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Abstract

We discuss a topological definition of natural coding of a minimal rotation on the d-dimensional
torus, inspired by the seminal works of Rauzy on the Tribonacci word. In particular, we show
that under the axiom of choice, it is possible to wisely complete the pseudo-fundamental domain
of the torus into a fundamental domain, while preserving the property of piecewise translation
and a weak form of sequential continuity. We prove then that if w is a natural coding of a
minimal rotation of the d-torus, admitting furthermore d+ 1 return words to a letter a, then its
derivated word to the letter a is still a natural coding of a minimal rotation of the d-torus, that
we fully describe. In particular, this result completes an argument of Cassaigne, Ferenczi and
Zamboni: under this assumption, and if furthermore the fundamental domain associated with
the natural coding is bounded, then the cylinder [a] is a bounded remainder set for w (i.e. the
empiric frequency with which the symbolic trajectory w visits the set [a] tends to its expected
value at speed at least 1/n), which is equivalent to finite imbalance on the letter a. As a conse-
quence, no Arnoux-Rauzy word with infinite imbalance is a natural coding of a minimal rotation
of the 2-dimensional torus, with bounded fundamental domain. The same holds for primitive
C-adic words and, more generally, uniformly recurrent tree words.

Besides, we prove that to any natural coding of a minimal rotation of the d-torus we can
associate other natural codings constructed by a reverse induction process, that we call exduction.
We study the return words of Arnoux-Rauzy and primitive C-adic words within the S-adic
framework and obtain that, for these two classes of words, being a natural coding of a minimal
rotation of the 2-torus is a property that only depends on the asymptotic behavior of the directive
sequence.

1 Introduction

Backgrounds

In [Rau82], Rauzy undertakes the study of symbolic systems associated with minimal rotations of
the 2-dimensional torus by a remarkable example: the Tribonacci word. The ”canonical association”
he obtains, through a well-chosen partition, was refered to (though not written at that time) under
the name of ”natural coding”. Later, when it appeared that the Tribonacci word was a remarkable
element of a wide class of words generalizing Sturmian words on a 3-letter alphabet [AR91], it was
believed that the canonical association property would extend to the whole class of words (now
known as Arnoux-Rauzy words).

In [CFZ00], Cassaigne, Ferenczi and Zamboni disproved this belief by exhibiting an Arnoux-
Rauzy word satisfying a remarkable combinatorial property: infinite imbalance (see Definition 1).
The first and main part of their paper is devoted to the construction of this unsuspected object; in
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the second part, relying on a theorem of Rauzy on bounded remainder sets (see [Rau84] or Theorem
B below), they state that if w∞ is an Arnoux-Rauzy word with infinite imbalance, then either w∞
or one of its induced words (which are still Arnoux-Rauzy words with infinite imbalance) is not a
natural coding of a rotation of the 2-torus (the definition of natural coding is discussed in Section 3).
Even if the proof is incorrect, their result is true, under the additional assumptions of boundedness
of the fundamental domain and minimality of the rotation (it is a consequence of Corollary 44).
In Section 4 of the present document, we rectify and complete the proof that Cassaigne, Ferenczi
and Zamboni sketched to achieve a more significant result: Theorem A. Besides, the existence of
non-coding Arnoux-Rauzy words was established by other techniques in [CFM08].

Since then, substantial advances have been made in the counterpart. Under a measure theory
definition, [AI01], [BJS12] and [BŠW13] show that purely substitutive Arnoux-Rauzy words are
natural codings of rotation of the 2-torus; [BST19] extends this positive result in the generic S-adic
case to a large subclass of Arnoux-Rauzy words.

Our work

First, we propose a topological definition of natural coding of a minimal rotation on the d-dimensional
torus, inspired by the seminal works of Rauzy [Rau82] (Definition 2). Under this framework, we
cannot elude the question of borders.

We show that if w is a natural coding of a minimal rotation of the d-torus, then: 1) w is written
with d+1 letters and is uniformly recurrent (see immediate Lemma 3); 2) under the axiom of choice,
it is possible to wisely complete the pseudo-fundamental domain of the torus into a fundamental
domain, while preserving the property of piecewise translation as well as a the continuity, in an
of course weak sense, of the coding function (see Proposition 9 and Lemma 16). If furthermore w
admits d + 1 return words to a factor v, then its derivated word to v (see Definition 27) is still a
natural coding of a minimal rotation of the d-torus, that we fully describe (see Theorem A).

Fulfilling an argument of [CFZ00], we prove then that the cylinder [v] is a bounded remainder
set for w, which is equivalent to finite imbalance on w for the factor v (see Proposition 37). As
a consequence, no Arnoux-Rauzy word with infinite imbalance is a natural coding of a minimal
rotation of the 2-torus. This consequence holds for primitive C-adic words as well, and more
generally for tree words (see Corollary 44).

On another hand, we show that the property of being a natural coding of a minimal rotation
also passes through a reverse induction operation that we call exduction (Theorem G).

In the case of Arnoux-Rauzy and primitive C-adic words, we link the induction and exduction
processes to the action of a multidimensional continued fraction algorithm on the letter frequencies
vector of w, through the S-adic expression of return words (see Theorem D for Arnoux-Rauzy words,
which is a restatement of [JV00], and Theorem E for primitive C-adic words).

Finally, we show that for Arnoux-Rauzy and primitive C-adic subshifts, being a natural coding
of a minimal rotation on the 2-torus only depends on the asymptotic behavior of the directive
sequence (Theorem H).
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2 Preliminaries

2.1 Finite and infinite words

An alphabet A is a finite set; its elements are called letters. For instance, in what follows, we work
with the (d+1)-letter alphabet I = {1, ..., d+1}. A finite word of length n, where n is a nonnegative
integer, is the concatenation of n letters: u = a0 ·a1 ·...·an−1 ∈ An. As soon as there is no ambiguity,
the concatenation symbol · will be omitted. We denote by A∗ = ∪n∈NAn the set of finite words; an
infinite word is an element w = a0a1... ∈ AN. Following Python, we denote by w[k], for k ∈ N, the
(k + 1)-th letter of a nonempty (finite or infinite) word w.

A finite word u is a factor of length n of a (finite or infinite) word w if there exists a nonnegative
integer i such that for all k ∈ {0, ..., n − 1}, w[i + k] = u[k]; in the particular case i = 0, we say
that u is the prefix of length n of w, and denote it by u = prefn(w). We denote by Fn(w) the set
of factors of w of length n and by F(w) the set of factors of all lengths. An infinite word is said
recurrent if every factor occurs infinitely often.

We endow the set AN with the product topology, for which it is compact. Given a finite word
u ∈ A∗, we denote by [u] the set of words in AN which admit u as prefix. The sets [u] are called
cylinders; they are clopen and form a neighborhood basis for the topology.
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2.2 Symbolic dynamics

We denote by S the shift map, which acts on infinite words by ’erasing’ the first letter: if w is an
infinite word, for all k ∈ N, S(w)[k] = w[k + 1]. If w0 is an infinite word, we call subshift associated
with w0, denoted by X0, the closure set (for the product topology) of the trajectory of w0 under

the shift action: X0 = {Sk(w0)|k ∈ N}.
The shift map is at the core of symbolic dynamics. Given a dynamical system, one can choose

to partition the space into a finite number of regions A1, ..., Ad, and study the possible sequences
of regions crossed over time (for a general introduction to symbolic dynamics, the reader should
refer to [LM95]). The difficulty and the interest of the discrete dynamical system thus obtained
highly depends on the choice made for the partition. In this paper, we study the behavior, under
the induction and the exduction operations, of a family of remarkable partitions for the discrete
flow of a minimal rotation on a d-dimensional torus (called hereafter d-torus).

2.3 Imbalance

Definition 1. The imbalance of an infinite word w is the quantity (possibly infinite):

imb(w) = sup
n∈N

sup
u,u′∈Fn(w)

max
a∈A

||u|a − |u′|a|,

where |u|a denotes the number of times the letter a appears in the word u.

The imbalance measures iniquities in the distribution of letters in a given word. This notion
appeared for the first time in the works of Morse and Hedlund ([MH38] and [MH40]); in [CH73]
Coven and Hedlund showed that this quantity characterizes Sturmian words: a binary word is
Sturmian if and only if it is aperiodic and its imbalance equals 1.

This quantity has been much studied since, through the notions of C-balancedness (a word is
C-balanced if and only if its imbalance is lower than C), balancedness (originally, a word is balanced
if and only if its imbalance is lower than 1; in recent papers, balanced words tend to denote words
with finite imbalance). In [Ada03], Adamczewski introduced the balance function of an infinite
word w: Bw(n) = max

a∈A
max

u,v∈Fn(w)
||u|a − |v|a|. The imbalance of w is the smallest upper bound for

this balance function.
For instance, the imbalance of the Tribonacci word is 2 (see [RSZ09] for a proof, but this fact was

mentioned before). Because they were constructed as a generalization of Sturmian words from the
combinatorial viewpoint, it was expected that Arnoux-Rauzy words would have bounded imbalance.
This is not the case: Cassaigne, Ferenczi and Zamboni exhibited in [CFZ00] families of Arnoux-
Rauzy words with arbitrary high imbalance, and even families of words with infinite imbalance (see
also [And21] for an alternative construction).

One extend the notion of imbalance by considering factors instead of letters. For u, v ∈ F(w),
denote by |u|v the number of occurrences of v in u, i.e., the number of indices i ∈ {0, ..., |u| − 1}
such that u[i]..u.[|v| − 1 + i] = v (for instance, |131313|1313 = 2.) The imbalance of w on the factor
v is:

imbv(w) = sup
n∈N

sup
u,u′∈Fn(w)

||u|v − |u′|v|.

This notion appears in Section 4.3.
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3 Natural coding of minimal rotations

3.1 A topological definition and its consequences

Let d be a positive integer. Recall that L is a lattice of Rd if there exist e1, ..., ed ∈ Rd, linearly
independent, such that L = Ze1 + ... + Zed. We denote by TL := Rd/L the d-torus associated
with the lattice L, and by pL the projection map on the torus. The torus is endowed with the
quotient topology (consisting of all sets with an open preimage under pL), which makes pL open
and continuous.

A set Ω ⊂ Rd is L-simple if the map pL : Ω→ TL is one-to-one; Ω is a fundamental domain of
L if the map pL : Ω→ TL is one-to-one and onto. As soon as Ω is L-simple, we introduce the cover
map rΩ,L which maps each point in pL(Ω) to its unique preimage in Ω. If the set Ω is open, the
cover map rΩ,L is open and continuous for the topology on Rd. Remark: in [Rau84], L-simple sets
are furthermore assumed to be bounded - in our work we will explicitly mention this assumption
each time it is required.

Now, given α ∈ Rd, the rotation of the torus TL through the angle α is the map Rα,L : TL →
TL, x 7→ x + pL(α) (possibly denoted by Rα if there is no ambiguity on the lattice). Following
[Rau84], a pair (α,L) is said minimal if for all x̃ ∈ TL, the sequence (Rnα(x̃))n∈N is dense in TL - or
equivalently, if there exists one such x̃ in TL.

Definition 2. A word w0 ∈ AN is a natural coding of a minimal rotation of the d-torus if there
exists a lattice L ⊂ Rd together with a vector α ∈ Rd such that:

� (minimality) The pair (α,L) is minimal.

� (partition of a pseudo-fundamental domain) There exist Ω1,...,Ωd+1 nonempty, open sets of
Rd such that:

– the sets Ω1,...,Ωd+1 are pairwise disjoint;

– the union set Ω = ∪i∈{1,...,d+1}Ωi is L-simple;

– the projection set pL(Ω) is dense in the torus TL.

� (exchange of pieces) There exist α1, ..., αd+1 ∈ Rd such that for all index i ∈ {1, ..., d+ 1} and
for all point x̃ ∈ pL(Ωi) ∩R−1

α (pL(Ω)), rΩ,L(Rα(x̃)) = rΩ,L(x̃) + αi.

� (a coding trajectory) There exists x̃0 in pL(Ω) such that, for all n ∈ N, Rnα(x̃0) ∈ pL(Ωw0[n]),
where w0[n] denotes the (n+1)-th letter of w0.

We set x0 = rΩ,L(x̃0) and we say that ((α,L); (Ω : Ω1, ...,Ωd+1);x0; (α1, ..., αd+1)) are elements
of the natural coding w0.

Lemma 3. If w0 is a natural coding of a minimal rotation of the d-torus, then w is written with
exactly d+ 1 letters and is uniformly recurrent.

Proof. By minimality of the rotation, the trajectory of the point x̃0 is dense in the torus and, thus,
visits each open set pL(Ωi) - so w0 contains each letter i in {1, ..., d+ 1}.

Let u be a factor of w0. Then there exists a nonnegative integer n such that Sn(w0) ∈ [u].

Observe that the set Ω̃u := ∩|u|−1
l=0 R−lα (pL(Ωu[l])) is nonempty (it contains indeed the point Rnα(x̃0))

and open (the Ωi are open, the projection pL is open and the rotation is continuous). Therefore,
by minimality of the pair (α,L), we obtain a cover of the torus by a countable family of open sets:
TL = ∪n∈NR−nα (Ω̃u), from which we extract, by compacity of TL, a finite cover. We conclude that
there exists a nonnegative integer m such that TL = ∪mn=0R

−n
α (Ω̃u) and, finally, that w0 is uniformly

recurrent.
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At last, we say that a subshift is a natural coding of a minimal rotation of the d-torus if it is
minimal and if one of its elements is a natural coding of a minimal rotation of the d-torus.

