

=2 1 X % )(WO+Z%‘l’j>nd,k<uwo+Zvjxj)ezmTr< 291d]

zo€Z[i]/(9) pjld x;€Z[i]/(p;)

B Z ek (uxo 27TZTr<2g|d|> H Z X( 5) (ijj) 27"l'[‘r(;);|$j ) .
zo€Z[i]/(9) pjld z;€Z[)/(p;)
12




Applying the change of variables a = uzo/|d| and 8 = v;z;p;/g|d|, we then find that

ik 9 ¥ e 27rzTr(2—)
Wieaw) = 1 () mald) ¥ matade

a€Zlil/(g)
8
g!d] —k 2mi Tr %,
(2.31) < 1] %) (p—> > X(B)e (p)
pjld T/ perli)/(py)
p; >0
= W(&ap:2) x nar(|d]) x Ylfd)(g) X H W (&ak, pj)
;|d
el
where
Zik g k 27rzTr(—)
(Eak,2) W(ﬂ) Nk () 2
I wezpiio
1 _ 271 Tr
(€ak, D) 1_7 X](Cp)(x)e (2 )’

and where we have used (2.2).
We first study the contribution of 2. For k = 2 (mod 4), we compute

1 — 1 4
(2.32) W (as,2) = = 3 () () = (1) =1,
z€Z[i]/(2)

If k£ is odd and d = 1 (mod 4), then we compute

4kW(fd,k, ) 2\/— Z Udk( ) 2m“(4+4z)

z€Z[i]/(2421)

1 (s (s — ) —im
=—|1-e2 —e 2 + @e2-|— e 2z
s mali)e + s )
i , ¢(57%) i k= +1 (mod4) and d = 1 (mod 8
(239 R (RINCIES S o
V2 e\2¥1) if k= £1 (mod4) and d = —3 (mod 8).

Similarly when k is odd and d = 3 (mod 4), we compute
1 e
(2.34) W (&g, 2) = I > nan(2)e2™ ™ (5)
we{£1,%i,£(3+2i),£(~2+30)}

(1 €2 —e 2 + Nak(t) + Nap(—1) — e’ +e -5 Na k(2 — 3i) — nap(—2+ 32)) = .

13
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Let us now study the contribution at a rational odd prime p. We have

Z Y](cp)(x)€27mTr(2£p> _ Z Z a 4 bz 27riTr(a;;)i)

zeZ[i]/(p) a€Z/(p) beZ/(p)
. . 2miTr atbi
- ¥ e ¥ 5 warme )
beZ/(p) a€(Z/(p))* bEZ/(p)
2mia
=@-DXO+ Y er Y Xiyla+bi)
a€(Z/(p))* beZ/(p)

by (2.2). Note that the sum
Z X(p (a+bi)= Z y(14bi) = Z (14 bi)
beZ/(p) bez/(p beZ/(p
is independent of a € (Z/(p))*. Moreover, by orthogonality, we ﬁnd that

0= Z Z Xfp)(a—l—bi)— Z Z »(a+bi) + (—1)%’(‘;)(1').

a€(Z/(p)) beZ/(p) €(2/(p))* beZ/(p
It follows that for all a € (Z/(p))*,

Z X(p) a+ bZ y](fp)(i)‘

beZ/(p)
Hence
1 _ omiTe(Z)  X(p(0) 2mia
Wiewn) =5 3 Ty ) 2 (- ¥ )
x€Zi]/(p) a€(Z/(p))*
k. (—=1)%  when p = 43 (mod 8)
(2.35) = b, (i) = =
1 when p = +1 (mod 8),
and therefore for odd square-free d € Z,
(—=1)*  when d = £3 (mod 8)
2.36 W (Eapi) =
(2.36) H (Sa: ) {1 when d = £1 (mod 8).
J
pj>0

By (2.31), (2.32) and (2.36), it follows that when k& = 2 (mod 4),

W(fdk) = 77d,k(|d|) =1.

This proves (2.25). When k& = +1 (mod4) and d = 1 (mod 8), it follows from (2.8), (2.31),
(2.33) and (2.36), that

W (Ear) = W (€ap, 2) X nar(ld]) X X(ay (2 +20) x [ W(€anp))
]'d
Bl
ink fus gy
= Fie' T ST b (1)) Xy (1+ )Xk (2)
im(kF1) k(d—1)

= e 7 sgn(d)(—i) T,
14




where in the last line we note that x* (o420 (|d]) = sgn(d). Similarly, when k = +1 (mod4)
and d = 5 (mod 8), we find that

W (€ap) = tie'T GHE) 0 (1d) Xhy (2 + 20)

im (k1) k(d—1)

=Fe 1 sgn(d)(—i) 1

This proves (2.26). Finally, when k is odd and d = 3 (mod8), we note by (2.31), (2.34),
(2.36), that

W (Ear) = W (ar,2) X nax(ldl) x Xy (4) x [T W(€anpy)

p;ld
p; >0

=~ Xty (d)) = (~1)'F sn(d),
and if d = 7 (mod 8), we have
kE—1

W (&ar) = *X(ny(ldl) = —(=1) = sgn(d),
which proves (2.27). O

3. COMPUTING D(¢, €4z

To begin our analysis of D(¢, E4), let us first explain the scaling parameter in (1.1). Let
Nup(T) = #{s € C: L(s,&x) = 0,0 < Re(s) <1,-T < Im(s) < T}
denote the number of zeros of L(s,&sy) on the critical strip up to height 7. Using the
functional equation (2.24) as in [15], we find that in the limit as k — oo,
1 Tlog(Tk*N(far)) _ log (k*Nax) _ log (kMay)
2T 7r 27 T ’
under the assumption of GRH (see also [19, Thm. 5.8]), and where we use the notation

Nd,k = N(fd,k), Md,k = N(fd,k)%-

To see that the analytic conductor of L(s,&yy,) is asymptotic to k*N(f4x) according to the
definition [19, p. 95], we use the duplication formula to write

(1) gNu(T) ~

s+EN /s+E41
AN (Far))*” —sr< 2)1“( 2 )L .
2\/—( (Fax)) 5 5 (5, Eak)
This justifies our definition of the quantity (1.1) since the scaling parameter has been
appropriately chosen so that the average spacing between the scaled zeros is 1. Several

different normalizations are used in the literature; we found this one more natural to compute
the lower order terms in descending powers of (log kMg )" since it guarantees that the main

A(s,&ar) =

term in Lemma 3.1 is exactly (}5\(0)
For each character &, we rewrite the functional equation (2.24) as

L(s,&ar) = Xar(s)L(1 = 5,&a),
where
_ k
Xan(s) = W(&r) (N(far))2 ™ WQS_l%-
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Upon taking logarithmic derivatives, we find that

L/ thi,k L/
(3.2) f(&ﬁd,k:) = X (s) — f(l —5,&0k)
X, r Tk
. Zdk ) — _1ogN 21 ——<1— —)——< —>.
(3.3) Ko (s) og N(fax) + 2logm T s+ 3 G

Since ¢ is an even Schwartz function, and L(s, £;) has no trivial zeros for —1 < Re(s) < 2

e
we see from (3.2) that

/ 2 _1
D((]ﬁ,fd,k) = L ( s — ) %(Safd,k)gb (log (/{5 Nd7k) S . 2) ds

211 ) (~1 2T 7
1 L L log (k*Ngy) s — %
= — JR— - 1 — B
5 /(i) (L (s,&ak) L( 3a£d,k>> ¢( o ; ds
1 L Xk log (k*Nyz) s — 3
e — 2_ v ) 2 d
(3 4) - UL(¢7 d7 k) + UF(¢7 d7 k)a
where
1 L log (k*Nyy) s — 3
3.5 U d, k) = — — : 2 )d
( ) L(¢7 ’ ) o /(i) L (57 fd,k)¢ ( ot i S
and
1 Xc/lk‘ log (k2Ndk) S — L
. d k) = ——— — ; 2 ) ds.
(3.6) Ur(¢,d, k) 2 Jo) Koy 5) ( . Z, ) s

Lemma 3.1. Let k be a positive integer, d be a square-free integer, and ¢ be an even Schwartz
function such that ¢ is compactly supported. Then as k — oo,

- log2m  ~ 1
Ur(6.d.8) = 500) = B 50) 4 0 (o).

