
An automaton to explore imbalances in S-adic systems

Mélodie Andrieu

[PhD thesis version, March 2021]

Abstract

We describe a semi-algorithm consisting of an automaton, or rather, an ever-building family
of automata, whose states contain all the possible imbalances of S-adic words, where S is a finite
set of substitutions. The implementation of this ”infinite automaton” led to the construction
of words with infinite imbalance for the Cassaigne-Selmer multidimensional continued fraction
algorithm, as well as Arnoux-Rauzy words whose Rauzy fractal is unbounded in all directions of
the plane.

Contents

1 Motivations 1

2 Preliminaries 2
2.1 General definitions . 2
2.2 S-adic systems . 3

3 Main result 5
3.1 Teaser . 5
3.2 Description of the automaton of imbalances . 5
3.3 Properties and consequences . 7
3.4 Example: the imbalance automaton of the Thue-Morse subshift 8

4 Proof 11
4.1 General idea . 11
4.2 Desubstitution . 11
4.3 An inverse to desubstitution: the substitute and cut operation 12
4.4 Aside: the graph of all factors of a S-adic system . 13
4.5 The graph of all pairs of factors of S-adic words . 15
4.6 Construction of the automaton of imbalances . 17

5 Discussion on the implementation of the semi-algorithm 21

1 Motivations

A S-adic word is an infinite word which can be written as the limit of the iterated images of a letter
by an infinite composition of substitutions (not necessarily the same). S-adic systems are thus a

1

large generalization of substitutive systems. They emerged from the study of the symbolic dynamics
of continued fraction algorithms (see for instance [Fog02], [Ber11] or [BD14]).

The imbalance is a combinatorial quantity which measures inequities in the distribution of letters
in an infinite word. This quantity is linked to the quality of the convergence of the frequency of
letters in growing prefixes of the word, so, in the context of multidimensional continued fraction
algorithms, to the quality of the convergence of the approximations proposed by the algorithm.

To our knowledge, two distinct behaviors have been observed.
On one hand, the regular continued fraction algorithm is associated with the S-adic system XSst

of Example 5. Every infinite word in Xst has its imbalance bounded above by 1.
On the other hand, the S-adic systems associated with Arnoux-Rauzy and Brun (2-dimensional)

continued fraction algorithms contain words with infinite imbalance (see respectively [CFZ00] and
[DHS13]). The existence of such words was unexpected; in fact, they have measure zero ([DHS13]).
The construction of these exceptional words relied on thorough observations and an outstanding
intuition.

The following questions have not been answered yet.

1. Does there exist a S-adic system that satisfies the ’intermediate situation’, i.e. such that (i)
all S-adic words have a finite imbalance; (ii) there is no upper bound for these imbalances.

2. Does there exist a multidimensional continued fraction algorithm which generate words with
bounded, or at least finite, imbalances?

This document introduces a semi-algorithm that would help in developing intuitions for a wide
range of S-adic systems. Roughly speaking, this semi-algorithm consists in tracking backwards, in an
economical way, the common desubstitution history of pairs of factors. This tool is already behind
the construction of a C-adic word with infinite imbalance [And18] and behind the construction of a
Rauzy fractal unbounded in all directions of the plane [And21]. Most probably, it will be useful to
address other questions, such that Questions 1 and 2 above.

2 Preliminaries

2.1 General definitions

An alphabet A is a finite set, whose elements are called letters. We will work with (A∗ := ∪n∈NAn, ·)
the free monoid over A for the concatenation operation. Its elements are called finite words; its
neutral element ε is the empty word. A language L is a subset of A∗. An infinite word over A is
an element of AN. The length of a finite word u, denoted by |u|, is the total number of letters it is
written with. A finite word u = u[0]u[1]...u[n − 1], where u[k] denotes the (k + 1)-th letter of u,
is a factor of a (finite or infinite) word w if there exists a nonnegative integer i such that for all
k ∈ {0, ..., n− 1}, w[i+ k] = u[k]. In the particular case i = 0, we say that u is the prefix of length
n of w, and denote it by u = pn(w). Symmetrically, a (finite or infinite) word w′ is a suffix of w if
there exists l ∈ N such that w = pl(w) · w′. We immediately see that w′ is finite if and only if w is
finite; in that case, if n denotes the length of w′, we say that w′ is the suffix of length n of w, that
we denote by w′ = sn(w). At last, we denote by Fn(w) the set of factors of w of length n and by
F(w) the language of w, which is the set of all its factors.

The abelianized vector (sometimes called Parikh vector) of a finite word u ∈ A∗ is the line vector
ab(u) := (|u|a)a∈A which counts the number of occurrences of each letter in u. We immediately
see that the sum of its coordinates is equal to |u|, the length of the word u. If two words u and v
have the same length, we call imbalance vector of u and v the difference of their abelianized vectors:

2

imb(u, v) = ab(u)− ab(v). The sum of its coordinates is of course equal to zero. The imbalance of
a (finite or infinite) word w is the quantity, possibly infinite:

imb(w) = sup
n∈N

sup
u,v ∈Fn(w)

||imb(u, v)||∞

= sup
n∈N

sup
u,v ∈Fn(w)

max
a∈A
||u|a − |v|a|.