Hereafter, we denote by I = {1, ..., d+ 1} the alphabet.

Notation 4. In this document, we shall work with a second lattice, called M . To avoid confusion,
we will use the symbol .̃ (tilda) to refer to points or sets in the torus TL, whereas the symbol .̄ (bar)
will be devoted to elements in TM - the absence of symbol referring by default to the covering space
Rd. From now on, we denote Ω̃ = pL(Ω) and Ω̃i = pL(Ωi).

Example 5. A Sturmian subshift with slope α is a natural coding of the minimal rotation of the
torus R/Z through the angle α. One can take the pseudo-fundamental domain Ω =]0, 1[ together
with the partition Ω1 =]0, 1− α[, Ω2 =]1− α, 1[.

The Tribonacci subshift is a natural coding of the minimal rotation of the torus R2/Z2 through
the angle (ζ, ζ2), where ζ is is the unique real root of the polynomial x3 + x2 + x − 1. Further-
more, the Rauzy fractal gives a pseudo-fundamental domain for which the pieces of the partition are
furthermore bounded and simply connected (see [Rau82]).

Given a natural coding w0 with elements ((α,L); (Ω : Ω1, ...,Ωd+1);x0; (α1, ..., αd+1)), we intro-
duce the numbering function ν : Ω̃ → I, which maps all elements of Ω̃i to the letter i; and we
consider the coding function f given by f(x) = (ν(Rnα(pL(x))))n∈N which makes sense each time the
trajectory of pL(x) for the rotation action is included in Ω̃. Let D denote the maximal subset of Ω
on which the coding function f is defined. The covering rotation T = rΩ,L ◦Rα ◦ pL is well-defined
on D and satisfies T (D) ⊂ D. Following Notation 4, we denote D̃ = pL(D).

Lemma 6. The trajectory of x0 under the action of T is included in D and dense in Ω.

Proof. By definition of natural coding, the trajectory of x̃0 under Rα is included in D̃ (we even
know that f(x0) = w0). The rotation being minimal, the trajectory of x̃0 is dense in the torus TL
and in particular in Ω̃. By continuity of the cover map rΩ,L (Ω is open), we conclude that this
property is preserved in the cover space.

Proposition 7. The coding function f is continuous for the induced topology on D. Furthermore,
the diagram below is commutative:

D T //

f
��

D

f
��

IN
S

// IN,

and the image set f(D) is included in X0, the subshift generated by the word w0.

Proof. First, observe that f(x) belongs to the cylinder [i0...in−1] if and only if x ∈ D and for all k
in {0, ..., n− 1}, Rkα(pL(x)) ∈ Ω̃ik ; if and only if x ∈ D ∩∩n−1

k=0 p
−1
L (R−kα (Ω̃ik)), which is open for the

induced topology on D - hence the continuity of f .
Secondly, the diagram is commutative by definition of f .
Thirdly, let w ∈ f(D) and x ∈ D ⊂ Ω be one of its preimages. By Lemma 6, there exists an

extracted sequence (Tnk(x0))k in DN that tends to x. But f being continuous, the image sequence,
which is (Snk(w0))k, tends to w = f(x) - meaning that the word w ∈ IN actually belongs to X0;
we conclude that f(D) ⊂ X0.

We will prove in Proposition 18 that the coding function f is one-to-one.
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Lemma 8. For all x ∈ D, we have T (x) = x+ αi, with i = ν(pL(x)).

Proof. This is an immediate consequence of Item 2 (exchange of pieces) in Definition 2 (natural
coding).

3.2 Borders assignment

In this subsection, we show that, under the axiom of choice, it is possible to wisely assign borders
to the pieces Ωi, in order to complete the L-simple set Ω into a fundamental domain Ω′ and enlarge
the remarkable property of exchange of pieces, while keeping (under a weak form) the continuity of
the coding function f .

Proposition 9. Let L be a lattice of Rd, and Ω1, ...,Ωd+1 nonempty, open, pairwise disjoint sets,
such that moreover Ω = ∪i∈IΩi, where I = {1, ..., d + 1}, is L-simple (H1). Let α ∈ Rd be such
that (α,L) is minimal (H2). Assume there exists x0 ∈ Ω such that for all nonnegative integer n,
Rnα(pL(x0)) ∈ Ω(H3), and denote by (in)n ∈ IN the unique sequence satisfying: for all n ∈ N,
Rnα(pL(x0)) ∈ Ωin. At last, assume that there exist α1, ..., αd+1 ∈ Rd such that for all nonnegative
integer n, Tn+1(x0) = Tn(x0) + αin, where T = rΩ,L ◦Rα ◦ pL (H4).

Then, under the axiom of choice, there exist Ω′1, ...,Ω
′
d+1 ⊂ Rd+1 such that:

� (C1) for all i ∈ I, Ωi ⊂ Ω′i;

� (C2) the union set Ω′ = ∪i∈IΩ′i is a fundamental domain of L;

� (C3) the sets Ω′i are pairwise disjoint.

Furthermore, if T ′ denotes the covered rotation T ′ = rΩ′,L ◦Rα ◦ pL, then:

� (C4) for all x ∈ Ω′i, T
′(x) = x+ αi;

� (C5) for all x ∈ Ω′, for all q ∈ N, there exists τ an extraction (i.e. an increasing map from
N to N) such that: (i) the sequence (T τ(m)(x0))m∈N converges to x; (ii) for all n ∈ {0, ..., q},
for all nonnegative integer m, T τ(m)+n(x0) ∈ Ωιn, where ιn is given by T

′n(x) ∈ Ω′ιn.

Proof. General idea. The proof consists of a lifting process, based on the axiom of choice. Initially,
the sets Ω′1, ...,Ω

′
d+1 are empty. We browse each orbit for the action of the rotation Rα to the future

and back to the past, from a well-chosen point, in order to assign to each visited point of the torus
TL a covering point in Rd, that we furthermore stow in one of the d+ 1 sets Ω′1, ...,Ω

′
d+1. The pair

(α,L) being minimal (H2), each point of the torus is visited exactly once by this process, and the
sets Ω′1, ...,Ω

′
d+1 ⊂ Rd form a partition of a fundamental domain of the torus.

Following Notation 4, we denote x̃0 = pL(x0), Ω̃i = pL(Ωi) for all i ∈ I, and Ω̃ = pL(Ω).

Method to lift one orbit. Let (ỹn)n∈Z be an orbit for the action of Rα on the torus. The
pair (α,L) being minimal (H2), the pair (−α,L) is minimal as well, and there exists an increasing
sequence of nonnegative indices (nk)k∈N such that for all k ∈ N, ỹ−nk

belongs to the nonempty open
set Ω̃ (H1). Without loss of generality, we assume n0 = 0.

We now intend to construct, by a diagonal process, a lifted sequence (yn)n∈Z for the orbit
(ỹn)n∈Z, together with a numbering sequence (jn)n∈Z, such that for all n ∈ Z:

1. pL(yn) = ỹn;

2. if moreover ỹn ∈ Ω̃, then yn = rΩ,L(ỹn);
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3. yn+1 = yn + αjn ;

4. for all q ∈ N, there exists an extraction τ such that T τ(m)(x0)→m→∞ yn and for all nonneg-
ative integer m, iτ(m)...iτ(m)+q = jn...jn+q.

The lifted orbit (yn)n∈Z and its symbolic trajectory (jn)n∈Z will be obtained as the limit sequences,
when k tends to infinity, of the finite sequences (yn)n∈{−nk,...,nk} and (jn)n∈{−nk,...,nk}: we now give
the details of the construction.

First, since ỹ0 ∈ Ω̃, there exists a unique i ∈ I such that ỹ0 ∈ Ω̃i. We set y0
0 = rΩ,L(ỹ0) and

j0
0 = i. By minimality of (α,L) (H2), and since Ωj00

is open (H1), there exists an extraction σ0 such

that the sequence (T σ0(m)(x0))m∈N is included in Ωj00
and tends to y0

0.

Now, let k ∈ N, and assume there exist an extraction σk together with a finite word jk−nk
...jknk

∈
I2nk+1, such that T σk(m)(x0)→m→∞ rΩ,L(ỹ−nk

) and for all nonnegative integerm, iσk(m)...iσk(m)+2nk

= jk−nk
...jknk

. We want to construct an extraction σk+1 together with a finite word jk+1
−nk+1

...jk+1
nk+1

∈
I2nk+1+1, such that:{

T σk+1(m)(x0)→m→∞ rΩ,L(ỹ−nk+1
),

for all m ∈ N, iσk+1(m)...iσk+1(m)+2nk+1
= jk+1
−nk+1

...jk+1
nk+1

.

Denote l = nk+1 − nk ∈ N∗, and let m0 ∈ N be such that σk(m0) ≥ l. Denote γ : m 7→ m+m0.
The sequence (T σk◦γ(m)−l(x0))m∈N is the image, by the continuous function T−l = rΩ,L ◦R−lα ◦pL (Ω
is open by (H1)), of the convergent sequence (T σk◦γ(m)(x0))m∈N; it thus admits a limit that we de-
note by yk+1

−nk+1
. Furthermore, the possible values of the sequence (iσk◦γ(m)−l...iσk◦γ(m)−l+2nk+1

)m∈N

belong to the finite set I2nk+1+1, so there exists jk+1
−nk+1

...jk+1
nk+1

∈ I2nk+1+1 together with an ex-

traction υ such that for all nonnegative integer m, iσk+1(m)...iσk+1(m)+2nk+1
= jk+1
−nk+1

...jk+1
nk+1

, where
σk+1(m) = σk ◦ γ ◦ υ(m) − l, for all nonnegative integer m. Finally, for n ∈ {−nk+1, ..., nk+1}, we
define yk+1

n := limm→∞ T
σk+1(m)+n+nk+1(x0).

Observe that the sequence (T σk+1(m)+l(x0))m is a subsequence of (T σk(m)(x0))m. Consequently,
for all n ∈ {−nk, ..., nk}:{

yk+1
n = limm T σk+1(m)+l+n+nk(x0) = limm T σk(m)+n+nk(x0) = ykn;
jk+1
n = jkn.

Therefore, we can construct (yn)n∈Z and (jn)n∈Z as the biinfinite limits of the finite words
(ykn)n∈{−nk,...,nk} and (jkn)n∈{−nk,...,nk}, for k ∈ N.

Properties of the lifted orbit.
Now we formally check that the lifted orbit (yn)n∈Z satisfies the properties (1), (2), (3) and (4).

Lemma 10. For all n ∈ Z, pL(yn) = ỹn; if moreover ỹn ∈ Ω̃, then yn = rΩ,L(ỹn).

Proof. Let n ∈ Z and k ∈ N be such that −nk ≤ n. By continuity of pL and Rα, we have:
pL(yn) = limm pL ◦ T σk(m)+n+nk(x0)

= limm Rn+nk
α ◦ pL ◦ T σk(m)(x0)

= Rn+nk
α (ỹ−nk

)
= ỹn.

Furthermore, if ỹn ∈ Ω̃, then there exists λ ∈ L such that yn = rΩ,L(ỹn) +λ. Since the sequence
(T σk(m)+n+nk(x0))m∈N of elements in ΩN tends to yn, which belongs to the open set Ω +λ, we must
have Ω ∩ Ω + λ 6= ∅. By L-simplicity of Ω (H1), this implies λ = 0, hence yn = rΩ,L(ỹn).
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Lemma 11. For all n ∈ Z, yn+1 = yn + αjn.

Proof. Let n ∈ Z and k ∈ N be such that −nk ≤ n < nk. For all nonnegative integer m,
iσk(m)+n+nk

= jn, hence T σk(m)+n+nk+1(x0) = T σk(m)+n+nk(x0) + αjn (H4). Taking the limit
when m→∞ on both sides gives yn+1 = yn + αjn .

Lemma 12. For all n ∈ Z and for all q ∈ N, there exists an extraction τ such that T τ(m)(x0)→m→∞
yn and for all nonnegative integer m, iτ(m)...iτ(m)+q = jn...jn+q.

Proof. Let n ∈ Z and q ∈ N. We choose k ∈ N such that −nk ≤ n and q ≤ nk −n. By construction
of σk, the function τ : m 7→ σk(m) + n+ nk suits.

Construction of a fundamental domain with a ”good” partition.
Thanks to the axiom of choice, we run this process for each orbit in the action of the rotation

Rα on the torus TL. We denote Ω′ ⊂ Rd the set of all the lifted points we obtain. Since the orbits
form a partition of the torus, and by minimality of (α,L) (H2), each point of the torus is lifted
exactly once, meaning that Ω′ is a fundamental domain of the torus (C2). Hereafter we denote by
rΩ′,L(ỹ) the covering point of ỹ given by the process.

Again, because each point in the torus is visited exactly once, we can define the numbering map
ν ′ : TL → I, which maps the n-th point of a given orbit (ỹn)n∈Z (with respect to the indexation
used for the lifting process) to the n-th term of the associated numbering sequence (jn)n∈Z. For all
i ∈ I, we set Ω′i = {rΩ′,L(ỹ) | ỹ ∈ TL s.t. ν ′(ỹ) = i}. The sets Ω′1,...,Ω′d+1 form a partition of Ω′

(C3).
At last, Lemma 10 implies that for all ỹ ∈ pL(Ω), rΩ′,L(ỹ) = rΩ,L(ỹ), hence the inclusion Ωi ⊂ Ω′i

for all i in I. Lemmas 11 and 12 respectively ensure (C4) and (C5).