Proof. Upon applying the change of variables r = s — % to (3.6) and using (3.3), we have

1 IV k+1 IV /k+1
UF(Qb,d,k)I % (3) (lOgNdJC—QlOgﬂ'—i_F(T—?")—|—F<T+T)>

X ¢ (—log (kQJ_Vd’k> r) dr.

211

Noting that I"(s)/I'(s) is holomorphic on the half-plane Re(s) > 0, we shift the contour to
the imaginary line Re(r) = 0, and upon applying the change of variables

log (k‘2Nd7k)
Ti=——F"">°7
26m



we find that

1 I /k+1 2miT
dk)=— | (log Nyy — 21 - -
Ur(e,d. k) = log(k:QNdk)/<Og dk Og”r( 2 log(kaNM))
I"/k+1 2miT
- dr.
+r< 2 +1og(/g2Nd,k)>>¢(T) T

As in the proof of [32, Lemma 5.1], it follows that
1 ~
d, k ———((log Ny, — 21 0)+2 1
Ur(6.d.) = o (o Mo = 2108 m)30) +2 [ o()(1og

5(0
_ %@)gmk —log 7 + 21log (E£L) + 0(%))
- log (47%) ~ 1
=0 - 40+ ()
as desired. ;

k+1 2miT 1
S |0 () )ar)

We now compute the contribution of Up(¢,d, k). Separating according to the splitting
properties of (p) C Zli], we write

(3.7)
CL(s&ar) _ 3 (&74(p) + €1 (p)) log p S 2€51.((p)) logp +Z€Zk((1+i))10g2

s 2ns ns ;
L(Sa gd,k) p=1 (mod 4) p =3 (mod 4) D = D)
(p)=pp n>1
n>1
and
(3.8) UL(¢,d, k) = Uspiit (¢, d, k) + Uners (¢, d, k) + Uparn (6, k)
where
(3.9)
+ &, lo — WNYloe(k2N
Uspit (0, d, k) / Z (fdk( ) 5:8,k(13>) gp¢ ((s 3) 2og.( d,k)) N
p 1 (mod 4) p T

(p) =pp

n>1
(3.10)

2(=1)*"logp [ (s— 1)log(k*Nayy)
lnert<¢ d k; / Z ans ¢ i ds
p =3 (mod 4)
P))(fd k
n>1
§1u(1+1))log2 /(s — 3)log(k*Nyx)
11 . ) 3 7 .
(3 ) ram ¢7 /i ; ons ¢ o dS
Note that by (2.20), one has
0 if £ # 0(mod4)

§ar((L+1) = {<_1>fz if k = 0 (mod4),

17



so that Upam (¢, k) is indeed independent of d.

Lemma 3.2. Let k be a positive integer, d be a square-free integer, and ¢ be an even Schwartz

function such that 5 is compactly supported. Let Ugpit(@P, d, k), Usnert (¢, d, k), and Uram (@, k)
be given by (3.9), (3.10) and (3.11), respectively. Then

1 (fgk(p)+ggk(13))10gp/\< nlogp )
312) Usyn(dod k) = —— , ,
(312) Ve (1, ) log(kMa,) pEl(zm:od4) p/? ¢ 21log(kMyy)
(132;);1
1 2(—1)*"logp A< nlogp >
313) Uper(d d k) = ——
(3.13) (¢ ) log(kMa) p3§)d4) E ¢ log (kM)
(PHfa,k
n>1
1 (—1)F log 2~ nlog2 ,
14 o (0, F) = — . k= d4),
(3 ) U, <¢ ) log(kMd,k) ; 2% ¢ 210g<kMd’k) Zf 0 (HlO )

and Uram (0, k) =0 if k #Z 0 (mod 4).

Proof. For the inert primes, we compute

A1) logp (5 — 1) log(kNay)
Vs (6, ) = m/ 3 O%( 2) 108 d’“)ds

2ns
p=3(mod 4) p 2
(P)fa,k

n>1

. 2(—1)’”.‘10%1?/ p—2ns¢<(s_%)log.(k?Nd,k))dS.
_ e (1) 271

p=3(mod 4)
(P)fa,k

n>1

™

Note that switching the order of summation and integration is justified upon noting that at

Re(s) = %,
/ Z )en logp¢ (s — 5) log(k*Ngx) ds
2ns 27TZ
p 3 (mod 4)
p)ffd k
n>1
logm (s — %) log(k*Na )
’ d
<<%: s gb( o 5 < 00,

since ¢ is a Schwartz function (e.g. [32, Lemma 3.7]). The shift from Re(s) = 2 to Re(s) =
% is then further justified upon noting that s — p=2"¢ (M> is holomorphic.

271
log(ksz,k)
21

Applying the change of variables t = (s — 1) , and noting that p=2ns = p=2n(s—3)p=n



we obtain

i. p—2ns¢ ((S B %) log‘(kQNd,k)) ds
T (%) 271
2 o0 —2mi—2nloEP 4 1 ~ nlogp
- = t e log(k2Nd’k) dt — ( ) .
p"log(k?Ng ) /oo o) p" IOg(kMd,k>¢ log(kMap)
The proofs for Ugpit(¢, d, k) and Usam (¢, k) follow similarly. O

We now compute Upam (¢, k), including lower-order terms in descending powers of log(kMg ).

Lemma 3.3. Let k be a positive integer, d be a square-free integer, and ¢ be an even Schwartz
function such that ¢ is compactly supported. Then for any J € N and k — oo, we have

J-1

. e
Un(00F) = 3 222200 £ 0040, ((os(kMan)) ).

J=0
j even

where for j >0,

; L3
—2 (log2)/ iy <(”4> if k& = 0 (mod4)

(3.15) Cjram(K) = a2 V2
0 if £ # 0(mod4),
and
(3.16) Lij(z) ==Y nlz".
n=1

Proof. Suppose k = 0 (mod4). Then by (3.14), we have

N kn
1 (—=1) log 2 ~ nlog?2
Uram 7k = - n
(6,%) log(kMay) ; 23 ¢ (210g(k:Md,k)

B 1 Z (—1)Tlog2$( nlog?2 )
10g(kMd’k) 2% 210g(kMd,k) ’

n>N+1

for any N € N. Choosing N = 2J loglog(kM,)/log?2, we then bound

J log log(kMd’k)

1 (—1)%” logQA( nlog 2 ) 2= 2 Tog 2 o
— m < = = (log(kM, .
lOg(kMd,k) nZzJV:—i—l 22 Qb 210g(kMd,k:) log(kMdJﬁ) log<kMd,k) ( g( d,k))

Moreover, by Taylor expansion one has

~ nlog?2 B = 9Y)(0) nlog?2 J nlog 2 !




so that
N

Z(—l)kflog2$ nlog 2

n=1
Z 10g2 = 1 nlog2 j+0 nlog 2 J
— s 2log(kMqy) T\ \2log(kMay) '

J

M\S

Since
N 00
log 2 J n’
; 5% (nlog2) <<J;2—g<oo,
we find that
J=1 7 i+1 N kn
¢ (0) ( log 2 )J (=1 s
Uram(9, k) = =2 : 5 + 0y ((log(kMqy)) :
jgo J! 2log(kMyy) ; 22 ( )
Since n? /2?2 is ultimately decreasing, one has
S SRy o [T [Toe i
n=N+1 2> n=N+1 22 N 22 N

so that upon repeated application of integration by parts, we find that

<, NI 2 27 o _log2 NI (lOg log(kMd k))J
J 210g2d = -1 T3 d = : —_— = : .
/N v * T 2 log2 log2/ e e =0, (W) O"( (log(kMyy))”

We thus may write

< 09(0) ([ log2 N\ (S (-1 (log log(k M)’
V6.0 = =22 3 (it (Z 0 (et ))

n=1

=+ OJ ((log(kMd k))ijil)

log2  \'"' X (-1)Fn
Z ¢ (210 (()/fM )) 2(2#_'—0‘7 ((og(kMap))™""")
=0 g d,k —

w3

as desired, where we note that since ¢ is even, we have gg(j)(()) = 0 for all odd j. O

Next, we write

Uinert(¢7 da k) = Uinert(¢a k) + Uinert,d<¢7 k)?

where
1 2(=1)""log p A< nlogp )
3.18 Unert (0, k) i= —————
(3.18) (0, k) log (kMg ) ng%d@ p" ¢ log (kM)
>l
and ( )k
1 2(=1)*logp A< nlogp )
Uiner 7k TR Y Y .
1a(9:F) log (kM) p_;M p" ¢ log (kM)
(P)|>fdl,k

20



We proceed to compute Uipert.a(@, k) including the lower-order terms in descending powers
of log(kMay).

