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Abstract. We establish that the k-binomial complexity of hypercubic
billiard words is always equal to their subword complexity.

1 Motivations

A hypercubic billiard word in dimension d is an infinite d-ary word encoding the
faces successively hit by a billiard ball moving in the unit cube of Rd, in which
two parallel faces are labeled by the same letter (see Figure 1). In the sequel,
the parameter θ will denote the initial momentum of the ball.

Fig. 1. The billiard ball, initially located in x with a momentum θ, generates the
infinite word w = 1211212112...

Recently, M. Andrieu and the author of the present text computed the abelian
complexity of any hypercubic billiard word whose momentum θ has rationally
independent coordinates.

Proposition 1 (Andrieu, V. [1]). Let d ≥ 1 and θ ∈ Rd with rationally
independent coordinates. The abelian complexity of any hypercubic billiard word
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w with momentum θ is

ρw(n) =

min(n,d−1)∑
k=0

(
d− 1

k

)
.

This expression is surprisingly similar to the well-known subword complexity
of hypercubic billiard words, which was obtained with a different method.

Proposition 2 (Bédaride [3]). Let d ≥ 1 and θ ∈ Rd with rationally indepen-
dent coordinates. If d ≥ 3, assume moreover that for any three distinct letters
i, j, k, the numbers θ−1i , θ−1j and θ−1k are rationally independent (♣). Then, the
subword complexity of any hypercubic billiard word w with momentum θ is

pw(n) =

min(n,d−1)∑
k=0

k!

(
n

k

)(
d− 1

k

)
.

Remark 1. Note that the condition (♣) is necessary for the last formula to be
true, see [2] or [4].

Hence the question: can we explain the similarity between those two expres-
sions? More precisely:

Question 1. How factors of hypercubic billiard words are distributed into abelian
classes?

Surprisingly, the most natural answer, which consists in believing that

“The abelian classes of length n can be partitioned into m + 1 sets
E0, . . . , Em (where m := min(n, d − 1)) such that, for every k ∈
{0, . . . ,m}, the set Ek contains exactly

(
d−1

k

)
abelian classes, each

of them containing exactly k!
(

n
k

)
factors.”

is false. Indeed, if such a partition of factors into abelian classes were true, then,
for every length n ∈ N, the set E0 should contain

(
d−1
0

)
= 1 abelian class,

which, in turn, should contain 0!
(

n
0

)
= 1 factor. This is in contradiction with the

following result.

Theorem 1. For every hypercubic billiard word w whose momentum θ has ra-
tionally independent entries, there exist infinitely many lengths n ∈ N for which
no abelian class of length n of w contains exactly one factor.

Then, a legitimate approach towards Question 1 is to compute the k-binomial
(resp. k-abelian) complexities [8,5] of hypercubic billiard words. Indeed, since
these complexities form a scale from the abelian complexity to the subword
complexity, our idea is to understand how factors are progressively partitioned
into k-binomial (resp. k-abelian) classes.

In this extended abstract, we focus on the k-binomial complexity of hypercu-
bic billiard words. The computation of their k-abelian complexity is the purpose
of another ongoing work.
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2 Definitions and notations

Let A be a finite set, called alphabet. A finite word w written over the alphabet
A is an element of A∗ :=

⋃∞
i=0Ai. For k ∈ N>0, we denote by A≤k :=

⋃k
i=1Ai

the set of all non-empty finite words of length less than k. A (right) infinite word
w written over the alphabet A is an element of AN.

A factor u of length n of a word w is a finite word made of n consecutive
letters in w, while a scattered factor of length n of w is a word made of n,
non-necessarily consecutive, letters of w. For instance, if w = 11212, then 11 is
a factor (and then, a scattered factor) of w, 22 is a scattered factor but not a
factor of w, and 221 is neither a factor nor a scattered factor of w.

For a finite word w ∈ A∗, we denote by |w| its length, by |w|a the number
of occurrences of the letter a ∈ A in w, by |w|u the number of occurrences of
the finite word u ∈ A∗ in w as a factor, and by

(
w
u

)
its number of occurrences

in w as a scattered factor. For instance, if w = 11212, then |w| = 5, |w|1 = 3,
|w|12 = 2 and

(
w
12

)
= 5.

We say that a word w is c-balanced (c ∈ N) when, for every equally long
factors u, v of w, and every letter a ∈ A,

∣∣|u|a − |v|a∣∣ ≤ c. For example, the
word w = 11212 is 1-balanced while the word w′ = 11122 is 2-balanced but not
1-balanced.

We say that two finite words u, v ∈ A∗ are abelian equivalent (resp. k-
binomially equivalent (where k ∈ N>0 is a parameter)) when, for every letter
a ∈ A, |u|a = |v|a (resp. when, for every finite word x ∈ A≤k,

(
u
x

)
=
(

v
x

)
). In

that case, we write u ∼ab v (resp. u ∼k v). For example, if u = 1212221 and
v = 2112212, then u ∼ab v, u ∼2 v but u �3 v.

These binary relations are equivalence relations. In particular, they partition
factors into abelian (resp. k-binomial) classes.

The subword complexity (resp. abelian complexity, resp. k-binomial complex-
ity) of a word w is the function pw : N→ N (resp. ρw : N→ N, resp. bk

w : N→ N)
which counts, for every integer n ∈ N, the number of distinct factors (resp.
abelian classes, resp. k-binomial classes) of length1 n of w.

3 New results

We say that a word w satisfies the property (P) if, for every integer k ≥ 2, its
k-binomial complexity is equal to its subword complexity. Note that, since for
every word w and every k ∈ N>0 we have bk

w ≤ bk+1
w ≤ pw, it is equivalent to

only requiring that b2w = pw.
On the one hand, it is known that words satisfying the property (P) exist. It

is the case, for instance, for Sturmian words [8], and also for the Tribonacci word
[6]. On the other hand, there exist words that do not satisfy this property. For

1 Since two factors are abelian (resp. k-binomially) equivalent only if they are of the
same length, an abelian (resp. k-binomial) class contains only equally long factors.
The common length of the factors of a given abelian (resp. k-binomial) class is called
its length.
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example, the Thue-Morse word and, more generally, any aperiodic word obtained
as a fixed point of a Parikh constant substitution. Indeed, these words have an
unbounded subword complexity, while their k-binomial complexity is bounded
for every k ∈ N>0 [8, Theorem 13].

Our main result asserts that hypercubic billiard words satisfy the property
(P).

Theorem 2. Let d ≥ 1. For every integer k ≥ 2, the k-binomial complexity of
any hypercubic billiard word in dimension d is equal to its subword complexity.

Remark 2. This theorem is true for every hypercubic billiard words, even those
for which the subword complexity is not given by Proposition 2.

Our proof strategy also enables us to establish the following result, which is,
in the case d = 2, a refinement of [8, Theorem 7].

Theorem 3. Let d ≥ 1. For every integer k ≥ 2, the k-binomial complexity of
any d-ary, 1-balanced word is equal to its subword complexity.

Remark 3. Since Sturmian words are 1-balanced, since the Tribonacci word is 2
balanced [7], and since any hypercubic billiard word in dimension d is (d − 1)-
balanced [9], one may think that the property (P) (or some of its variant allowing
that bk

w = pw only for sufficiently large values of k) could be true for any word
satisfying a “good” balancedness property. However, let us recall that the Thue-
Morse word is 2-balanced, and yet, does not satisfy the property (P): more
precisely, its k-binomial complexity is never equal to its subword complexity.
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