Definition 13. Let w0 be a natural coding of a minimal rotation of the d-torus with elements
((α,L); (Ω : Ω1, ...,Ωd+1);x0; (α1, ..., αd+1)). We say that (Ω′ : Ω′1, ...,Ω

′
d+1) is a borders assignment

of w if:

1. for all i in I = {1, ..., d+ 1}, Ωi is included in Ω′i;

2. the sets Ω′1, ...,Ω
′
d+1 forms a partition of Ω′;

3. the set Ω′ is a fundamental domain of L;

4. for all i in I, for all x in Ω′i, T
′(x) = x+αi, where T ′ denotes the covered map of the rotation

to the fundamental domain Ω′: T ′ = rΩ′,L ◦Rα ◦ pL;

5. for all x ∈ Ω′, for all q ∈ N, there exists an extraction τ such that: (i) T τ(m)(x0) →m→∞ x;
(ii) for all n ∈ {0, ..., q}, for all nonnegative integer m, T τ(m)+n(x0) ∈ Ωιn, where ιn is given
by T

′n(x) ∈ Ω′ιn.

Corollary 14. If (Ω′ : Ω′1, ...,Ω
′
d+1) is a borders assignment of a natural coding with elements

((α,L); (Ω : Ω1, ...,Ωd+1);x0; (α1, ..., αd+1)), then for all i ∈ I := {1, ..., d + 1}, the set Ωi is dense
in Ω′i.

Proof. Let i ∈ I and x ∈ Ω′i. Denote by τ the extraction given by Definition 13 for x and q = 0.
Then the sequence (T τ(n)(x0))n∈N belongs to ΩN

i and converges to x - hence the density of Ωi in
Ω′i.

Corollary 15 (Immediate consequence of Proposition 9). Under the axiom of choice, a natural
coding of a minimal rotation of the d-torus admits borders assignments.
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Given a natural coding of a minimal rotation w0 endowed with a borders assignment (Ω′ :
Ω′1, ...,Ω

′
d+1), we extend the numbering and coding functions ν and f into ν ′ : Ω̃′ 7→ I and f ′ : Ω′ 7→

IN: for all x̃ ∈ Ω̃′i, we set ν ′(x̃) = i; for all x in Ω′, f ′(x) = (ν ′(Rnα(pL(x))))n∈N. The extended
coding function is defined on the whole fundamental domain Ω′ and coincides with f wherever f is
defined, i.e., on the subset D.

The following lemma, which is an immediate consequence of Definition 13, is the keystone of
the paper.

Lemma 16 (Weak sequential continuity). For all x ∈ Ω′, there exists a sequence (yn)n ∈ DN such
that yn →n→∞ x and f ′(yn) = f(yn)→n→∞ f ′(x).

Proof. Let x ∈ Ω′. For n ∈ N, we set yn = T τn(n)(x0), where τn is the extraction given for q = n in
Definition 13. The sequence (yn)n∈N belongs to DN, converges to x and satisfies, for all nonnegative
integer n, f(yn)[0...n] = f ′(x)[0...n].

This implies in particular that the image set of the extended coding function f ′ belongs to the
subshift (which is a close set) generated by w0: f ′(Ω′) ⊂ X0.

We finally show that the extended coding function f ′ is one-to-one. This results of the minimality
of the covered dynamical system (Ω′, T ′).

Lemma 17. The nonnegative orbit of any x in Ω′ under the action of the extended covered rotation
T ′ is dense in Ω′.

Proof. Let x, z ∈ Ω′ and ε > 0. By density of Ω in Ω′ (Corollary 14), one can pick y in Ω at distance
less than ε/2 from z. Consider an open ball B with center y and diameter less than ε/2 included
in the open set Ω. The projected set pL(B) is still a nonempty open set; by minimality of the pair
(α,L), there exists n ∈ N such that Rnα,L(pL(x)) ∈ pL(B). Back to the covering space, we have that

T
′n(x) ∈ B; the point T

′n(x) is thus at distance less than ε/2 from y and less than ε from z.

Proposition 18. The extended coding function f ′ : Ω′ 7→ X0 is one-to-one.

Proof. By contradiction, consider x 6= y ∈ Ω′ such that f ′(x) = f ′(y). Because of Item (4) in
Definition 13, an easy induction argument shows that T

′n(y) = T
′n(x) + y − x for any nonnegative

integer n. Taking the closure set of their nonnegative orbit, we obtain that {T ′n(y)|n ∈ N} =

{T ′n(x)|n ∈ N}+ y − x. Since {T ′n(z)|n ∈ N} = Ω̄′ = Ω̄ for any z in Ω′ (immediate consequence of
Lemma 17), this implies that the set Ω̄ is invariant under the translation by the vector y − x.

Now, consider B0 ⊂ Ω an open ball with diameter less than y − x. By compacity of TL, there
exists a positive integer n such that the intersection Rny−x,L(pL(B0)) ∩ pL(B0) is nonempty. Denote
B1 = B0 +n(y−x). On one hand, due to their small diameter, the balls B0 and B1 are disjoint. On
another hand, the translated ball B1 is still included in Ω. Thus, the intersection B1∩Ω is dense in B1

and its projected set pL(B1∩Ω) is dense in pL(B1). In particular, since pL(B1)∩pL(B0) is open and
nonnempty (indeed, pL(B1) = Rny−x,L(pL(B0))) by definition of n the intersection pL(B1∩Ω)∩pL(B0)
is also nonempty. Given that B0 ⊂ Ω and that the balls B0 and B1 are disjoint, this nonemptyness
is conflicting with the L-simplicity of Ω.

3.3 The underlying group of a natural coding

Let w0 be a natural coding of a minimal rotation of the d-torus with elements ((α,L); (Ω : Ω1, ...,Ωd+1);
x0; (α1, ..., αd+1)). We introduce the underlying group of the natural coding w0:

G =
∑
i∈I

αiZ.
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We now state two general lemmas about the group G, that will be useful in Sections 4 and 6.

Lemma 19. The group G is a free abelian group of rank d + 1, which is dense in Rd. The family
(α1, ..., αd+1) forms a basis of G.

Proof. We first show that the group G is dense in Rd. By minimality of the pair (α,L), the orbit
(Rnα,L(pL(x0)))n∈N, which is included in pL(Ω), is dense in TL. The set Ω being open and L-simple,
the covered map rΩ,L is well-defined and continuous, and thus, the covered orbit (rΩ,L ◦ Rnα,L ◦
pL(x0))n∈N ⊂ G + x0 is dense in Ω. Finally, the group G is dense in the nonempty open set
Ω− x0 ⊂ Rd, and thus, in the whole space Rd.

Now, we show that the family (α1, ..., αd+1) is free over Z, which proves that G is a free abelian
group of rank d+1, with basis (α1, ..., αd+1). By contradiction, assume that there exist n1, ..., nd+1 ∈
Z, non simultaneously equal to zero, and such that

∑
i∈I niαi = 0. Without loss of generality,

assume that nd+1 ∈ N∗; so we have nd+1αd+1 = −
∑d

i=1 niαi. Now, denote by V the vectorial space
over R generated by the vectors α1, ..., αd. If V is a strict subspace of Rd, then we can find a vector
e ∈ Rd such that the distance between e and the subspace V is greater than 1 - which is impossible
since G is included in V and dense in Rd. Therefore, α1, ..., αd form a basis of Rd and N =

∑d
i=1 αiZ

is a lattice of Rd. We now show that

G =
⋃

r∈{0,...,nd+1−1}

N + rαd+1.

Let g =
∑

i∈Imiαi be an element of G. Denote respectively by q and r the quotient and the rest of

md+1 in the euclidean division by nd+1. Then we have g =
∑d

i=1(mi− qni)αi+ rαd+1. We conclude
that G is included in the union set ∪r∈{0,...,nd+1−1}N+rαd+1; since the converse inclusion is trivially
true, we have the equality. Then, as the finite union of discrete sets, G is discrete - a contradiction.
Finally, the vectors α1, ..., αd+1 form a basis of the group G.

Lemma 20. We have G = L+ αZ.

Proof. Since αi = α mod L for all i ∈ I, we immediately have G ⊂ L + αZ. Conversely, let
x ∈ L + αZ + x0. We are going to show that x ∈ G + x0 - which will end the proof. By density
of G and openness of Ω, there exists g ∈ G such that x − g ∈ Ω. Since G ⊂ L + αZ, we deduce
that pL(x − g) = Rlα,L(x̃0) for a certain l ∈ Z. But then, there exists l1, ..., ld+1 ∈ Z such that
x− g = x0 +

∑
liαi; hence x ∈ x0 +G.

3.4 Discussion on the definition of natural coding

The notion of natural coding of rotation, sometimes better called natural coding of translation of
the torus, goes back to the works of Morse and Hedlund [MH40], and to the seed paper of Rauzy
[Rau82] (study of the Tribonacci word) in dimension 2. Nonetheless, the terminology appears later
(for instance in [CFZ00] and [Fog02]). As far as we know, the terminology was introduced, through
not written, by Rauzy [Arn20].

Roughly speaking, a ”natural” coding of rotation denotes a word obtained as the coding trajec-
tory of a point of the torus, under the action of a rotation, with respect to a remarkable partition
that can be covered such that the induced rotation on the associated fundamental domain coincides,
on each covered piece, with a translation. Of course, we are interested in partitions with as few
pieces as possible; moreover we would appreciate coding words with minimal complexity (the com-
plexity of an infinite word w is the function which maps each nonnegative integer n to the number
of factors of length n in w). The study of dimension 1, and the results obtained in dimension 2
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(for instance [Rau82], [AI01], [BB12]) lead us to hope for a generic coding strategy with classes of
words of complexity dn+ 1 (see also the recent papers [BST20] and [Fog20]).

We start by discussing the definition proposed in the article [CFZ00] (which inspired the present
work), where no assumption is made on the topological nature of the partition. This definition is
still used, under a weaker form (pieces are assumed disjoint up to measure 0) in [BST19].

Definition 21. ([CFZ00] No topological assumption.) Let L be a lattice of Rd. A word w ∈
{1, ..., d + 1}N is a natural coding ”with no topological assumption” of the rotation Rα,L if there
exist a fundamental domain Ω of TL, together with a partition Ω = Ω1 ∪ ... ∪ Ωd+1, such that on
each piece Ωi the covered rotation coincides with a translation by a vector αi; and the sequence w
is the symbolic coding of the orbit of a point x ∈ Ω with respect to the partition in Ωi.

This definition is not restrictive enough, as illustrated by the following proposition.

Proposition 22. Under the axiom of choice, for any lattice L ⊂ Rd and any α ∈ Rd such that
(α,L) is minimal, any word in {1, ..., d+ 1}N is a natural coding ”with no topological assumption”
of the rotation Rα,L.

Proof: a stupid Cantor example. Consider a lattice L ⊂ Rd, and α ∈ Rd such that (α,L) is minimal.
Let w be a word in {1, ..., d+ 1}N. Thanks to the axiom of choice, we cover each orbit (ỹn)n∈Z for
the action of Rα on TL as follows. We choose y0 in p−1

L (ỹ0) and set, for any integer n, yn = y0 +nα.
We thus have pL(yn) = pL(y0) + npL(α) = Rnα(ỹ0) = ỹn. Furthermore, we put the point yn into
the set Ωw[n] if n ≥ 0, or Ω1 otherwise. By minimality of (α,L), each point of the torus is visited
exactly once by this process, and the sets Ω1, ...,Ωd+1 form a partition of a fundamental domain of
L. At last, by construction, the covered rotation coincides with the translation by the vector α on
each set Ωi, and the point indexed by 0 on each orbit admits w as symbolic coding.

We thus have to restrict what we accept for the partition. As evidenced by Proposition 33
further, natural codings are made to preserve rotations while inducing on pieces, so the first property
should ensure that these inductions are well-defined: nonempty interior for a topological study. This
is what Berthé, Steiner and Thuswaldner require in [BST20]. We state here their definition with
our notations.

Definition 23. ([BST20] Topological and metric assumptions, eluding borders). Let α ∈ Rd be
such that (α,Zd) is minimal. A measurable fundamental domain of Rd/Zd is a set Ω ⊂ Rd with
Lebesgue measure 1 that satisfies Ω + Zd = Rd. A collection {Ω1, ...,Ωh} is said to be a natural
measurable partition of Ω with respect to Rα,Zd if the sets Ωi are measurable, they are the closure

of their interior and zero measure boundaries, ∪hi=1Ωi = Ω, the (Lebesgue) measure of Ωi ∩ Ωj is 0
for all i 6= j, and moreover there exist vectors α1, ..., αh in Rd such that αi + Ωi ⊂ Ω with αi ≡ α
mod Zd, 1 ≤ i ≤ h. This allows to define a map T (which depends on the partition) as an exchange
of domains defined a.e. on Ω as T (x) = x+ αi whenever x ∈ Ω̊i.

A sequence (in)n∈N ∈ {1, ..., h}N is said to be a natural coding of (Rd/Zd, Rα) w.r.t. the natural
measurable partition Ω1, ...,Ωh if there exists x ∈ Ω such that (in)n∈N codes the orbit of x under the
action of T , i.e. Tn(x) ∈ Ωin for all n ∈ N.