Lemma 3.4. Let k be a positive integer, d be a square-free integer, and ¢ be an even Schwartz
function such that ¢ is compactly supported. Then for any J € N and k — oo, we have

J-1 i
Cj.inert d(k) ¢(J)(0> ( IOg |d| )
Uiner , (ba k) = 2 : - +0 )
08 JZO (log(kMqy)) "\ (log (kM) 1
j even

where for j > 0, the constants ¢;inert,a(k) are

j+1 (=D* :
(319) Cj,inert,d(k') = 7 Zp 32\1210(14) (logp) Li- ( p ) itk ?_é 0 (mOd 4)
0 if £ =0 (mod4).
and Li_;(2) is defined by (3.16).
Proof. We get for k # 0 (mod 4)
1 )k logp nlogp
iner k)= ———— .
u t’d((b ) log (kJMdJﬁ) Z Z ¢ <10g(kMd7k)

p=3(mod4) n>1
pld

For each such p|d, we cut the inner sum at N, = Jloglog(kM,y)/logp, to obtain

1 2(—1)kn logpA( nlogp ) p~ Mt logp  logp o
— < = log(kM, )
log(kMqy) HZ%H P ¢ log(kMg) log(kMgy) p (log(#May))

Taylor expanding as in (3.17), we find that

i2 1"“"logp nlogp
log ]{]Mdk - log(kMdk>

1

kn J— J J+1
_ 1 Z logpz ( nlogp ) L0 1( logp )
log (kM) “ log (kM) T\ p \log(kMyy) ’

1<n<N,

where the bound on the error term is computed upon noting that

J+1 J+1
1 Z logp ( nlogp ) < Z ( logp ) <, 1 ( logp )
log(kMa) p" \log(kMgy) log (kM) p \log(kMgy})

1<n<N,

Upon applying the trivial bound

1 J+1
> Uogp)™ > “logp < logldl,

pld pld

99(0) knpd (- logp O\ log |d|
j! 2 Z p" (10g(7fMd,k)) +OJ((10g(/fMd,k))J“)'

p=3 (mod4) 1<n<N,
pld

we thus obtain

Uinert,d((ba k) =

21



Upon repeated application of integration by parts, we find similarly to as above that

3 n(logp) ™ Nj(log p)’*! ((1oglog(k;Md,k))J‘ logp)
| _0, |

n>Np+1 p" ! phy (log(kMax))’

and therefore we have

J-1

39 (0) ™ (st )
Uiner ) k = O ’
t,d(9. k) (log (kMg z))i+t - 3%:0d Y ; (log(kMgy))’+1
pld
as desired. -

Next we compute Ujyert (0, k). To this end, we define

t t
3.20 £:3.4) := (=1)* —1)k1 =-4+0
B) =0 =+ 0a ()
p=3 (mod 4)
n>1

for any A > 0, by the prime number theorem in arithmetic progressions.

Lemma 3.5. Let k be a positive integer, d be a square-free integer, and ¢ be an even Schwartz
function such that ¢ is compactly supported. Then for any J € N and k — oo, we have

—1 k+1

~ ¢ ne)
Uinert(¢a k) = (T/Rgb( du+ Z le(;lgrkMdi g(—s—l) +OJ <(10g(kM )) - 1);

J even
where
> (5 3,4) — &
(3.21) Cosinert (K) := (—1)FT (1 + 2/ %dt)
1
and for j > 1,
(3.22) Cjinert (K) 1= 2(—1)k/0o Gl ) =y ost) -8t g
| e A e VA
Proof. Recalling (3.18), we write
U (6, 5) = — 1 Z 2(=1)*log p a( nlogp )
merti log (kMag) _ 4= n log (kM)
n>1

22



and compute

Z 2(—1)knlogp$( nlogp )
pr log (kMg )

p=3 (mod 4)
n>1

— 2(—1)* /looa(logézﬁd,k)) dwk(t 3,4) k+1/ be(t:3.4) ( log(llcc)%;dk))>
o () )2 - )

(3.23)
- (1) (5(0) # B [Gau—z [T (nwsn - ) d(M)) ,

since ¢(u) is even. Noting that

dt t 12 \log(kMgy) log(kMy,,) log(kMy,},)

and that

1 c HU+D(0) (logt ¢ logt J logt )‘]
G (( jl <<1og<kMdk ﬂ“) Z | <log ka) O (1og<kMd,k>
1 ~ i C) logt )yt logt logt J

a t_2 (_¢<O) - <J=1 (log kMdk ] - 1 ! (1 )) <<10g<kMd,k)) ))




Thus

_2/100 <¢k(t;3,4)—%>d<¢ 1°g'LfMd’“) >
© y(t;3,4) — 5 [~ —~ V(0

:2/1 %(ﬂo)—(

J

<

IIM

J-1

~  p(t; 3,4 —% o) Cjinert (K —J
_ 2¢>(o)/1 %dt— (—1)kZ ¢(1ogz>kMdk)() ) + Oy ((log(kMqay)) ™),

j=1
where the error term in the last step is bounded upon noting that

> hy(t;3,4) — L |
/ M(logﬂ‘]dt <</ ;
1 1

2 log t

dt < 1,

by (3.20) with A > J + 1. Replacing above, and then in (3.23), we get

k+1 j,inert k A(j) 0 —J—
1nert(¢) /¢ Cljé)g(k}gw)di))](+z + OJ ((1Og(k’Md7k)) J 1) ;

as desired. 0

By (3.4) and (3.8), we see that upon combining Lemma 3.1, Lemma 3.3, Lemma 3.4, and
Lemma 3.5, we obtain the following.

Proposition 3.6. Let k be a positive integer, d be a square-free integer, and ¢ be an even

Schwartz function such that gg is compactly supported. Then for any J € N and k — oo, we
have

,\ 1)k+1
D, £4x) = (0 / B
J—
¢;(d, k) (0) 1 +log |d|
spli ) da k )
Z (log(kMg)) i+t T Ui (9 )+ 0 (log(kMgp))”*+!
J even
where
(3.24) co(d, k) := —10g 27 + o ram (k) + €0 inert (k) + Co inert,a(k)
and for j > 1,
(325) Cj (da k) = Cj,ram(k) + Cj,inert(k> + Cj,inert,d(k)'

We moreover observe that cj(d, k) depends only on the congruence class of k modulo 4.

4. ALTERNATIVE EXPRESSIONS FOR ¢;jinert (k)

We now provide a few alternative expressions for the lower order constants, ¢; inert(k), that

are more amenable to numerical analysis.
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Lemma 4.1. Let k be a positive integer. Then, we have

!/

(41) CO,inert(k) = (_1)k (’YD - £(17 X4) + log 2) - Z 221ng

L p=3 (mod 4) P 1

Proof. To begin, we write

(4.2) ) / ULt P /“ 200(t:3,4) = () + () — ¢ o

12 12

Then, denoting the Chebyshev -functions
=) logp and  (t,xa) = Y xa(p")logp,
pn<t pn<t

where x4 is the quadratic Dirichlet character modulo 4 over Z, we note the identity

(43)  20n(t:3,4) = (=1)*20o(VE3,4) =2 Y logp =1h(t) — b(t, xa) — > log2.

p=3(mod 4) anet
n odd
pr<t
Using (4.2) and (4.3), we get
(4.4)
2/00 UL i FT /Oo Wt xa) + () — 1+ 201 o(VE3,4) —log 2055 ]
12 2
! 1

We separate this integral into four components. We first compute the contribution of the
prime 2 by noting that

2n+1

C><)lo > n B
(4.5) —logZ/IL — —logQZ/ —logQX%QnH——logQ.