By introducing objects up to measure 0, they manage to elude the question of borders, for
which several arbitrary choices are admissible. However, this definition leads to induce the covered
rotation on the interior of the pieces (where it is defined) instead of on the whole pieces. In our
mind, this induction does not behave as well as it could be, as evidenced in Example 24.
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Example 24. For d=1, consider L = Z and α an irrational number in [0, 1/2]. We introduce
Ω = Ω0 ∪ Ω1, where Ω0 = [0, 1 − α] and Ω1 = [1 − α, 1], which turns to be a natural partition
according to Definition 23. Let T0,ind denote the first return map to Ω̊0 of the covered rotation T .
We have: T0,ind(x) = x+α if x ∈ A0 =]0, 1−2α[ and T0,ind(x) = x+2α−1 if x ∈ A1 =]1−2α, 1−α[.
Hence, for all x ∈ A0∪A1, T0,ind(x) coincides with the rotation through the angle α modulo (1−α).
But looking at the remaining point x = 1 − 2α, we have T0,ind(x) = x + 3α − 1 6≡ α mod (1 − α).

In other words, the induced map of T on Ω̊0, which is defined everywhere, is a rotation almost
everywhere, but not everywhere.

This is why, following [Rau82] and [Rau84], we chose to work with an exclusively topological
background. This requires to carefully examine what happens with the borders. By doing so, on
one hand, we guarantee that the assignment we choose for the borders enjoys the weak continuity
property (Lemma 16) which turns to be central; on the other hand, we open the definition to
sets whose borders have positive Lebesgue measure. As far as we know, it is an open question to
determinate if the (S-adic) Rauzy fractal of all Arnoux-Rauzy words (which are good candidates
for coding of rotation of the 2-torus) have borders of measure zero.

Finally, the conditions we ask for the pieces Ωi (to be open, and they union set to be dense)
are inherited from [Rau82] (see the definition of ’morcellement’). They are all needed in our work.
Note that they appear in recent articles as well ([BST20] and [Fog20] for instance), in addition to
the usual metric assumptions. At last, let us highlight that we did not assume the pieces to be
bounded. Indeed, this assumption is required only when resorting to Rauzy’s theorem on bounded
remainder sets (Theorem B further). It would be of high interest to know (1) what remains of
Rauzy’s theorem if we remove this assumption; (2) if a word with infinite imbalance could be a
natural coding of a minimal rotation with an unbounded pseudo-fundamental domain.

4 Stability under induction

4.1 Main result for induction

Definition 25. [Dur98] A finite word u is a return word to the factor v in the recurrent word w if
u = w[i]...w[j − 1], where i, j ∈ N are two consecutive occurrences of v in w.

Lemma 26. [Dur98] Let w be a uniformly recurrent word and U the set of return words to the
factor v in w. Then U is finite. Furthermore, if w′ is an element of the subshift generated by w,
then the set of return words to the letter v in the word w′ is again U . If furthermore w′ starts with
the factor v, then it can be written in a unique way as a concatenation of elements in U .

Definition 27. [Dur98] Let w be a uniformly recurrent word and v one of its factors. Denote by
U the set of return words to v in w, that we enumerate: u1, ..., un. Let l denote the index of the
first occurrence of v in w. The derivated word of w to v, with respect to the chosen numeration,
is the unique word Dv(w) in {1, ..., n}N satisfying: σ(Dv(w)) = Sl(w), where σ is the substitution
that maps k to the word uk, for all k ∈ {1, ..., n}.

Remark 28. The derivated word of w to a is unique up to the choice made for the numeration.
Whenever this choice has no significance, we will talk about the derivated word Dv(w). However,
it sometimes happens that the choice of the numeration is of interest: see for instance the case of
primitive C-adic word in [Section 5, Example 51].

We know from Lemma 3 that a natural coding of a minimal rotation of the torus is uniformly
recurrent. We deduce that if v is one of its factors, then it admits a finite number of return words
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to v. The following theorem states that, whenever this number is d+ 1, i.e., coincides with the size
of the partition (or equivalently, the size of the alphabet), then its derivated word to v is still a
natural coding of a minimal rotation of the torus.

Theorem A. Let w0 be a natural coding of a minimal rotation of a d-dimensional torus, and
denote by ((α,L); (Ω : Ω1, ...,Ωd+1);x0; (α1, ..., αd+1)) its elements, and by (Ω′ : Ω′1, ...,Ω

′
d+1) a

borders assignment. Assume that v is a factor of w0 which admits d + 1 return words u1, ..., ud+1,
and denote:

Ω′v :=

|v|−1⋂
k=0

T
′−k(Ω′v[k]).

Then there exist a second lattice M together with an angle β ∈ Rd such that:

1. the pair (β,M) is minimal;

2. the set Ω′v is a fundamental domain of M ;

3. for all x in Ω′v, Tind,v(x) = x + β mod M , where Tind,v denotes the first return map of the
covered rotation T ′ = rΩ′,L ◦Rα ◦ pL to the set Ω′v;

4. the derivated word to the factor v, Dv(w0), is a natural coding of the rotation of TM through
the angle β, whose elements and borders assignment are explicit (they are given in Proposition
35).

Furthermore, the return words u1, ..., ud+1 to the factor v form a basis of the abelian free group
generated by I = {1, ..., d+ 1}.

Remark 29. The induced natural coding Dv(w0) inherits from the choice made for the borders
assignment of the original natural coding w0. There is no need to resort to the axiom of choice a
second time.

4.2 Proof of Theorem A

Let w0 be a natural coding of a minimal rotation of the d-torus with elements ((α,L); (Ω : Ω1, ...,Ωd+1);
x0; (α1, ..., αd+1)) and borders assignment (Ω′ : Ω′1, ...,Ω

′
d+1). Let v ∈ F(w0) be such that w0 admits

d+1 return words u1, ..., ud+1 to the factor v. We keep the notations and tools developed in Section
3. In particular, we denote by f the coding function with respect to the partition (Ω1, ...,Ωd+1) of
the L-simple set Ω, D the maximal set on which f is defined, and f ′ the extended coding function
on Ω′. We still denote T = rΩ,L ◦ Rα ◦ pL the covered rotation on the L-simple set Ω, which is
defined on rΩ,L(Ω̃∩R−1

α (Ω̃)) and its extension T ′ = rΩ′,L ◦Rα ◦pL defined on the whole fundamental
domain Ω′.

We denote:

Ωv :=

|v|−1⋂
k=0

T
′−k(Ωv[k]) and Ω′v :=

|v|−1⋂
k=0

T
′−k(Ω′v[k]).

Lemma 30. The set Ωv is nonempty, open and included in Ω′v.

Proof. The set Ωv is open as the preimage by the continuous map rΩ,L of the open set ∩|v|−1
k=0 R

−k
α (Ωv[k]).

Furthermore, since v is a factor of w0, there exists a nonnegative integer n such that Sn(w0) ∈ [v].
The set Ωv is nonempty since it contains the point Tn(x0). At last, the inclusion of Ωv in Ω′v comes
from the inclusion of Ωi in Ω′i, for all i ∈ I.
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The dynamical system (Ω′, T ′) inherits from the minimality of the dynamical system (TL, Rα)
(Lemma 17). Since the set Ω′v has nonempty interior (Lemma 30), all trajectories end up with
passing through it. Thus, we can define the first return map to Ω′v:

Tind,v : Ω′v → Ω′v
x 7→ T ′n0(x), where n0 = inf{n ∈ N|T ′n(x) ∈ Ω′v} <∞.

For i ∈ I, we introduce the sets:

Ai =

|uiv|−1⋂
k=0

T ′−k(Ωuiv[k]) ⊂ Ωv and A′i =

|uiv|−1⋂
k=0

T ′−k(Ω′uiv[k]) ⊂ Ω′v.

Lemma 31. [A subpartition]

� The sets A′i, for i in I, form a partition of Ω′v.

� For all i in I, Ai is a nonempty open set included and dense in A′i.

Proof. By definition of f ′, we have A′i = f ′−1([uiv]) for all i ∈ I. Since the words uiv contain
exactly two occurrences of the factor v, with one as suffix, they cannot be strict prefix one another;
this implies that the cylinders [uiv] are pairwise disjoint - hence the disjointedness of their preimage
sets A′i. Moreover, for all y ∈ Ω′v, f

′(y) ∈ X0 ∩ [v] ⊂ ∪i∈I [uiv] by Lemmas 16 and 26; consequently
y ∈ ∪i∈IA′i. Finally, the sets A′i, for i ∈ I, form a partition of Ω′v.

The set Ai is the preimage, by the continuous map rΩ,L, of the open set ∩|uiv|−1
k=0 R−kα (Ωuiv[k]) ⊂ Ω

- it is thus open. Since the word uiv is a factor of w0, there exists a nonnegative integer n such that
Sn(w0) ∈ [uiv]. The set Ai is nonempty since it contains the set f−1([uiv]), which contains itself the
point Tn(x0). The inclusion Ai ⊂ A′i is inherited from the inclusions Ωj ⊂ Ω′j for j in I. At last,

for the density, consider y ∈ A′i. Applying Lemma 16, we can find a sequence (xn)n ∈ DN such that
xn → y and pref |uiv|(f(xn)) = pref |uiv|(f

′(y)) = uiv; in particular (xn)n ⊂ f−1([uiv]) ⊂ Ai.

The following lemma states that the induced map Tind,v acts on the sets A′1, ..., A
′
d+1 as an

exchange of pieces.

Lemma 32 (Exchange of pieces). Let i in I. For all x ∈ A′i, Tind,v(x) = x + βi, where βi =∑
j∈I |ui|j αj.

Proof. If x belongs to A′i, then its coding word f ′(x) belongs to [uiv], meaning that the |uiv| − 1
first steps of the trajectory of x are fully known. More precisely, starting from Ω′v ⊂ Ω′ui[0], x is

translated by the vector αui[0] and falls into Ω′ui[1]; then it is translated by αui[1] and falls into Ω′ui[2],

and so on; until arriving into Ω′ui[|ui|−1] from where it is translated by αui[|ui|−1] and falls at last -

and for the first time - into Ω′v. All in all, from A′i ⊂ Ω′v to its first return into Ω′v, the point x was
translated by the vector βi =

∑
j∈I |ui|j αj .

We introduce the vectors of Rd:

vk = βk − βd+1 for k ∈ {1, ..., d}

and the subgroup M =
∑d

k=1 Zvk.

Proposition 33 (A rotation on a new torus). The following assertions are true.

15



(i) The subgroup M is a lattice of Rd.

(ii) The vectors βj, j ∈ I, are equals modulo M .

From now on, we denote β = βd+1.

(iii) The pair (β,M) is minimal.

(iv) For all x in Ω′v, we have Tind,v(x) = x+ β mod M .

Proof. The assertions (ii) and (iv) stem from the definition of M and Lemmas 30 and 32. We now
propose to show that the subgroup

∑
i∈I βiZ = βZ +

∑d
k=0 vkZ is dense in Rd. This fact implies

that:

� the vectors vk, k ∈ {1, ..., d}, are linearly independent over R- thus proving (i);

� the trajectory of pM (0) is dense in the torus TM for the action of the rotation Rβ,M - thus
proving (iii).

Let l be such that x := T l(x0) ∈ Ω′v. The trajectory of x under the map T being dense in Ω′,
the sequence (Tnind,v(x))n∈N - consisting of all the points falling into Ω′v - is dense in the open subset
Ωv and is, by Lemma 32, included in x +

∑
i∈I βiZ. We conclude that the subgroup

∑
i∈I βiZ is

dense in Ωv − x, which is a nonempty open set of Rd, and thus, is actually dense in Rd itself.

Proposition 34. The set Ω′v is a fundamental domain of M .

Proof. We successively prove that the projection map pM : Ω′v → TM is one-to-one and onto.
Let x, y ∈ Ω′v be such that pM (x) = pM (y), i.e. y = x +

∑d
j=1 bjvj for some bj ∈ Z. Since

each βi is a linear combination of α1, ..., αd+1 (Lemma 32), which are all congruent to α modulo
L, it comes that βi = kiα mod L, where ki is the length of the associated return word ui. The
previous equality can then be rewritten y = x +

∑d
j=1 bj(kj − kd+1)α + l, for some l ∈ L; hence

pL(y) = Rnα,L(pL(x)), with n =
∑d

k=1 bj(kj − kd+1) ∈ N (if needed, we swap x and y), and thus

y = T
′n(x). But, given that both x and y belong to Ω′v, y is not only on the trajectory of x for

the action of T ′, but also for the action of the first return map Tind,v: there exists m ∈ N s.t.
y = T

′m
ind,v(x). Finally, we had y = x mod M and now, we have y = x+mβ mod M , meaning that

either m = 0, or the trajectory of pM (x) under Rβ,M is periodic, which is forbidden by minimality
of (β,M). It eventually comes that m = 0, and x = y - hence the injectivity.

Now, let y ∈ TM . By minimality of (−β,M), and because pM (Ω′v) has nonempty interior
(Lemma 30), there exist an element x ∈ pM (Ω′v) and a nonnegative integer n such that Rnβ,M (x) = y.
Denote x = rΩ′v ,M (x) ∈ Ω′v (the covering map rΩ′v ,M is well-defined by the previous paragraph).

The trajectory of x under the map Tind,v remains in Ω′v; in particular, y := T
′n
ind,v(x) belongs to Ω′v.

Then, pM (y) = pM (T
′n
ind,v(x)) = Rnβ(pM (x)) = Rnβ(x) = y. We conclude that y admits a preimage

by pM in Ω′v - hence the surjectivity.

Proposition 35 (An induced natural coding.). The derivated word of w0 to the factor v, Dv(w0),
is a natural coding of the minimal rotation of TM through the angle β, with elements ((β,M); (A :
A1, ..., Ad+1); T l(x0); (β1, ..., βd+1)), where l denotes the minimal nonnegative integer such that
Sl(w0) starts with the factor v. Furthermore, (Ω′v : A′1, ..., A

′
d+1) is a borders assignment of this

natural coding.
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Proof. Minimality. We know from Proposition 33 that the pair (β,M) is minimal.
Partition of a pseudo-fundamental domain. By Lemma 31, the sets A1, ..., Ad+1 are nonempty,

open and pairwise disjoint. Furthermore, their union set A = ∪i∈IAi inherits from the M -simplicity
of the set Ω′v it is included in (Proposition 34). We now show that the projection set pM (A) is dense
in the torus TM . Denote y0 = T l(x0) ∈ Ωv. The trajectory of y0 under the action of T is included
in D; so its trajectory under the action of the induced map Tind,v is included in Ωv ∩ D ⊂ A. We
deduce that the trajectory of y0 := pM (y0) under the rotation Rβ,M , which is dense in TM by
minimality of (β,M), is included in pM (A); this implies that the set pM (A) is dense in TM .

Exchange of pieces. By Lemma 32, for all i ∈ I and for all x ∈ pM (Ai)∩R−1
β,M (pM (A)), we have

rA,M ◦Rβ,M (x) = Tind,v(rA,M (x)) = rA,M (x) + βi.
A coding trajectory. By construction of the sets A1, ..., Ad+1, for all nonnegative integer n, we

have Rnβ,M (y0) ∈ pM (Ai) if and only if T
′n
ind,v(y0) ∈ Ai if and only if f(T

′n
ind,v(y0)) starts with the

word ui if and only if the n-th letter of the derived word Dv(w0) is i.
A borders assignment. (1) & (2) By Lemma 31, for all i ∈ I, Ai is included in A′i and the

sets A′i form a partition of Ω′v. (3) The set Ω′v is a fundamental domain of M (Proposition 34). (4)
For all i ∈ I and for all x ∈ A′i, we have rΩ′v ,M ◦ Rβ,M ◦ pM (x) = Tind,v(x) = x + βi (Proposition
33 and Lemma 32). (5) Let x ∈ Ω′v and q ∈ N. Denote l = maxi∈I |ui| and σ the extraction
given by the definition of borders assignment associated with the natural coding w0 for the point x
(seen as an element of Ω′) and the integer (q + 1)l+ |v|. For any nonnegative integer m, the prefix
of length q(l + 1) + |v| of the words f(T σ(m)(x0)) and f ′(x) coincide. In particular, the sequence
(T σ(m)(x0))m∈N is included in Ωv, so it is a subsequence of the trajectory of x0 under the action
of the first return map to Ω′v. Denote by τ the extraction such that for all nonnegative integer m,

T
τ(m)
ind,v (x0) = T σ(m)(x0). We immediately have that T

τ(m)
ind,v (x0) = T σ(m)(x0)→m→∞ x. Furthermore,

by definition of l, the prefix of length (q+ 1)l+ |v| of f ′(x) contains at least q+ 2 occurrences of the
factor v; we deduce that, for any m ∈ N, the first q+ 1 return words to v of the symbolic trajectory

of x and T
τ(m)
ind,v (x0) for the action of Tind,v coincide, i.e.: for all n ∈ {0, ..., q}, for all nonnegative

integer m, T
τ(m)+n
ind,v (x0) ∈ Aιn , where the index ιn is defined by Tnind,v(x) ∈ A′ιn .

Proposition 36. The return words u1, ..., ud+1 to the factor v form a basis of the free abelian group
generated by I.

Proof. We are going to show that M = (|uj |i)i,j ∈ GL(Z). Since (β1, ..., βd+1) = (α1, ..., αd+1)M,
and since the vectors α1, ..., αd+1 form a basis of the Z-module G (Lemma 19), it is sufficient to show
that the d+1 vectors (β1, ..., βd+1) are free over Z. This is the case by Lemma 19 again, given that the
word Dv(w0) is a natural coding of the minimal rotation with elements ((β,M); (A : A1, ..., Ad+1);
T l(x0); (β1, ..., βd+1)) (Proposition 35).

Propositions 33, 34, 35 and 36 prove Theorem A.

4.3 Correction of the proof of [CFZ00]

We now complete the idea of [CFZ00] to prove, resorting to Rauzy’s theorem on remainder sets
(Theorem B below), that being a natural coding of a minimal rotation, with a bounded fundamental
domain, implies finite imbalance on all factors (see Section 2.3 for the definitions, and Proposition
37 below for a formal statement). For letters (i.e. factors of length 1), a direct and general proof of
this fact can be found in the latest version of [Thu19].

Proposition 37. Let w0 be a natural coding of a minimal rotation of a d-dimensional torus, and
denote by ((α,L); (Ω : Ω1, ...,Ωd+1);x0; (α1, ..., αd+1)) its elements, and by (Ω′ : Ω′1, ...,Ω

′
d+1) a bor-

ders assignment. Assume that w0 admits d+1 return words to a finite word v. Assume furthermore

17



that the pseudo-fundamental domain Ω is bounded. Then the set pL(Ω′v) is a bounded remainder set
for for any trajectory (Rα(x̃))n∈N, and the imbalance of w0 on the factor v is finite.

Definition 38 (Following [Rau84]). A set A is a bounded remainder set for a sequence (un)n∈N if
there exist two real numbers (ν, C) such that, for all positive integer N :

|
N−1∑
n=0

1A(un)−Nν| < C.

The numbers ν and C can be understood as a frequency and a tolerance margin for the event
’falling into A’. So, A is a bounded remainder set for the sequence (un) means that (un) is well-
distributed relatively to A: the observed frequency of visits to A converges to it expected value at
speed 1/n.

Theorem B. [Rau84] Let d be a positive integer, L a lattice of Rd, α an element of Rd such that
the pair (α,L) is minimal. Let A ⊂ Rd, L-simple, bounded, with nonempty interior. Let T denote
the transformation on A induced by the rotation Rα.

If there exist a lattice M of Rd, together with an element β ∈ Rd, such that:

(i) A is M -simple,

(ii) for all x ∈ A, T (x) = x+ β mod M ,

then pL(A) is a bounded remainder set for all sequence (Rnα(x̃))n, with x̃ ∈ TL.

Remark 39. In [Rau84], Rauzy integrates the assumption of boundedness of A in the definition of
L-simplicity. This assumption is crucial at two stages in his proof.

Remark 40. Theorem B gives a sufficient condition for a set to be a bounded remainder set. A
necessary and sufficient condition generalizing this criterion is given in [Fer92] under the framework
of measurable dynamical systems. Though not mentioned, the assumption of boundedness is still
required.

Proof of Proposition 37. The pseudo-fundamental domain Ω being bounded, so are the fundamental
domain Ω′ and its subset Ω′v. Therefore, by Theorems A and B, for all x̃ ∈ TL, pL(Ω′v) is a bounded
remainder set for the sequence (Rα(x̃))n∈N.

On another hand, by Definition 2 (natural coding), for all nonnegative integer n, we have
Rα(x̃0) ∈ Ω′v if and only if and only if Sn(w0) ∈ [v]. We deduce from this equivalence that the
cylinder [v] is also a bounded remainder set for the sequence (Sn(w0))n∈N: there exist two real
numbers ν and C such that for all positive integer N :

|
N−1∑
n=0

1[v](S
n(w0))−Nν| < C.

In other words, for all positive integer N , |prefN+|v|−1S
n(w0)|v =

∑N−1
n=0 1[v](S

n(w0)) ∈]νN −
C; νN + C[, from which we deduce that for all factor u ∈ F(w0), |u|v ∈]ν|u| − 2C; ν|u| + 2C[.
This implies that the imbalance of w0 on the factor v is lower than the constant 4C.

Remark 41. Finite imbalance on a letter a is equivalent to the cylinder [a] being a bounded re-
mainder set for the sequence (Sn(w0))n (see [Ada03]).

Remark 42. The main mistake in the original proof of [CFZ00] is that no information on the
second lattice M is given, and thereby, one cannot guarantee that the set A is M -simple. This
confusion is still present in the first versions of the lecture notes [Thu19].
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5 Applications

5.1 Tree words

Theorem A claims that being a natural coding of a minimal rotation of the d-torus is a property
preserved by the derivation operation. This is why good candidates should be families of words
stable under this operation. This is the case for the class of infinite words admitting d return words
to any factor [BPS08]; this is also the case of its remarkable subclass comprised of tree words.

We recall that a finite word u is a return word to the factor v in the recurrent word w if
u = w[i]...w[j−1], where i and j are two consecutive occurrences of v (Definition 25); or equivalently,
if uv ∈ F(w), v is a prefix of uv and if there are exactly two occurrences of v in uv [Dur98].

Let w be an infinite word over an alphabet A, and u one of its factor. Following [BFD+15a], we
denote L(u) (resp. R(u)) the set of letters a in A such that au (resp. ua) is still a factor of w. The
extension graph of u is the undirected graph whose vertices are the disjoint union of L(u) and R(u),
and whose edges are the pairs (a, b) ∈ L(u)×R(u) such that aub is a factor of w. An infinite word
w is a tree word (or a dendric word, in recent texts) if the extension graph of each of its factors is
acyclic and connected (viz. a tree).

On the two-letter alphabet, the set of infinite words admitting two return words to any factor,
the set of uniformly recurrent tree words, the set of Sturmian words and the set of words whose
subshift is a natural coding of a minimal rotation of the circle coincide ([Vui01], [JV00]).

More generally:

� Uniformly recurrent tree words on the alphabet I = {1, ..., d + 1} admit d + 1 return words
to any factor (so in particular to each letter), which moreover form a basis of the free group
over I; but when d ≥ 2, we also have examples of infinite words admitting d+ 1 return words
to any factors which are not tree words [BFD+15a].

� Strict episturmian words are uniformly recurrent tree words, but on alphabets with three
letters or more, there exists other families of words, such as primitive C-adic words (see
Definition 47 below), that belong to this class too [CLL17].

The following proposition and corollary are immediate applications of Theorem A.

Proposition 43. If a uniformly recurrent tree word w0 on the alphabet I = {1, ..., d + 1} is a
natural coding of a minimal rotation of the d-torus, then its derivated sequences to any factors are
also natural codings of a minimal rotation of the d-torus.

Corollary 44. No uniformly recurrent tree word with infinite imbalance on a factor is a natural
coding of a minimal rotation of the 2-torus with a bounded pseudo-fundamental domain.

In particular, no Arnoux-Rauzy word with infinite imbalance is a natural coding of a minimal
rotation of the 2-torus. This result rectifies and strengthens the one stated in [CFZ00]. Construc-
tions of Arnoux-Rauzy words with infinite imbalance are detailed in [CFZ00] and [And21]. Likewise,
no primitive C-adic word with infinite imbalance is a natural coding of a minimal rotation of the
2-torus. Primitive C-adic words with infinite imbalance have been constructed in [And18].

On the counterpart, remember that a lot of Arnoux-Rauzy words and C-adic words are natural
codings of rotations, under the definition of [BST20].

Once a uniformly recurrent tree word is a natural coding of a minimal rotation of the d-torus,
then its derivated words to the d letters of the alphabet are again tree words (see [BFD+15b]) and
natural codings of minimal rotations (Theorem A) - in particular, they are again uniformly recur-
rent by Lemma 3. We can thus iterate the derivation, and study the trajectory of words under this
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operation. In the remarkable cases of Arnoux-Rauzy and primitive C-adic words, these trajectories
are driven by generalized euclidean maps (often referred to as multidimensional continued fraction
algorithms), as evidenced through the S-adic framework (see the book [Sch00] for a general intro-
duction to multidimensional continued fractions, and for instance the surveys [Ber11] or [BD14] for
their study from the symbolic dynamical standpoint).

5.2 Return words for Arnoux-Rauzy words (under the S-adic framework)

We recall that Arnoux-Rauzy words are infinite words on the alphabet I = {1, 2, 3} with complexity
p(n) = 2n+ 1, such that for each n there is exactly one right and one left special factor of length n
[AR91]. By a result of Boshernitzan [Bos84], Arnoux-Rauzy words are uniquely ergodic; hence the
existence of frequencies, which are positive, for each factor. We introduce the set AR = {σi|i ∈ I}
of Arnoux-Rauzy substitutions:

σi : I → I∗
i 7→ i
j 7→ ij for j ∈ I\{i}.

The following theorem evidences the link between Arnoux-Rauzy words and one generalization
of the Euclid map.

Theorem C ([AS13]). Let w be an Arnoux-Rauzy word. Then there exists a unique sequence of
substitutions (called directive sequence) d = (σin)n in ARN, and a unique Arnoux-Rauzy word w′

such that:

1. each prefix of w′ is a left-special factor;

2. the sets of factors of w and w′ are equal;

3. w′ = limn→∞σi0 ◦ ... ◦ σin−1(1).