Next, by Perron’s formula we write

0o w(t’ X4) 1 /oo / L/ $5— 2
— — = — d
/1 2 de 2 . o L (87 X4) S dtv

where C' is a vertical path to the left of the line Re(s) = 1 taken within a zero-free region of
L(s,x4). Upon noting appropriate bounds on the growth of L'/L within the critical strip,
we apply Fubini’s theorem to flip the order of integration. We then compute

> 1
/ 572 dt = — ,
1 s—1

ah(t X4 1 L ( ) ds
— | —(8,x4)——.

T om o L A s(1—s)

We move the integral to the line Re( ) = R > 1, picking the pole at s = 1, and where we
note that L'/L(s) is bounded on the vertical line Re(s) = R, so that

/(R) %(8’ X4)S(1di 5 ° (%) ’
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which goes to zero as R — oo. This gives

(4.6) —/100 %dt _ %(1,;@.

Similarly, with C' as defined above, we find that

w¢(t)—t B 1 o0 C/ tsZ 1
[ ([t g

1 [~ SN 1 1 ¢ ds
2_7” (C_C()Sd+¥_z)dt 2mi C’C()(_l)‘

Recall that

TL

—_

C(1+s)= —+i n'

where 7, are known as the Stieltjes constants (and Yo is the Euler—Mascheroni constant), s
that

»

3(31—1)%(3): (LI—HO(S—U) (—Llﬂw()(s—n)

1 Yo+ 1
= (3—1)2+ s 1 + O(1).

Upon shifting the contour C' to the far right we find by Cauchy’s residue theorem that

(4.7) /loo w(tt)g_t = 27TZ o g( ) ( dj 1) =—% — L.

Finally, we note that

> 2o (V1 3, 4)
/1 t2 27?2 ( / Als
where

(4.8) As):=2 Y Zloif,

p3mod4nl

—as)ae = aq),

so that

(4.9) (—1)k/100—2%(%?3’4)@:(—1)’@ S 2ler

12 p?—1

p=3 (mod4)

Inserting (4.5), (4.6), (4.7), and (4.9) into (4.4), we have

> y(t; 3,4) L 2logp
(4.10) 2/ t—22dt L(l,X4)—’Yo—1+(—1)k > o —log2,
1 p=3 (mod 4)

from which the lemma follows by (3.21).
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Lemma 4.2. Let k,j be positive integers. Then, we have

A1) et = Wk«?)wm—(%y%Lmo

]l
(2logp)*! (log 2)*!
- X LG ()

Li_;(3),
p=3 (mod 4)

where f(s) := (s —1)((s) and where Li_;(z2) is as in (3.16).

Proof. To begin, recall that for j > 1,
t;3,4) — 5) (logt 1
By R IRy AR
1 t (=1 J

Cj,inert (k) Ca

As above, we note that

> (¢hp(t;3,4) — £) (log )i~ logt
3 e (1w

(4.12)

/°° (—(t, xa) + U(t) — t + 2(=1) g (V5 3,4) — 10g2H§§;J) (logt)i—! (1 B lo_gt) d

(j—1)! j

We again treat the four terms separately. First, by Perron’s formula, we write
52 logt)’~* logt

(logt) ( _ log ) ar.

J

(t,xa) (logt) ! log ¢ 1 [ L
/ w X4 Og) 1_& d - /_(57X4) dS :

(7 —1)! J 2mi c L s (7 —1)!
where (' is again a vertical path to the left of the line Re(s) = 1 taken within a zero-free
region of L(s, x4). Flipping the order of integration as above, let us first compute, for j = 1,

I (s) ::/ 72 (1 —logt) dt = / V(1 — w)du
1 0

u(s—1)7 oo ju(s—1) 1 (s—1)
(& (& €
{< u) } +/0 " s—1+3—1{5—1]0

s—1
1 1 B s

T s—1 (s—12  (s—12

For 57 > 2, we have

> L, (logt)~! 1 > .
/ g2 1og?) (1— Ogt) dt:/ el <1—3) du
1 0 (=t J

ils) = (=Dt j
e(s—1u w1 W o0 00 ul 2 i1
:{s—1<o—mﬂ‘?ﬁk)fsixé &1%(0—2ﬂ_0—&ﬂ)m
- - i i (s) = (_8 i 1>J—1 Ii(s) = %

by induction. It follows that
I 1 L -1y
( ) ( ) 1s,

P(t X4 logt)J ! logt 1 L

L P z ds= — [ = .

/ (7 — 1! J omi Jo L (5, x4) = ds = 21 Jo L (5:x4) (s —1)it1
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so that upon shifting the integral and picking up the pole at s = 1, we find that

(4.13) / P(t X4 logt)J 1 <1_ b_gt) 4 — (_1')j+1 (%)(i) Ly

(1) J j!
Similarly, with C' as defined above, we find that

P(t) — ¢ (log £ logt _ L/ SN 1Y (logt)i~! logt
/ £ G- <1_ j )d i /. (/(2)—Z(S)Tds—;)m<1—7>dt
- ( —g(s)tHds +i- 1) —Go,gt):l (1 - lo—gt) dt
C

27 ¢ s t t) (j—1) J
__ L [¢ ds _ 1 [y (=7
C2mi Jo C< $)15(5) s 2mi Jo C( )(s—l)jﬂds'
Upon writing
f(s)
C(s) =77
where
(=) n — S
(4.14) fls) =1+ nzzo (s — 1) = ; ECES 1)*
is a holomorphic function, we find that
CI B f/ 1 B 1 00 f/ (k) (8 _ 1>k
cW=F6) -7 __s—1+k220(7) W=

and therefore that

S et YR T Y (R S
2m cC()(s—l)f“d 2mi C( (5—1)j+2+z

()

With A as in (4.8), we next note that

/ Yol f 3,4) (logt)” ! (1 - bﬁ) ar = =D /100( CA(s)tS2ds) Uogt) () k’ﬁ) dt

(j— 1) J

Finally, upon writing B(s) :=_ -, 1‘2)%52, we similarly find that

—log2/ Lot | (%gt)f)1 (1 1Ojt) ;1215 _ _2% 100 (/CB(s)tS:dS) (Egj)i)‘!l (1 lojgt) y

1 B(s)I; BU(1 log 2)7+1
__‘/ B(s)L(s) 4 _ (—1) ‘(1) _ (log?) Li (L),
2 Jo s 4! 4!
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from which the lemma follows. O

We conclude this section with one final expression for ¢; inert(k), obtained by rewriting the
above logarithmic derivatives in terms of Laurent—Stieltjes constants (see e.g. [7]):

Lemma 4.3. Let k,j be positive integers. Then, we have

(4.15)

)=y U (m1+"'+mj+1) ﬁ( e 1 (—wm))w
,nert -
’ MM yeeny TYLj_‘_lGZzO ml + e + m]""l m17 ct 7m.7+1 6:0 Z 1 K'VO<X4)

> me=j+1

where

(m1+---+mj+1> o (my + - +mjp)!

my,...,Mjy1 ml!...ij!

are multinomial coefficients, v, are Stieltjes constants, and 7,(x4) are the Laurent-Stieltjes
constant for L(s, x4) defined by

(4.16) L™ (1, xa) = (=1)"y(xa)-

Proof. Upon applying Faa di Bruno’s formula [8] for higher derivatives to log L(s, x4), we
find that

N ) )
(3) (o) = g Ls.x) 1

_ Z (j + 1)! (_1)m1+~--+mj+1—1(m1 R 1 | j+1 1 X4) me
m1! e m]’+1! L(l, X4)m1+...+mj+1

J:1

M yenny ’ITLjJrlEZZO
S tmy=j+1

- ¥ (j + DI(=1)y+ (—1)mttmi—1 (ml N ij) ﬁ (W(M))me

my+ -+ M1 70(X4)m1+'“+mj+1 my,...,Mjq1 14

mi,..., Mj41 GZEO /=1

> bmp=j+1

. , i1 m
D e () (=
e €50 my 4 My \ M, ., Mg e 'v0(x4)

S tmy=j+1

It thus follows that
(4.17)

(—1)it! <£/) ©) (1xs) = Z —(j+1) (m1 +oo mj+1) h (‘W(M)) ‘
]‘ L ’ mi,....,m;j+1€ZL>0 my A+ My ma, ... My é"}/O(X4)
S tmg=j+1
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Similarly, by comparing terms with f as defined by (4.14), we find that for £ > 1,

(4.18) fO01) = %w 1 =01 e,

and therefore that

() -y U et +mm—1”“ 12 0y

f mal. . omgg! f(L)matetmys

H’:I

Myenny mj+1EZZO
> bme=j+1

] j+1 _
= Z (j + 1)! (_1)m1+~“+mj+1*1 <TTL1 + -+ mj—H) i—[ ((—1)6 1’)/5_1
m1+..-—|—mj+1 my, .. ) e (6_1)|

MM
mi,....,mj+1€~L>o A

> bme=j+1

_ Z (j—f—l)!(—l)j <m1-|-...—|—mj'+1> ﬁ(ﬂ>m£+l
M1y 11 €250 mi—+ -+ mjit1 my,...,Mjy41 =0 A
> bmy=j+1

We thus furthermore conclude that
(4.19)

(1) (f/>(j) J+1 (ml oot mj+1> ! AN
— 1) = — .
j' f <) Z m1—|—~--+mj+1 my, ..., M+ H<£‘>

=0

The lemma now follows from Lemma 4.2, together with (4.17) and (4.19). O

5. COMPUTING D(K; ¢, F5)
We now compute D(K; ¢, F$) by averaging D(¢, {q ) over appropriate 1 < k < K.

Proposition 5.1. Let d be a square-free integer, o € Z/8Z, and let ¢ be an even Schwartz
function such that ¢ is compactly supported. Then for any J > 1, one has as K — 0o,

. A 1)ott Cn(d, a, ) 8
DU 6. F3) = 3(0 /¢ —(logKMda) = Y Upnléd.k)
1<k<K
k=a (mod 8)
1+ log |d|
+0y ((log KMgo)*1)"

with
m—1 oD (0

(51) Cm(d7a>¢) = (m - 1>‘ Z cj(d’ Oé)¢ ]'( )7
=0 '
J even

.



where for « = 0mod4 and j > 0,

log 2)7+1 2Jj+1 ) 1
¢j(d,a) = —do(j)log 2m + B; + %Lij(%) - = Y (logpy*'Li (p—)

| 1l
) J: p=3 (mod 4)
2 (log2 jHL } (-1
I\ 2 T2 )
and for a Z 0mod 4 and j > 0,
log 2 Jj+1 2j+1 ) 1
¢j(d, o) = =do(j) log 2 + (—1)* (Bj + %Li_]@)) - Y (logp)*'Li, (—2)
J: J: p=3 (mod 4) p
2 , ) —1)“
+ Z (logp)’ 'Li_; (( ) ) :
" p=3 (mod 4) p
pld

5, ::(_;)j ((Lf?/)(j) 1)— (%)U) (1,X4)>

_ Z j+1 (m1+"‘+mj+1) ﬁ(’Y)méﬂ_H( )me
my 4+ Mip1 \ M, ..., Mg 14 Oyo(x 7

mi,..., mj+1€ZZO =0
> bme=j+1

where f(s) := (s — 1)((s), the v, are Stieltjes constants, and the ~v,(x4) are the Laurent—
Stieltjes constant for L(s, x4).

Proof. Recall by (1.2) that

D(K, (b,JT"C?) = % Z ((bagd,k)?

1§ S
k=a (mod 8)

where the estimation for D(¢, {4 ) is given in Proposition 3.6. Let j € N. Since ¢;(d, k) and
M, 1, depend only on the congruence class of £ modulo 8, fixing an appropriate representative
for a € {1,...8}, we first compute, for any ¢ > 1,

1 1 1
2 (log(ck))i=T — 2 (log(c(8¢ + a)))7 L — > Wﬂ)ﬂ),

k= (mods) oses| e 1| 5=
1 B 1 _ (log(8cl + ca)) T — (log(8cl))*1
(log(8c¢l))i*t  (log(8cl + car))itt (log(8¢cl + car))i*t1(log(8cl))i+1
< (log(8cl + ca)) — log (8¢l)) (log(8c)))? . 1
(log(8cl))%i+2 ¢ (log(8cl)))i+?
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and the sum over ¢ converges. By the Euler—Maclaurin formula,

1 % dt 1 cK dt
2 W:/l W+O(l):§/2 Wﬂ)u)

1<4< L%J
1 sz Ul ( K )
"~ 8¢ (log( cK )itt — j!(log(cK)) ! (log(cK))7+2/

By Proposition 3.6, where we note in particular that c¢;(d,k) = ¢;j(d,«) for any k =
a (mod 8), we find that

,\ 1)e+! J1 ¢; ])(0) S (j l
Jj+10)
K;¢,F3) = / u+ -
D(K; 6, Fi) = (0 Al JZ (log( KMda Zo J'(log(K Mya))*
8 1 + log |d|
— Usprit (¢, d, k) + O
K ZK il 1) O ((log<KMd,a>>J+1
k= a_(nTods)
Setting m = j + ¢ + 1, we write the 7, /-sum as
J-1 ne J+1 m—1
¢;(d, )99 (0) Z (m Z ¢;(d, )9 (0)
= ! s (log(KMda — (log( KMda m =

and the formula for D(K; ¢, F) follows by defining C,,(d, a, ¢) as in (5.1), where we note

that since ¢ is even, we have ¢1)(0) = 0 for all odd j.
We recall that for j > 1,

Co(d, k) = - 10g 2m + cO,ram(k) + CO,inert(k) + CO,inert,d(k)
Cj (d; k) = Cj,ram(k) + Cj,inert(k) + Cj,inert,d(k)>

and replacing (3.15), (3.19), (4.1), (4.11) and (4.15) above, we find the formulas in the
statement of the Proposition. O

Theorem 1.1 now follows from Proposition 5.1 provided that we can bound the contribution
of the split primes for test-functions ¢ such that supp(gg) C (—1,1). We begin by first proving
the following weaker result, Wthh combined with Proposmon .1, provides an asymptotic
for D(K; ¢, F3) when supp(¢) (=2, 4.

272

Lemma 5.2. Let d be a square-free integer, o € 7 /87, and let ¢ be an even Schwartz
function such that ¢ is compactly supported. Then as K — oo, we have

8
K Z USplit(qz5, d, k) = O(dQVKZV—l)'
1<k<K
k=a (mod 8)
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Proof. Summing (2.23) over k, we get

8
? Z Usplit(¢a da k)

1<k<K
k=a (mod 8)
8 log p ( —n ~ nlogp 1
_ 8 d & (p) + €l )¢( |

Kpﬂ%;)dél) bz 1<§<:K sa(P) + Lo (P 2log(kMa,a) ) log (kMaq)
(PHfd, k=a (mod 8)
n>1

We have

S (G Eum) = DD (o)

1<k<K 1<k<K
k=a (mod 8) k=a (mod 8)

with 6y, as defined by (2.21). We define

Dg o(z) := Z (e 4 eikry =9 Z cos(kx).
1<k<K 1<k<K
k=a (mod 8) k=a (mod 8)

We note that

1+ Y Dgalx) = Dg(x)

a€Z /8L

where

Dg(z) = Z et — sin (ii(:)i)x)

is the Dirichlet kernel at x. Fixing an appropriate representative for a € {1,...8}, we
observe that

Dy o(z) = Z (eie(Be+a) | miz(8t+a))

o<e<| Koo

plar _ oiz(8| K5 | +at8)  p—iaz _ —iz(8| K5 ] +a+t8)
- 1 _ Biz + 1 _ ¢ Bix

_gila)e | ginBlE5E [ratt) 4 il _ oz 552 [+aty
2isin(4x)
sin((8[ 552 ] + o + 4)z) — sin((o — 4)) 1
= - < .
sin(4x) |sin(4x)|
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Using the bound (5.2) and using partial summation, we get