Furthermore:
- we have w′ = limn→∞σi0 ◦ ... ◦ σin−1(2) and w′ = limn→∞σi0 ◦ ... ◦ σin−1(3);
- each Arnoux-Rauzy substitution appears infinitely many times in d;
- d is uniquely defined by the frequencies of letters in w: the sequence (in)n∈N is the symbolic
trajectory of the letters frequency vector under the action of the generalized Euclid map:

FAR : (x, y, z) 7→


(x− y − z, y, z) if x ≥ y + z,
(x, y − x− z, z), if y ≥ x+ z,
(x, y, z − x− y), if z ≥ x+ y,

with respect to the partition given by its piecewise definition.

As evidenced by Lemma 32 and Proposition 33, the action of the induction/derivation operation
of a natural coding on the lattice and the angle of the rotation is driven by the abelianized vectors
of the return words to a letter.

We now describe how to obtain the three return words to a letter a for Arnoux-Rauzy words.
This result comes from [JV00]; we just state it under the S-adic formalism, i.e., as a function of the
sequence of substitutions (namely, the directive sequence) given by Theorem C.

Notation 45. We denote by s the circular shift on (nonempty) finite words: s(u) = a2...ana1,
where a1, ..., an are letters and u = a1...an. The map s is bijective.
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Theorem D ([JV00], under a slighly different formalism.). If w is an Arnoux-Rauzy word with
directive sequence d = (σin)n, and a ∈ {1, 2, 3} is a letter, then w admits three return words to a,
namely: s−1 ◦d0 ◦ ... ◦dn0−1 ◦ s ◦dn0(b), for b ∈ {1, 2, 3}, where s is the circular shift on finite words
and n0 = min{n ∈ N| in = a}. Furthermore, the derivated word of w to a is an Arnoux-Rauzy word
with directive sequence d′ = (σin)n>n0.

Return words to any factor are described in [JV00].
At last, we denote by Mσ = (|σ(j)|i)(i,j)∈I2 the incidence matrix of a substitution σ.

Corollary 46. Let w be an Arnoux-Rauzy word with directive sequence d = (dn)n, and a ∈ {1, 2, 3}
a letter. If w is a natural coding of a minimal rotation of the 2-torus, with elements ((α,L); (Ω :
Ω1,Ω2,Ω3);x0; (α1, α2, α3)), then the vectors β1, β2 and β3 describing the induced rotation on Ωa

are given by:
(β1, β2, β3) = (α1, α2, α3)Md0 ...Mdn0

,

where n0 = min{n ∈ N| in = a}.

Proof. We have (β1, β2, β3) = (α1, α2, α3)M, with M = (|uj |i)i,j . By theorem D, for all i, j ∈
{1, 2, 3}, |uj |i = |d0◦ ...◦dn0(j)|i; thereforeM is the incidence matrix of the substitution d0◦ ...◦dn0 ,
and (β1, β2, β3) = (α1, α2, α3)Md0 ...Mdn0

.

5.3 Return words for primitive C-adic words

We now deal with primitive C-adic words. This class of words was introduced in [CLL17], emerging
from the research of a generalized Euclid map defined on (R+)3 defined for any projective direction
-contrary to FAR which is defined for almost none (see [AR91], [AS13] and [AHS13])- and producing
words with the lowest possible complexity: p(n) = 2n+ 1. This led to the map:

FC : (x, y, z) 7→
{

(x− z, z, y) if x ≥ z
(y, x, z − x) otherwise

,

and to the associated substitutions C = {c1, c2} given by:

c1 : 1 7→ 1 c2 : 1 7→ 2
2 7→ 13 2 7→ 13
3 7→ 2 3 7→ 3.

Definition 47 ([CLL17]). An infinite word w is C-adic if there exist a directive sequence d = (dn) ∈
CN, together with a letter a ∈ {1, 2, 3}, such that w can be written w = limn→∞d0 ◦ ... ◦ dn−1(a).

As long as d contains infinitely many occurrences of c1 and c2, the sequence of finite words
(d0 ◦ ...◦dn−1(a))n converges to an infinite words w that, furthermore, does not depend on the letter
a [CLL17].

Proposition 48 ([CLL17]). Let w be a C-adic word with directive sequence d. If d /∈ C∗{c2
1, c

2
2}ω,

then w is a uniformly recurrent tree word.

A C-adic word whose directive sequence does not belong to C∗{c2
1, c

2
2}ω is said primitive [CLL17].

The primitivity condition is central in the study of return words: it guarantees the termination of
the process described in the proof of Theorem E (below).

Lemma 49. A primitive C-adic word w admits a unique directive sequence, which can be deduced
from the knowledge of its set of factors F(w).
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Proof. Let d = (dn)n≥0 ∈ {c1, c2}N be such that d /∈ C∗{c2
1, c

2
2}ω, and w its (unique) associated

C-adic word, which is primitive. Denote by w′ and w′′ the C-adic words obtained with the directive
sequences (dn)n≥1 and (dn)n≥2 respectively, which are also primitive. We then have that 2 is factor
of w′′, which implies that 13 is factor of w′, which implies in turn that 12 xor 23 is a factor of w.
If 12 ∈ F(w), then d0 = c1; if 23 ∈ F(w), then d0 = c2. Furthermore, the word w′ can be deduced
from the knowledge of w and d0. We iterate this process to determine the entire sequence d.

Notation 50. We denote by l (resp. r) the map which extracts the first (resp. the second) compo-
nent x (resp. y) of a pair (x, y).

Theorem E. Let w be a primitive C-adic word with directive sequence d = (dn)n∈N, and a ∈ {1, 2, 3}
a letter. The following assertions are true.

1. There exists in the automaton of partial quotients of C-adic words (Figure 5.3) a unique
accepted path e = (e0, ..., en1) starting from the initial state a and such that the finite sequence
le = l(e0)...l(en1) ∈ {c1, c2}∗ is a prefix of d.
We denote by n2 the length of this prefix, and by w′ the primitive C-adic word with directive
sequence (dn)n≥n2.

2. The set of return words to the letter a of w, denoted U , is the image set of the alphabet {1, 2, 3}
by the application re = r(e0) ◦ ... ◦ r(en1).

3. The set U contains 3 elements, and if we denote them by ui = re(i) for i in {1, 2, 3}, then the
derivated word of w to a, with respect to the numeration ui → i, is the word w′ if the final
state of e is F1, and S(w′) (where S denotes the shift map) if the final state of e is F3.

2

start

3

start

F31

start

F1

with s the circular shift on finite words: s(a1...an) = a2...ana1.

(c2, c2)

(c2, c2)

(c1, s ◦ c1)

(c1, c1)

(c2, s
−1 ◦ c2)

(c1, c1)

(c2, c2)(c1, c1)

(c2, c2)

(c1, c1)

Figure 1: Automaton of partial quotients for C-adic words.

Example 51. We consider the primitive C-adic word w with directive sequence d = c1c1c2c2(c1c2)ω,
and the letter a = 3.

w = 113131213113121311313113121311313121311313113121311313121311...

Applying Theorem E, we obtain l(e) = c1c1c2c2 and re = s ◦ c1 ◦ c1 ◦ s−1 ◦ c2 ◦ c2; hence u1 = 311,
u2 = 3121, u3 = 31 and w′ is the (primitive) C-adic word with directive sequence (c1c2)ω. Since the
path e leads to the final state F3, the derivated word (with respect to the chosen numeration) is:

D3(w) = S(w′) = 32121312132131213212132131213212131213212132131213212131213213121321...
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A final remark: if we had chosen another numeration, say ũ1 = 3121, ũ2 = 311 and ũ3 = 31,
we would have obtained:

D̃3(w) = 312123212312321231212312321231212321231212312321231212321231232123121...

which is not is the subshift of a primitive C-adic word, since it does not contain the factor 13 =
c1(2) = c2(2).

Proof of Theorem E. Let w be a primitive C-adic word with directive sequence d = (dn)n≥0. Since
d contains infinitely many occurrences of c1 and c2, so does any sequence of the form (dn)n≥n0 for
n0 ∈ N, so that the sequence of finite words (dn0 ◦ ... ◦ dn−1(b))n≥n0 converges to an infinite word
w′, which does not depend on the letter b (but depends of course on n0), and is again a primitive
C-adic word.

1. If d starts with c1, then the set of return words to 2 is the image set by c1 of the return
words to 3 in the word with directive sequence (dn)n≥1. Symmetrically, if d starts with c2, then the
set of return words to 2 is the image set by c2 of the return words to 1 in the word with directive
sequence (dn)n≥1.

2. If d starts with c1, then there exists n0 such that d starts with c1 ◦ cn0
2 ◦ c1. If n0 = 2k+1, the

images of the letters 1, 2 and 3 by c1 ◦ cn0
2 ◦ c1 are respectively 132k, 132k+1 and 12k+1; if n0 = 2k,

they are respectively 12k, 12k+1 and 132k. Since furthermore the word w′ with directive sequence
(dn)n≥n0+2 contains the three letters 1, 2 and 3, w contains three return words to 1, which are the
images of the letters by the substitution c1 ◦ cn0

2 ◦ c1. Otherwise, if d starts with c2, the set of return
words to 1 is the image set by c2 of return words to 2 in the word with directive sequence (dn)n≥1.

3. Symmetrically, if d starts with c2, then there exists n0 such that d starts with c2 ◦ cn0
1 ◦ c2. If

n0 = 2k + 1, the images of the letters 1, 2 and 3 by c2 ◦ cn0
1 ◦ c2 are respectively 2k+13, 2k+113 and

2k13; if n0 = 2k, they are respectively 2k13, 2k+13 and 2k3. Since furthermore the word w′ with
directive sequence (dn)n≥n0+2 contains the three letters 1, 2 and 3, w contains three return words
to 3, which are the images of the letters by the application s−1 ◦ c2 ◦ cn0

1 ◦ c2. Otherwise, if d starts
with c1, the return words to 3 are the images by the map s ◦ c1 of the return words to 2 of the word
with directive sequence (dn)n≥1.

We recursively combine the three situations above to obtain the return words to any letter a
in w; indeed, the primitivity condition (i.e. d /∈ C∗{c2

1, c
2
2}ω) guarantees that this recursive process

always halts. We conclude that each letter a ∈ {1, 2, 3} admits three distinct return words by
observing that the images by c1 (resp. c2) of two distinct finite words are again distinct. Indeed,
two distinct words u and v can always be written u = u′s and v = v′s (resp. u = pu′ and v = pv′),
where u′ and v′ end (resp. start) with distinct letters (one of them at most is allowed to be empty);
then c1(u′) and c1(v′) also end (resp. start) with distinct letters, implying c1(u) 6= c1(v) (resp.
c2(u) 6= c2(v)).

Corollary 52. Let w be a primitive C-adic word with directive sequence d = (dn)n≥0, and a ∈
{1, 2, 3} a letter. If w is a natural coding of a minimal rotation of the 2-torus, with elements
((α,L); (Ω : Ω1,Ω2,Ω3);x0; (α1, α2, α3)), then the vectors β1, β2 and β3 describing the induced rota-
tion on Ωa are given by:

(β1, β2, β3) = (α1, α2, α3)Md0 ...Mdn2−1 ,

where n2 is the length of the unique prefix of d accepted by the partial quotients automaton for
C-adic words from the initial state a.

Proof. The proof is identical to the proof of Corollary 46 for Arnoux-Rauzy words.
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At last, we deduce from Theorem E an algorithm which, given a primitive C-adic words w and
v one of its factor, outputs the three return words to v of w.

Theorem F. Let w be a primitive C-adic word with directive sequence d, and v ∈ F(w)\{1, 2, 3}
one of its factors of length at least 2. Let n0 = min{n ∈ N|u ∈ F(d0 ◦ ... ◦ dn0−1(2))}. Let p and s
be such that (d0 ◦ ... ◦ dn0−1(2)) = pvs. At last, let P = {p−1d0 ◦ ... ◦ dn0−1(u)p |u∈ U}, where U is
the set of return words to the letter 2 of the C-adic word w′ with directive sequence (dn)n≥n0. Then
P contains three words, which start with v and pave a suffix of w.

Proof. Since v ∈ F(w) and since the sequence (d0 ◦ ... ◦ dn−1(1))n shares a growing common prefix
with w, we can define the nonnegative integer:

n0 = min{n ∈ N|u ∈ F(d0 ◦ ... ◦ dn−1(1)) ∪ F(d0 ◦ ... ◦ dn−1(2)) ∪ F(d0 ◦ ... ◦ dn−1(3))}.

Since v contains at least two letters, n0 is actually positive. Observe that if v ∈ F(d0 ◦ ... ◦ dn−1(1))
for n ≥ 1, then v ∈ F(d0 ◦ ... ◦ dn−2(1)) if dn−1 = c1 and v ∈ F(d0 ◦ ... ◦ dn−2(2)) otherwise.
Symmetrically, if v ∈ F(d0 ◦ ... ◦ dn−1(3)) for n ≥ 1, then v ∈ F(d0 ◦ ... ◦ dn−2(2)) if dn−1 = c1 and
v ∈ F(d0◦...◦dn−2(3)) otherwise. We deduce from the minimality of n0 that v ∈ F(d0◦...◦dn0−1(2))
and v /∈ F(d0 ◦ ... ◦ dn0−1(a)) for a ∈ {1, 3}.