Z <§g,k(13) +EZ,k(p)> C/g (2107);;(12%\2@)) log (klMd@)

1§(k§K )
k=a (mod 8
"N nlogp
~ nlogp 1 K d ¢<2log(tha)>
=D ] — D Opp)— | ——————= |dt 1
taln0iz)o <2log(KMd,a>> log (K M) / 0 G Tog (101 )T OW

n lo
1 1 Kq (¢ (—mg(mgf;,a)) 1
< — + — — |
Isin(4nby,)|  |sin(4nby,)| J1 dt\ log (tMgya) |sin(4nby,)|
since the integral converges. This gives

8 1 log p
(53) ? Z Usplit((ba d7 k) < ? Z

n/21sin(4nfq,)|
1<k<K < (KM > P |sin(4nbyp)|
k=a (mod 8) p=1(mod 4)

In order to give a lower bound on |sin(4nf,,)|, let us first recall that tan(f;,) € Q. By
Niven’s theorem, the only rational multiples ar such that tan(an) is a rational number are

given by the set {m% : m € Z} C nQ. It follows that, as p # 2, p # 3 (mod4), the point

Zap = p™/2emlar ¢ 7]i] is a lattice point off the lines 2 = 0, y = 0 and 2 = +y of the complex
plane, i.e. that
[Im(z5,)], [Re(zgp)l, Tm(zg,) + Re(zg,)] = 1.
Using
sin(4x) = 4sin z cos x(cos x — sin x)(cos x + sin z),

we find that for, say, 0 < nfy, < % and %” <nbg, <,

) 2 4530 o o - ) 257
sP

For £ < nflg, < % and %” <nbg, < %” we similarly find that

|Sin(4n9d7p)| > 4sin T cos o« IRe(zg ) £Im(zg )| (

. - _n
£ = 2
% cos % EN cosZ+sinf) >p 2,

3 6

while for 7 < nbqp < %’r,

sin(4nfay)] > 4sin § = sin § — cos® 5) 2 pE,

so that for any p,

(54) [sin(4n6y,)| > p~3.
Inserting into (5.3) and using the prime number theorem in arithmetic progressions, we have
8 —
= 2 Usldd k) < K™,
1<k<K
k=a (mod 8)
as desired. 0
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Remark 5.3. In the following, we will use the function ||-||2r to denote the distance to the
nearest integer multiple of 2. Observe that since 1[|2z||s- > [sinz|, we have by (5.4) that

(5.5) 18n84,p||2r > 272,

We will use it often in the next section.

6. PROOF OF THEOREM 1.1

In order to extend the admissible support in Lemma 5.2 to (—1,1) (and prove Theo-
rem 1.1), we improve upon our bound of the contribution of the split primes by averaging
the possible values of 6,,, and not simply bounding by the worst value. Let

6.1)  Spi={z=r(2)e"D €C inbay — tp7E < 0() S blay + 7 E

Note that the area of Sy« is equal to

Omax Tmax 1
// rdrdf : / / rdrdf = 5 ( — T?nin) (Omax — Omin)

1

—5 (0% +)’ —(%—i))( -
4

Lemma 6.1. Let d an odd square-free integer, p =1 (mod 4) and n a positive integer. Then
if p~2 = o(||8nb4,|2x), we have

e = v e (0 e
—drdé +0|( ———-7--—-—7— .
% 18n64|2r nA 18012 P2 ||8n04pll2x

Unconditionally, we moreover ﬁnd that
1 1
B LA / / 8T 4rdo.
p? H8n0dp”27r Sy 18012
Remark 6.2. Note that by (5.5), for any re? € Syn, and for all m € Z,

|80 — 2mm| > |8nby, — 2mn| — |8nb,, — 80
> mi% |8nby, — 2mm| — |8nb, — 86| = ||8nbypll2r — |8n04, — 80|
me

3

> 2]7_% —p 2=p

B

Thus

(6.2) 186]|27 > p~2 >0,

and therefore the integral in Lemma 6.1 is indeed well-defined.
Proof of Lemma 0.1. Let

log x 1 —logx

2 Y

fz) = and  f'(z) =
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so that for re® € Sy, we have

logr nlogp
r 2 p%

log(p? — 1)
(pz —1)2

and
1 s o (] 1
// 08T drdl — / ( do ) / (2 O%p + 0 (n ng)) rdr.
Syn 180][2n 7 buin \N180l2n /) 2 p> P

min

<=2 | lmax <

We begin by computing the r-integral. Note that

Tmaxl Tmax 1 1
[ g [ (2 (),
Tmin r Tmin 2 I’)E pn
= (ﬁlognp +0 (nlogp)) /pgwr‘11 rdr = nlogp +0 <nlongp) )
2 p>2 " . 4 P2

and, in particular, that

1 Tmax l
(6.3) t ng <</ BT ar.
T

Tmin

We now compute the f-integral. Up to translation by Z7F, we may assume that [0nin, Omax] C
(0, %) We consider several cases. First, suppose Oy, < 5. Then

[ 2 ) e 0)
100 <0 o \eg|n — | —log|n -
Brmin (180]| 2x 0. 80 8 & d.p 8p* g d,p 87

min

1 1 1
=—(log(l+——)-log(l-——
s (o (1 )~ (1= 5t

= (1+ 0 ((p2||8n8apll2x) %)) -
e (O (@800, 2x) 7))

Since the coefficients of the Taylor series are all non-negative, the implied constant is positive,
enabling us to conclude that

1 fmexdh
(6'4) — < / .
4p2 ||8nb4p|2x Oin 180ll27

Next, suppose Oyin > 5. Then

6 6
max de max de 1 1 1
— = — =11 — 4nb _ -1 — 4nf . _
/Omin 18012 /9 - 2m—80 8 (og (W MWap =+ 2p2) 08 (W nvq,p 2p2)>

min

(1) 1 n._
= > EU T o — )
/=1

= ———— (14+ 0 ((p?||8nbap|2x)72)) ,
a0 (@ 18nflgller) ™))
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and where again we may conclude (6.4), upon noting that the implicit constant is positive.
Finally, we consider the case 0,;, < 3 < Omax, in which case [nf,, — §| < %p_%. Then

I (Y S U A s U
/ 180 / 8 " / 2 — 80
_1 (10g (E) — log (n&d - L) + log (E) — log (z —nby, — L))
8 8 Pogpe 8 4 Pogpt

1 U
=3 (2 log <§> —log (4nb,,) — log (m — 4nb,,)

1 1
—log(l——n)—log<1— n> .
8n6d7pp§ 2(7‘(’ — 4n9d,p)p5
Note that

2 — 4nf 2 — 4nf
2log <g> — log (4nby,) — log (m — 4nb,,) = — log (1 — 7T/7T—/2nd’p) — log (1 + 7T/7T—/2nd’p)

oo

as well as that

1
l
1 1 1
_1 ( ; ) L O™,
2
Upon noting that

1 1 1 1
- = +
8n9d,p 2 — 8n6d7p H8n9d,p|]2ﬂ + 8n9d,p — HSn@d,pHgﬂ H8n0d,pH27r + 21 — 8n9d,p — H8n€d’pH2ﬂ
2

= (1 + O(|27T — 8n9d7p — H8n€d7p|’27r‘ + \SnGd,p — H8n(9d,pH2ﬂ-‘)>
18720 |2

2 n
=— = (1+0(p2)).
||8ned,p||2w< (p )>

To summarize,

[ N )
—= ™ p 2 mn d7 T 9
oo 180022 4p3(8nBp]|an e
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and again we conclude (6.4). It follows that

// logrrdrdﬁ <nlogp (nlogp)) ] 1 (1+O< ] 1 >)
Sy H89H2w p2 Ap2 [|8nbp |2 P2 ||8n0a,p|2x

1 nlogp 1
(S <1+o <— ))
2% (|8n6aor P2 |[8n8ap|l2x

In particular, by (6.3) and (6.4), we conclude that

nlogp 1 // 1 logr
o < ——— ——rdrdd,
P2 [8nbapllzn — A(Spr) J s, [180l2r 7

as desired. O

D>

Proposition 6.3. Let d be an odd square-free integer, a € Z/8Z and ¢ be an even Schwartz
function such that supp(¢) C (—v,v). Then as K — oo, we have

% > Ugie(¢,d, k) = O(d” K~ (log(dK))?).

1<k<K
k=a (mod 8)

Proof. Noting that 1||2z(|2, < |sinz|, it follows from (5.3) and Lemma 6.1, that

7 2 UmGdb<g > Smmih

1<k<K "< (K Mg )%
k=a (mod 8) g p_E(l (m(jél 4))
2vlog K
1 21 logr
6.5 < = - / / drdo.
(65 k2w 2 ) s
n= p=1(mod4)

"<(KMd a)z”

By (6.1), we note that |z}, — 2| < 1/2 for any z € Spn, and thus since 27}, € Z[d], it follows
that for p # ¢, Spn NSy = 0. By (6.2), we find that for any re? € Sy,

1

n
2

<p % < [[80]an.

1
— <
2r =

N[

2p

It follows that for any n > 1,

. 1 1
U S CR {ZZT@ZOECX : H89H27r2 2—and1 STS (KMd,o)V‘Fé—l}.
r
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Thus, as 0 +— [|86]|2r is §-periodic, we have

log rdrdf < // log r drdé
p= 1Zm;)d4 // pTY ||89||27F ||80”27r

n<(KMda)2V

(KMd,oz)VJ’_
<
1

.
167

NI
ENE]

(KMd a) “Fi T
< / log <log < +log 16r> dr <, (K Mya)" (log(K My))?
1

Thus by (6.5) we conclude that

2v log(KIWd’a)

do (KMg,o)"+3% T do
log rdr < logr
T H8‘9H2n 1 = z

21 — 86

8 log 2 1

= Y Umbd b < Y KK M) (log(K M)
1§(k§1< n=1 n
k=a (mod 8)

as desired.

Combining Proposition 5

7. NON-VANISHING RESULTS

<, d"K" '(log(K My ,))? loglog(K Mg.),

.1 and Proposition 6.3, this proves Theorem 1.1.

In this section we prove Corollary 1.3. We consider the smooth test function

b(2) = b () = (sin (m/:ic))z'
T
We note that ¢,(0) =1, ¢,(0) > 0 for all =,

~ vl it 1] < v
W:{ . ]

0 otherwise,

and that supp(gg) C (—v,v). Then, for a even

3 3 ordS:%L(s,é‘d,k) 4
(7.1) = o1 — Y 5

< —

K - K Z
1<k<K 1<k S 1<k S

k=a (mod 8) k=a (mod 8) k = a(mo

L(%afd,k):c‘

2

Dk (¢w,ak)

where we have used the fact that for a even, the order of vanishing of L(s, k) at s =
1 is even, since W (&) = 1 by Lemma 2.6. Using Theorem 1.1 (and then v < 1), b

)
approximating the test function ¢, by a series of Schwartz functions, we compute that

2/,
1<k<K
k = a(mod38)

Jim ST D6, €)= 5,00) — 5 / (1 - ﬂ) at -

v 2
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and replacing in (7.1) with v < 1, we get
.8 _
;}5’%@? #{1<k<K,k=a(mod8) : L(3,&y) # 0} > 75%.

Suppose now that « is odd and o € S;(d), i.e. for k = a (mod8), we have W (&;x) = 1,
which implies that L(s, &) vanishes with even order at % Exactly as above, we have

8 ] OI‘dS:lL(S,fdk) 4
(7.2) e > 1< % > 22 <% > Drlow, )

1<k<K 1<k<K 1<k<K
k=a (mod 8) k=a (mod 8) k = a (mod )
1
L(§7£d,k)20

but in this case, we have orthogonal symmetries from Theorem 1.1. We compute

8 . LN, 11
(7.3) lim e 1;1( Dy (pv,Ear) = 6,(0) + 5 /V (; - ;) dt = » + 5

k = a(mod?8)

and replacing in (7.2) with v < 1, we get

lim %#{1 <k<K,k=a(mod8) : L(3,&y) #0} > 25%.

K—oo

Finally, suppose that « is odd and a € S_(d), i.e. for kK = a(mod8), we have W (&, ) =
—1, which implies that L(s, &4 ) vanishes with odd order > 1, and then

(7.4)

] ] OrdS:lL<57§d,k) -1 4 1 .
— 1< — 2 < — Dk (o, ——+O(K~
e > < > 5 <% > (v, &an) — 5+ O(K™)
1<k<K 1<k<K 1<k<K
k=a (mod 8) k=a (mod 8) k = a(mod8)

ords:%L(s,gd,k)x

and we again have orthogonal symmetries. As in (7.3), we compute

4 111
dm o= D D6 -5 =5
1<k<K
k = o (mod 8)

and replacing in (7.4) with v < 1, we get

lim %{1§k§K, k= a(mod8) : ord 1L(s,§d7k):1} > 75%.
=3

K—oo

This completes the proof. 0

. 2
Remark 7.1. For v < 1, the function ¢,(z) = (W) is optimal among all functions
¢ € S where

Si:= {0 € L'(R), 62 0,6(0) = 1, and supp(@) < (~1,1)

for both symplectic and orthogonal symmetries, i.e.

min /00 o(x)We(x)da
40
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is attained for ¢; when Wg(z) = 1 £ %% Indeed, for n as in (1.4), it follows by the
criterion of [20, Corollary A.2], that ¢, is optimal if and only if
1 [2
+5 / n(z —y)dy
-4
is independent of z, for all 0 < x < %, which is the case.
APPENDIX A. EVALUATING THE ¢;(1,0) CONSTANTS NUMERICALLY

In this appendix, we numerically approximate the values of ¢;(1,0) (see Proposition 5.1)
for the cases 7 = 0 and j = 2, and explain the procedure for doing so for arbitrary j > 0.
We write

¢ i=¢(1,0) = A; + B; = T,

where . @)g%ﬂlm_j(%) _% (1052)1“ Li_, (%) — 6o(j) log 27
and I 221 Z (log p)i*'Li_; (é) :

p=3(mod 4)

As in [7], we find that for n > 1, the n'® Laurent-Stieltjes constant for L(s,y) may be
expressed as

() =D _x(@mla,q),  Aala,q) = lim [ D" (logrm)" _ (log)™™" |-

z—300 m g(n+1)

a=1 0<m<z
m=a (mod q)

where v,(a,q) are sometimes referred to as generalized Euler constants (for arithmetical
progressions). In particular, we find that for n > 1,

(A.2) P)/n(X4) = 'Yn(L 4) - P)/n(3> 4)a

and moreover that vo(xs) = L(1,x4) = For small values of n (n < 20), 7,(1,4) and

T
7 (3,4) have been explicitly computed in [6]:

71(1,4) [ -0.154621845705 | [ ~1(3,4) | = 0.038279471092 | | ~1(x4) | -0.19290131679
vo(1,4) | -0.095836601153 | | 72(3,4) | = 0.058305123277 | | va(x4) | -0.15414172443
~v3(1,4) | -0.049281458556 | | 75(3,4) | = 0.045601400650 | | v3(x4) | -0.0948828592

TABLE 1. Values of 7,,(1,4), v,(3,4), and 7,(x4)

By (4.17) and (4.19) we may thus compute the B; contribution by implementing the
following code into Mathematica:
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Bellzetal[j_,k_]:=BellY[j+1,k,
Table[(-1)"i*x(i+1)*StieltjesGammali], {i,0,j+1-k}]1]
(¥Defining the Bell polynomial Bjiix (Yo,.--,(J +2— k) (=17 Fry k) *);

Bzetal[j_J:=Sum[(-1)"{k+1}(k-1)! Bellzetalj,k], {k,1,j+1}]
(*Summing over the relevant Bell polynomials*);

Lconstants :={-0.19290131679,-0.15414172443,-0.0948828592}
(¥*Values of 7;(x4) extracted from previously published computationsx)

BellL[j_,k_]:=BellY[j+1,k,Table[(-1)"{i}*Lconstants[[i]],{i,1,j+2-k}]]
(*Defining the Bell polynomial Bjyix (—7(xa),--., (=1)72 40 k(xa)) %)