The C-adic word w with directive sequence (dn)n∈N being primitive, so is the C-adic word
w′ with directive sequence (dn)n≥n0 ; the word w′ thus admits three return words to the letter 2,
whose set is denoted by U . Let k0 = min{k ∈ N|Sk(w′) ∈ [2]}, where S denotes the shift map.
Then the words in U pave the infinite word Sk0(w′). Denote by k1 the length of the image by the
substitution d0 ◦ ... ◦ dn0−1 of the prefix of length k0 of w′, and k2 = k1 + |p|, where p is such that
d0 ◦ ... ◦ dn−1(2) = pvs. Then the set P = {p−1d0 ◦ ... ◦ dn0−1(u)p |u ∈ U}, which contains three
elements (the images of distinct words by c1 or c2 remaining distinct - see the end of the proof of
Theorem E) that start with v, pave the infite word Sk2(w).

The set P is not always the set of return words to the factor v of w, as illustrated by Example
54. Nonetheless, the set of return words to the factor v of w is easily deduced from P.

Corollary 53. If we denote P = {p1, p2, p2}, the set of return words to the factor v in w is exactly
the set of return words to v in the finite word p1p2p3p1.

Example 54. We consider the primitive C-adic word w with directive sequence d = c2c2c1c2c1c1(c1c2)ω,
and the factor v = 31 ∈ F(w).

w = 1331332313313231331331323133133231331331323133133231331323133133231331...

Applying Theorem F, we obtain n0 = 6, and σ = d0 ◦ ... ◦ d5 = c2 ◦ c2 ◦ c1 ◦ c2 ◦ c1 ◦ c1 is given by:

σ : 1 7→ 133
2 7→ 1331323
3 7→ 13323,

hence p = 13 and s = 323. By Theorem E, the three return words to the letter 2 of the primitive
C-adic word w′ with directive sequence (dn)n≥n0 = (c1c2)ω are 21, 213 and 2131. We finally obtain
the paving set: P = {313231331332313313, 3132313313, 313231331332313}, from which we deduce,
following Corollary 53, the three return words to 31 of w: 313, 3132 and 31332.

In this example, no element of P is a return word to the factor v. This is a consequence of v
appearing in w = σ(w′) not only as factor of σ(2), but also at each junction of images of letters by
σ: indeed, here, all images by the substitution σ starts with 1 and ends with 3.
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6 Stability under exduction (reverse induction)

We now prove that being a natural coding of a minimal rotation is a property which passes through
the reverse operation of induction, that we call, following Rauzy (see [AI01]), exduction.

We start by an example in dimension 1 (Sturmian case).

Example 55. For d=1, consider M = Z and β an irrational number. We introduce A1 =]0, 1−α[,
A2 =]1 − α, 1[, A′1 = [0, 1 − α[ and A′2 = [1 − α, 1[. Then the standard Sturmian word with slope
β, that we denote wst, is a natural coding with elements ((β,M), A : (A1, A2), β, (β1, β2)), where
β1 = β and β2 = β − 1 and borders assignment (A′ : (A′1, A

′
2)).

Now, we consider the substitution σ given by σ(1) = 1 and σ(2) = 12, and its incidence matrix
Mσ:

Mσ =

(
1 1
0 1

)
.

We set (α1, α2) = (β1, β2)M−1
σ , which gives:

{
α1 = β
α2 = −1.

Denote α = α1 = β and L = (α2 − α1)Z = (β + 1)Z. At last, we introduce Ω1 = A =]0, 1[,
Ω′1 = A′ = [0, 1[ Ω2 =]1, 1 + β[ and Ω′2 = [1, 1 + β[ (see Figure 2).

Observe that the pair (α,L) is minimal, that the sets {Ω′1,Ω′2} form a partition of a fundamental
domain for the lattice L, and that the rotation Rα,L acts on the piece Ω′1 (resp. Ω′2) of the funda-
mental domain as a translation by the vector α1 (resp. α2). In fact, the word σ(wst) is a natural
coding of a minimal rotation of the circle with elements ((α,L),Ω : (Ω1,Ω2), β, (α1, α2)) and borders
assignment (Ω′ : (Ω′1,Ω

′
2)).

[ [
0 1

|
1− β

A′1 A′2

[
β

[
1 + β

|
1

/////////

[ [
0 1 + β

|
1

Ω′1 Ω′2

Figure 2: Example of exduction in dimension 1.

Our aim is to show that this construction is valid in a more general context.

6.1 Main result for exduction

Assumptions. Let w0 be a natural coding of a minimal rotation of the d-torus, with elements
((β,M); (A : A1, ..., Ad+1);x0; (β1, ..., βd+1)) and borders assignment (A′ : A′1, ..., A

′
d+1). Let a ∈

I = {1, ..., d+ 1} a letter, and u1,...,ud+1 ∈ I∗ be such that:

1. For all i in I, the word ui starts with the letter a and admits no other occurrence of a;
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2. the matrix M = (|uj |i)i,j ∈ GLd+1(Z).

Construction. Let (α1, ..., αd+1) = (β1, ..., βd+1)M−1. We set α = αa and denote by L the
additive subgroup of Rd given by: L =

∑d+1
i=1,i 6=a(αi − αa)Z. Furthermore, for i ∈ I and k ∈

{0, ..., |ui|}, we introduce:

vi,k =

k−1∑
l=0

αui[l] ∈ Rd.

For k ∈ Ki := {0, ..., |ui| − 1}, we set Ai,k = Ai + vi,k and A′i,k = A′i + vi,k. Observe that for k = |ui|
we have vi,k = βi, and that A′i + βi ⊂ A′. Now, let:

Ωj =
⋃

(i,k)∈I×Ki

ui[k]=j

Ai,k and Ω′j =
⋃

(i,k)∈I×Ki

ui[k]=j

A′i,k,

and set Ω := ∪j∈IΩj and Ω′ := ∪j∈IΩ′j . At last, denote by σ the substitution given by σ(i) = ui.

Theorem G. The word σ(w0) is a natural coding of a minimal rotation of the d-torus, with ele-
ments ((α,L); (Ω : Ω1, ...,Ωd+1);x0; (α1, ..., αd+1)) and borders assignment (Ω′ : Ω′1, ...,Ω

′
d+1). Fur-

thermore, we have Ωa = A, Ω′a = A′, and the induced map of Tsus := rΩ′,L ◦ Rα,L ◦ pL on the set
with nonempty interior Ωa is the map T = rA′,M ◦Rβ,M ◦ pM .

6.2 Proof of Theorem G

Let G =
∑

i∈I βiZ be the underlying group of the natural coding w0.

Lemma 56. The vectors α1, ..., αd+1 form a basis of G.

Proof. By Lemma 19, the vectors β1, ..., βd+1 form a basis of the Z-module G and, sinceM∈ GL(Z),
so do the vectors α1, ..., αd+1.

Corollary 57. The subgroup L is a lattice of Rd and the pair (α,L) is minimal.

Proof. We write G =
∑

i∈I αiZ =
∑

i∈I\{a}(αi − α)Z + αZ. The group G being dense, with a
similar argument than in Lemma 19, we show that the vectors αi − α, for i ∈ I\{a}, form a basis
of Rd, and thus, that the group L =

∑
i∈I\{a}(αi − α)Z is a lattice of Rd. By density of G again,

we obtain that the pair (α,L) is minimal.

Lemma 58. Let x, y ∈ Rd. The three following assertions are equivalent:

(i) the points x and y are equal modulo G;

(ii) there exists a unique n ∈ Z such that pL(y) = Rnα,L(pL(x));

(iii) there exists a unique m ∈ Z such that pM (y) = Rmβ,M (pM (x)).

Proof. (i⇒ ii) Let x, y ∈ Rd be such that y − x ∈ G. Then, α1, ...αd+1 being a basis of G (Lemma
56), there exist n1, ..., nd+1 ∈ Z such that y−x =

∑
i∈I niαi. Therefore, pL(y) = Rnα,L(pL(x)), with

n =
∑

i∈I ni. The pair (α,L) being minimal (57), the integer n is unique. (ii ⇒ i) Let x, y ∈ Rd
and n ∈ Z be such that pL(y) = Rnα,L(pL(x)). Then there exists l ∈ L ⊂ G such that y = x+nαa+l,
hence y = x + g, with g = nαa + l ∈ G. The equivalence between (i) and (iii) is given by Lemma
20 and by the minimality of (β,M).
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Lemma 59. Let x, y ∈ A′ that are equal modulo G. Denote by (l1, ..., ld+1) and (m1, ...,md+1)
the coordinates of the element y − x with respect to the bases (α1, .., .αd+1) and (β1, ...βd+1) re-
spectively. Then the integers l1, ..., ld+1,m1, ...,md+1 are simultaneously nonnegative or nonpositive.
Furthermore, if we set l =

∑
i∈I li and m =

∑
i∈Imi, we have |l| ≥ |m| and la = m.

Corollary 60 (immediate). If x, y ∈ A′ are equal modulo G, then there exists two unique integers,
l and m, such that pL(y) = Rlα,L(pL(x)) and pM (y) = Rmβ,M (pM (x)). Furthermore, l and m are
simultaneously positive, negative or equal to zero.

Proof of Lemma 59. Let x, y ∈ A′ that are equal modulo G. By Lemma 58, the exists m ∈ Z such
that pM (y) = Rmβ,M (pM (x)). First, assume that m ≥ 0. Since x, y ∈ A′, by definition of natural
coding, there exist m1, ...,md+1 ∈ N such that:

y = x+ (β1, ..., βd+1)(m1, ...,md+1)t

= x+ (α1, ..., αd+1)M(m1, ...,md+1)t

= x+ (α1, ..., αd+1)(l1, ..., ld+1)t.

Since M ∈ GL(Z) and has nonnegative entries, we have li ≥ 0 for all i ∈ I, and l1, ...ld+1 are
simultaneously equal to zero if and only if m1, ...,md+1 are simultaneously equal to zero if and
only if m = 0; we also obtain l ≥ m. We lead a symmetric argument for m ≤ 0 and conclude
that in both cases, pL(y) = Rlα,L(pL(x)), with l1, ..., ld+1,m1, ...,md+1 simultaneously nonnegative
or nonpositive, and |l| ≥ |m|. At last, since the words ui, for i ∈ I, contain a unique occurrence of
the letter a, the a− th line of the matrixM only contains the entry 1, and m =

∑
i∈Imi = la.

Proposition 61. The following assertions are true.

1. The sets Ω1, ...,Ωd+1 are nonempty and open.

2. For all i ∈ I, the set Ωi is included and dense in Ω′i.

3. The sets Ω′1, ...,Ω
′
d+1 are pairwise disjoint.

Proof. Let i ∈ I, and k ∈ Ki. The sets Ai,k and A′i,k are the translated sets, by the vector vi,k, of
Ai and A′i respectively, from which they inherit of the following properties: Ai,k is nonempty, open,
included and dense in A′i,k. Now, let j ∈ I. As the finite and nonempty union, for some i ∈ I and
some k ∈ Ki, of the sets Ai,k, the set Ωj is nonempty, open and furthermore included and dense in
and Ω′j , which is the union, for the same indices, of the sets A′i,k.

We now prove that the sets A′i,k are pairwise disjoint. Let y ∈ A′i1,k1 ∩ A
′
i2,k2

, with i1, i2 ∈ I,
0 ≤ k1 < |ui1 | and 0 ≤ k2 < |ui2 |. Denote xj = y − vij ,kj , which belongs to A′ij , for j = 1, 2.

Since x1, x2 ∈ A′, and since x2 − x1 is an integer linear combination of α1, ..., αd+1, it comes that
x2 − x1 ∈ G and by Lemma 59 and Corollary 60, that the coordinates (l1, ..., ld+1) of x2 − x1

with respect to the basis (α1, ..., αd+1) are simultaneously nonnegative or nonpositive (w.l.o.g. say
nonnegative). Therefore, if k1 = 0, we have successively k2 = 0, x1 = x2 and, since the sets
A′1, ..., A

′
d+1 form a partition of A′, i1 = i2. Now, assume that k1 is positive. If k2 = 0, then y = x2,

la = 1 and thereby pM (y) = Rβ,M (pM (x1)). Since x1 ∈ A′i1 , by definition of natural coding we
have y = x1 + βi1 , which is conflicting with the hypothesis k1 < |u1|. So, if k1 is positive, then
k2 is positive too. In this case, we have la = |prefk1(ui1)|a − |prefk2(ui2)|a = 0 since the word uj ,
for j ∈ {1, 2}, contains exactly one occurrence of the letter a, at the first position. By Lemma 59
and Corollary 60 again, we have pM (x2) = pM (x1); by M-simplicity of A′, we obtain that x1 = x2

and i1 = i2. Then we have 0 =
∑k2−1

l=k1
αui1 [l], which implies k1 = k2. So the sets A′i,k are pairwise

disjoint. We conclude, by observing that each A′i,k, for i ∈ I and k ∈ Ki, belongs to exactly one set
Ω′j , that the sets Ω′1, ...,Ω

′
d+1 are pairwise disjoint.
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Proposition 62. The set Ω′ is a fundamental domain of the torus TL.

Proof. We first show that the set A′ is L-simple, from which we deduce that Ω′ is L-simple; we
conclude by proving that the projection map pL : Ω′ 7→ TL is onto.