BL[j_J]:=Sum[(-1)"{k+1}(k-1)!(Pi/4)~{-k} BelllL[j,k],{k,1,j+1}]
(*Summing over the relevant Bell polynomials for the L-function factorx*)

B[j_1:=(-1)"{j}/(j)!(Bzetalj]1-BL[j1)

i | Yo w/ny B,
J =010.57721566 | 0.24560958 | 0.33160608
= 21{0.10337726 | 0.29505047 | —0.0958366

TABLE 2. Values of (f//f)9), (L'/L)Y, and B;, for j =0 and j = 2

To compute the inert prime contribution, we write

27+1 1y 5
- (ogp) 'L, (%) = Tyla] + Ryfa),
J: p=3 (mod 4)
where '
2j+1 iy _2
T[] =— (log p)’™ Li_;(p™)
J: p=3(mod 4)
p<zx
and
2011 logp J“nj 2j+1 (logz)}it! T2 (log2)k (j + 1)
Rjz] = ‘; Z Z = 5 2 +Z ! ’
p=3 (mod 4) n=1 k=0
p>:p

so long as x is sufficiently large such that the map ¢ — (logt)’™!/#? is decreasing in the range

[z,00). The resulting contribution may then be computed by implementing the following
code:

X=1000000; primes3 := Select[Range[3, X, 4],PrimeQ]
(*List of primes 3 mod 4 up to X*);
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T{j_1:=(27{j+1}/j!")Sum[N[Logl[primes3 [[i]]] " {j+1}]
N[PolyLogl[-j,(1/primes3[[i]]1°2)]],{i,1,Length[primes3]}]
(*computes T;[X]*)

Plugging in the values z = 10° yields the following values:

J | T;[10° | Bound for R;[10°] A ¢j
7 =010.45747 0.00003 —2.81814 | —2.9440
=2 393 0.014 —1.00081 | —=5.0

TABLE 3. Numerical approximation of ¢y and ¢

REFERENCES

[1] R. Chen, Y. Kim, J. Lichtman, S. J. Miller, A. Shubina, S. Sweitzer, E. Waxman, E. Winsor, J. Yang, A
Refined Conjecture for the Variance of Gaussian Primes across Sectors, Exp. Math. (2020), 1-21.

[2] C. David and A. Giiloglu, One-level density and non-vanishing for cubic L-functions over the Eisenstein
field, Int. Math. Res. Not. (2022), no. 23, 18833-18873.

[3] S. Drappeau, K. Pratt and M. Radziwilt, One-level density estimates for Dirichlet L-functions with
extended support, Algebra Number Theory 17 (2023), no. 4, 805-830.

[4] L. Devin, Discrepancies in the distribution of Gaussian primes, arXiv:2105.02492.

[5] L. Devin, D. Fiorilli, A. Sédergren, Low-lying zeros in families of holomorphic cusp forms: the weight
aspect, Quart. J. Math. 73 (2022), no. 4, 1403-1426.

[6] K. Dilcher, Supplement to Generalized Euler Constants for Arithmetical Progressions. Math. Comp. 59
(1992), no. 199, S21-S24.

[7] S. S. Eddin, On two problems concerning the Laurent-Stieltjes coefficients of Dirichlet L-series, Ph.D.
thesis, University of Lille 1, France, 2013.

[8] F. Faa di Bruno, Note sur une nouvelle formule de calcul différentiel, The Quarterly Journal of Pure and
Applied Mathematics 1 (1857), 359-360.

[9] D. Fiorilli, J. Parks, A. Sodergren, Low-lying zeros of elliptic curve L-functions: Beyond the Ratios
Conjecture, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 2, 315-351.

[10] D. Fiorilli, J. Parks, A. Sodergren, Low-lying zeros of quadratic Dirichlet L-functions: Lower order
terms for extended support, Compos. Math. 153 (2017), no. 6, 1196-1216.

[11] P. Gao, L. Zhao, One-level density of low-lying zeros of quadratic Hecke L-functions of imaginary
quadratic number fields, J. Aust. Math. Soc. 112 (2022), no. 2, 170-192.

[12] D. R. Heath-Brown, The average analytic rank of elliptic curves, Duke Math. J.122 (2004), no. 3,
591-623.

[13] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I,
Mathematische Zeitschrift 1 (1918), 357-376; II, Mathematische Zeitschrift 6 (1920), 11-51.

[14] G. Harman, P. Lewis, Gaussian primes in narrow sectors. Mathematika 48 (2001), no. 1-2, 119-135.

[15] K. Holm, The 1-Level Density For Zeros of Hecke L-Functions of Imaginary Quadratic Number Fields
of Class Number 1, arXiv:2309.10018

[16] C. P. Hughes, Z. Rudnick, Linear statistics of low-lying zeros of L-functions, Q. J. Math. 54 (2003), no.
3, 309-333.

[17] K. Ireland, M. Rosen, A classical introduction to modern number theory, Second edition, Graduate Texts
in Mathematics, 84, Springer-Verlag, New York, 1990.

[18] H. Iwaniec, Topics in classical automorphic forms, American Mathematical Society Graduate Texts in
Mathematics, 17, American Mathematical Society, Providence, RI, 1997.

[19] H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publica-
tions, 53, American Mathematical Society, Providence, RI, 2004.

43



[20] H. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of L-functions, Inst. Hautes Etudes Sci. Publ.
Math. (2000), no. 91, 55-131.

[21] N. Katz, P. Sarnak, Random Matrices, Frobenius Figenvalues and Monodromy, AMS Collog. Publ. 45
(1999).

[22] N. Katz, P. Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999),
no. 1, 1-26.

[23] F. Lemmermeyer, Reciprocity laws : From Euler to Eisenstein, Springer Monogr. Math. Springer-Verlag,
Berlin, (2000).

[24] S. J. Miller, One- and two-level densities for rational families of elliptic curves: evidence for the under-
lying group symmetries, Compos. Math. 140 (2004), no. 4, 952-992.

[25] B. Maxwell, S. J. Miller, C. Rapti, C. Turnage-Butternaugh, Some results in the theory of low-lying
zeros of families of L-functions, in Families of automorphic forms and the trace formula, Simons Symp.,
Springer (2016), 435-476.

[26] J. Neukirch, Algebraic number theory, Translated from the 1992 German original and with a note by
Norbert Schappacher. With a foreword by G. Harder Grundlehren Math. Wiss., 322 Springer-Verlag,
Berlin, (1999).

[27] A. E. Ozliik, C. Snyder, Small zeros of quadratic L-functions, Bull. Austral. Math. Soc. 47 (1993), no.
2, 307-319.

[28] G. Ricotta, E. Royer, Lower order terms for the one-level densities of symmetric power L-functions in
the level aspect, Acta Arith. 141 (2010), no. 2, 153-170.

[29] G. Ricotta, E. Royer, Statistics for low-lying zeros of symmetric power L-functions in the level aspect,
Forum Math. 23 (2011), no. 5, 969-1028.

[30] Z. Rudnick and E. Waxman, Angles of Gaussian Primes, Israel Journal of Mathematics (2019) 1-41.
[31] P. Sarnak, S. W. Shin, N. Templier, Families of L-functions and their symmetry, Proceedings of Simons
Symposia, Families of Automorphic Forms and the Trace Formula, Springer-Verlag (2016), 531-578.
[32] E. Waxman, Lower Order Terms for the One Level Density of a Symplectic Family of Hecke L-Functions.

J. Number Theory 221 (2021), 447-483.
[33] M. P. Young, Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc. 19 (2006), no. 1, 205-250.

44



	1. Introduction
	Acknowledgements
	2. Background
	2.1. Quartic Residue Symbol
	2.2. L-functions of Elliptic Curves
	2.3. Grössencharakters
	2.4. Computing Conductors
	2.5. Computing Root Numbers

	3. Computing D(, d,k)
	4. Alternative Expressions for cj,inert(k)
	5. Computing D(K; , Fd)
	6. Proof of Theorem ??
	7. Non-vanishing results
	Appendix A. Evaluating the cj(1,0) constants numerically
	References