Let x, y ∈ A′ be such that pL(x) = pL(y). Since L ⊂ G, the points x and y are equal modulo
G and, by Corollary 60, there exist two integers l and m, that are unique, such that pL(y) =
Rlα,L(pL(x)) and pM (y) = Rmβ,M (pM (x)). Here, we already have l = 0, and since |m| ≤ |l|, we obtain
m = 0; hence pM (y) = pM (x) and by M -simplicity of A′, x = y. This proves the L-simplicity of A′.

Now, let z1 and z2 ∈ Ω′ be such that pL(z1) = pL(z2). By construction, there exists two 3-tuples
(x1, i1, k1) and (x2, i2, k2) with i1, i2 ∈ I, such that for j = 1, 2, xj ∈ A′ij ⊂ A′, kj ∈ Kij and
yj = xj + vij ,kj . We are going to show that x1 = x2. On one hand, the points x1 and x2 are in the
same equivalent class modulo G (which is the class of z1 and z2), hence:{

pM (x2) = Rl+1
β,M (pM (x1)) with l ≥ 0,

or pM (x2) = Rlβ,M (pM (x1)) with l ≤ 0.

This implies, since x1 and x2 belongs to A′, and x1 ∈ A′i1 :{
pL(x2) = R

m+|ui1 |
α,L (pL(x1)) with m ≥ 0,

or pL(x2) = Rmα,L(pL(x1)) with m ≤ 0.

On the other hand, without loss of generality, assume that k2 ≤ k1. Then, if we set y1 = x1 +
vi1,k1−k2 , we have pL(x2) = pL(y1) = Rk1−k2α,L (pL(x1)) with 0 ≤ k1−k2 ≤ |ui1 |−1. The only possibility
is thus k1 = k2, from which we deduce successively pL(x1) = pL(x2), the equality x1 = x2 by L-
simplicity of A′, the equality i1 = i2 by pairwise disjointedness of the sets A′j for j ∈ I, and in the
end, z1 = z2. Therefore, the set Ω′ is L-simple.

At last, we show that pL : Ω′ 7→ TL is onto. Let ỹ ∈ TL and denote k = min{n ∈ N|R−nα,L(ỹ) ∈
pL(A′)}, which is finite since (α,L) is minimal (Corollary 57) and pL(A′) has nonempty interior.
Denote also x̃ = R−kα,L(ỹ) and x = rA′,L(x̃) its covering into A′ (which is L-simple by the first part

of the proof), and i ∈ I such that x ∈ A′i. Then, since R
−k+|ui|
α,L (ỹ) ∈ pL(A′), by minimality of k we

must have k < |ui|. So if we set y = x + vi,k, which belongs to Ω′ by construction, it comes that
pL(y) = pL(x) + kα = Rkα,L(x̃) = ỹ. We conclude that Ω′ is a fundamental domain of the torus
TL.

Hereafter, we denote by Tsus = rΩ′,L ◦Rα,L ◦pL the covered rotation in the fundamental domain
Ω′.

Proposition 63. The following assertions are true.

1. For all j ∈ I, for all y ∈ Ω′j, we have Tsus(y) = y + αj.

2. We have Ωa = A and Ω′a = A′. Furthermore, the induced map of Tsus on the set with nonempty
interior Ω′a is the map T .

3. For all nonnegative integer n, Tnsus(x0) ∈ Ωσ(w)[n].

4. For all y ∈ Ω′ and for all q ∈ N, there exists an extraction τ such that: (i) T
τ(m)
sus (x0)→m→∞ y;

(ii) for all n ∈ {0, ..., q} and for all nonnegative integer m, T
τ(m)+n
sus (x0) ∈ Ωιn, where ιn is

defined by Tmsus(y) ∈ Ω′ιn.
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Proof. (1) Let j ∈ I and y ∈ Ω′j . Since Rα,L(pL(y)) = pL(y+αj), to prove the assertion, we need to
show that y+ αj ∈ Ω′. Let (i, k) be the unique pair, with i ∈ I and k ∈ Ki, such that y ∈ A′i,k. By
definition of Ω′j , the indices i and k satisfy ui[k] = j. Thus, if k < |ui|−1, then y+αj ∈ A′i,k+1 ⊂ Ω′.
Otherwise, let x = y − vi,k. Then we have y + αj = x + vi,|ui| = x + βi ∈ A′ ⊂ Ω′, which ends the
proof.

(2) Since each ui, for i ∈ I, admits exactly one occurrence of the letter a, at the first position,
we have by construction Ωa = A and Ω′a = A′. Moreover, for all i ∈ I and for all x ∈ A′i, we have

min{n ∈ N∗|Tnsus(x) ∈ Ω′a} = |ui|, and by (1), T
|ui|
sus (x) = x+ vi,|ui| = x+ βi = T (x).

(3) Let (nk)k∈N be the sequence of indices such that for all k ∈ N, Tnk
sus(x0) = T k(x0) ∈ A′

(it actually belongs to A), which is well-defined by (2). Let n ∈ N. Denote by k the unique
nonnegative integer such that nk ≤ n < nk+1 and by i the unique index in I such that T k(x0) ∈ Ai
(consequence of Proposition 61). Then, on one hand we have σ(w)[n] = ui[n−nk], and on the other
hand, Tnsus(x0) = Tnk

sus(x0) + vi,n−nk
∈ Ai,n−nk

⊂ Ωui[n−nk]. Finally, we have Tnsus(x0) ∈ Ωσ(w)[n].
(4) Let y ∈ Ω′ and q ∈ N. By construction, there exist i ∈ I and k ∈ Ki such that x := y−vi,k ∈

A′. Denote by ϕ the extraction given by the definition of borders assignments associated with the
natural coding w0 for the point x ∈ A′ and the integer k+q. Then, we have that Tϕ(m)(x0)→m→∞ x
and for any nonnegative integer m, the first k + q + 1 letters of f ′(x) and f(Tϕ(m)(x0)) coincide,
which immediately implies, since no image of letters by the substitution σ is the empty word, that
for any m, the k + q + 1 first letters of the words σ(f ′(x)) and σ(f(Tϕ(m)(x0)) coincide as well.
Since the sequence (Tm(x0))m∈N is a subsequence of (Tmsus(x0))m∈N, we can define an extraction ψ

such that for all m, T
ψ(m)
sus (x0) = Tϕ(m)(x0). We finally set τ(m) = ψ(m) + k. Thus, on one hand

we have that T
τ(m)
sus (x0) →m→∞ y; on the other hand, for all n ∈ {0, ..., q} and for all nonnegative

integer m, T
τ(m)+n
sus (x0) ∈ Ωιn , where ιn is defined by Tnsus(y) ∈ Ω′ιn .

Proof of Theorem G. Proof of Theorem G results of Corollary 57 and Propositions 61, 62 and
63.

6.3 Consequences for Arnoux-Rauzy and primitive C-adic words

Theorem G applies in particular to Arnoux-Rauzy and primitive C-words.

Proposition 64. Let w be an Arnoux-Rauzy word and σ ∈ AR∗ (i.e., a finite product of substitu-
tions in AR). Assume that w is a natural coding of a minimal rotation of the 2-torus. Then σ(w) is
also a natural coding of a minimal rotation of the 2-torus, whose elements and borders assignment
can be explicitly described from the elements and the choice made for the borders assignment of the
natural coding w. In particular, the piecewise translation vectors α1, α2, α3 of σ(w) satisfy:

(α1, α2, α3) = (β1, β2, β3)M−1
σ ,

where Mσ = (|σ(j)|i)i,j is the incidence matrix of the substitution σ, and β1, β2 and β3 are the
piecewise translation vectors of w.

Proof. It is sufficient to prove the proposition for σ ∈ AR. For σ ∈ AR, we immediately have that
the words ui = σ(i), for i ∈ {1, 2, 3} satisfy the two assumptions of Theorem G.

Proposition 65. Let w be a primitive C-adic word and σ ∈ C∗ (i.e., a finite product of substitutions
in C). Assume that w is a natural coding of a minimal rotation of the 2-torus. Then, there exists
k ∈ N such that Sk(σ(w)) is also a natural coding of a minimal rotation of the 2-torus, whose
elements and borders assignment can be explicitly described from the elements and the choice made
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for the borders assignment of the natural coding w. In particular, the piecewise translation vectors
α1, α2, α3 of Sk(σ(w)) satisfy:

(α1, α2, α3) = (β1, β2, β3)M−1
σ ,

where Mσ = (|σ(j)|i)i,j is the incidence matrix of the substitution σ, and β1, β2 and β3 are the
piecewise translation vectors of w.

Proof. Again, it is sufficient to prove the proposition for the substitutions c1 and c2. Let w be a
primitive C-adic word, and assume that w is a natural coding of a minimal rotation of the 2-torus.
Denote by (dn)n∈N its directive sequence. By Theorem E, there exists a unique accepted path
e = (le, re) in the automaton of partial quotients for C-adic words (see Figure 5.3) that starts from
the initial state 2 and such that le is a prefix of (dn)n∈N. Denote by w′ = D2(w) the derivated word
of w relatively to the letter 2. By Theorem A, the word w′ is a natural coding of a minimal rotation
of the 2-torus. Besides, the path e1 = (c1, s ◦ c1) · e (where the symbol · denotes the concatenation
operation), starting from the initial state 3, is accepted by the automaton. Therefore, the words ui =
re1(i), for i ∈ {1, 2, 3}, are the three return words to the letter 3 in the primitive C-adic word c1(w)
and, thereby, satisfy the assumptions of Theorem G. Thus, the word σ(w), where the substitution
σ is given by σ(i) = ui for i ∈ {1, 2, 3}, is equal to the word Sk(c1(w)) for a certain k ∈ N, and is
a natural coding of a minimal rotation of the 2-torus, whose elements and borders assignment are
explicitly given by those of w′, which themselves are explicitly given by the elements and the choice
made for borders assignment of the natural coding w. In particular, if (α1, α2, α3), (β1, β2, β3) and
(γ1, γ2, γ3) respectively denote the piecewise translation vectors of the natural codings Sk(c1(w)),
w and w′, then we have, on one hand (γ1, γ2, γ2) = (β1, β2, β3)Md0 ...Mdn0−1 , where n0 is the length
of the path e, and on the other hand (γ1, γ2, γ2) = (α1, α2, α3)Mc1Md0 ...Mdn0−1 . Each matrix

being invertible, we conclude that (α1, α2, α3) = (β1, β2, β3)M−1
c1 . A symmetric argument applies

to c2(w).

Theorem H. For Arnoux-Rauzy and primitive C-adic subshifts, the property of being a natural
coding of a minimal rotation of the 2-torus does not depend on any prefix of the directive sequence
(dn)n∈N.

Proof. Let w be an Arnoux-Rauzy (resp. primitive C-adic) word, and denote by (dn)n∈N its directive
sequence. Assume that w is a natural coding of a minimal rotation of the 2-torus. On the first
hand, we showed in Proposition 64 (resp. Proposition 65) that for all σ ∈ AR∗ (resp. σ ∈ C∗),
the subshift generated by σ(w) is a natural coding of a minimal rotation of the 2-torus. On the
other hand, we claim that for all n0 ∈ N, the Arnoux-Rauzy (resp. primitive C-adic) subshift with
directive sequence (dn)n≥n0 is again a natural coding of a minimal rotation of the 2-torus. Indeed,
by inducing on letters as many times as needed, we can find n1 ≥ n0 such that the word with
directive sequence (dn)n≥n1 is a natural coding of a minimal rotation of the 2-torus (Proposition 43,
Theorems D and E). But then, by applying Proposition 64 (resp. 65) with σ = dn0 ◦ ... ◦ dn1−1, we
obtain that the Arnoux-Rauzy (resp. primitive C-adic) subshift with directive sequence (dn)n≥n0 is
also a natural coding of a minimal rotation of the 2-torus.
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[Fer92] Sébastien Ferenczi. Bounded remainder sets. Acta Arithmetica, 61, 1992.

[Fog02] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and combinatorics, volume
1794 of Lecture Notes in Mathematics. Springer-Verlag, 2002. Edited by V. Berthé, S.
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[RSZ09] Gwénaël Richomme, Kalle Saari, and Luca Zamboni. Balance and abelian complexity
of the Tribonacci word. Advances in Applied Mathematics, 45(2):212–231, 2009.

[Sch00] Fritz Schweiger. Multidimensional Continued Fractions. Oxford Science Publications.
Oxford University Press, 2000.

[Thu19] Jörg M. Thuswaldner. S-adic sequences: a bridge between dynamics, arithmetic, and
geometry. arXiv:1908.05954, 2019.

[Vui01] Laurent Vuillon. A characterization of Sturmian words by return words. European
Journal of Combinatorics, 22:363–375, 2001.

32


	Introduction
	Preliminaries
	Finite and infinite words
	Symbolic dynamics
	Imbalance

	Natural coding of minimal rotations
	A topological definition and its consequences
	Borders assignment
	The underlying group of a natural coding
	Discussion on the definition of natural coding

	Stability under induction
	Main result for induction
	Proof of Theorem A
	Correction of the proof of CFZ01

	Applications
	Tree words
	Return words for Arnoux-Rauzy words (under the S-adic framework)
	Return words for primitive C-adic words

	 Stability under exduction (reverse induction)
	Main result for exduction
	Proof of Theorem G
	Consequences for Arnoux-Rauzy and primitive C-adic words