The imbalance measures inequities in the distribution of letters in w.
A substitution is an application mapping letters to finite words: A 7→ A∗, that we extend into

a morphism on the free monoid A∗ on one hand, and on the set of infinite words AN on the other
hand. For instance, consider the Thue-Morse substitution:

σTM : {a, b} → {a, b}∗
a 7→ ab
b 7→ ba.

A substitution is nonerasing if no image of letter is the empty word. At last, the incidence matrix
of a substitution σ defined over A is:

Mσ := (|σ(i)|j)i,j∈A.

Incidence matrices and abelianized vectors are made to satisfy ab(σ(u)) = ab(u)Mσ, for any finite
word u.

In this document, we are interested in the imbalance of words associated with a set of substitu-
tions.

2.2 S-adic systems

First of all, we endow the set of infinite words AN with the distance δ, which makes it compact: for
all w,w′ ∈ AN, δ(w,w′) = 2−n0 , where n0 = min{n ∈ N|w[n] 6= w′[n]} if w 6= w′, and δ(w,w′) = 0
otherwise. We say that a sequence of finite words (un)n∈N ∈ (A∗)N converges to an infinite word
w ∈ AN if for any sequence of infinite words (vn)n∈N ∈ (AN)N, the sequence of infinite words
(un · vn)n∈N ∈ (AN)N converges to w.

Let S be a finite set of substitutions, defined over a common alphabet A. An infinite word
w ∈ AN is S-adic if there exist a directive sequence (dn) ∈ SN, together with a seed a ∈ A such that
the sequence of finite words (d0 ◦ ... ◦ dn−1(a))n∈N converges to w.

Example 1. The set S = {σ} where σ is the substitution defined over {1, 2} by σ(1) = 2, σ(2) = 1,
generates no S-adic word.

Example 2. The set S = {σTM}, where σTM is the Thue-Morse substitution defined in Subsection
2.1, generates two S-adic words:

wa = lim
n

(σTM)n(a) = abbabaabbaababbabaababbaabbabaabbaababbaabbabaababbab...

wb = lim
n

(σTM)n(b) = baababbaabbabaababbabaabbaababbaabbabaabbaababbabaaba...

Example 3. The set S = {σfib}, where σfib is the substitution defined by σfib(1) = 12 and σfib(2) =
1 generates a unique S-adic word (called Fibonacci word):

wfib = lim
n

(σfib)
n(1) = lim

n
(σfib)

n(2) = 1211212112112121121211211212112112...

3

When the set S contains a unique substitution, S-adic words are said substitutive. Substitutive
words have been intensively studied (see for instance [Fog02]).

Example - definition 4. Let C := {c1, c2} the set of Cassaigne-Selmer substitutions, defined over
{1, 2, 3} by:

c1 : 1 7→ 1 and c2 : 1 7→ 2
2 7→ 13 2 7→ 13
3 7→ 2, 3 7→ 3.

By definition, C-adic words are exactly S-adic words for the specific set of substitutions C.

Example - definition 5. Let d ∈ N such that d ≥ 2. We consider the set of d substitutions
Sd = {σd,1, ..., σd,d} defined over the alphabet Ad := {1, ..., d} by:

σd,i : i 7→ i
j 7→ ij if j 6= i,

for all i ∈ {1, ..., d}.
An infinite word over Ad is episturmian if it has the same language than a S-adic word, for

S = Sd. It is furthermore strictly episturmian if it has the same langage than a S-adic word whose
directive sequence contains infinitely many occurrences of each substitutions in Sd. Sturmian words
are exactly strict episturmian words for d = 2; Arnoux-Rauzy words are exactly strict episturmian
words for d = 3. The Fibonacci word (see Example 3) is Sturmian: indeed, it is the limit of the
sequence ((σ2,1 ◦ σ2,2)n(1))n∈N.

From these five examples, we deduce that:

1. Not all sets of substitutions generate S-adic words.

2. Given a directive sequence (dn)n∈N ∈ SN and a seed a ∈ A, the sequence of finite words
(d0 ◦ ... ◦ dn−1(a))n∈N may not even have an adherence value in AN.

3. In general, S-adic words are not substitutive. Indeed, there are only a countable number
of substitutive words, whereas the set of Sturmian words, which is a subset of the class of
all S-adic words, is already uncountable (the slope function maps them onto the irrational
numbers).

4. Given a S-adic word, the directive sequence and the seed are not a priori unique. Nonetheless,
for some sets of substitutions (e.g. standard episturmian words or C-adic words), it is possible
to find sufficient conditions on (dn) ∈ SN and a ∈ A to ensure both the convergence of the
sequence (d0 ◦ ...◦dn−1(a))n to an infinite word w, and the uniqueness of its directive sequence
(see for instance [AR91], [AS13] for Arnoux-words, [GLR09] for episturmian words in general,
and [CLL17] for C-adic words).

Let T denote the shift map, which erases the first letter of infinite words: if w = w[0]w[1]w[2]... ∈
AN, then T (w) = w[1]w[2]w[3].... The S-adic system associated with a set of substitutions S is the
minimal close set containing all S-adic words and stable under the action of T :

XS = {Tn(w) | for n ∈ N and wS-adic word}.

Lemma 6 (immediate). Let S be a set of substitutions. The language of XS (i.e. the set of factors
of words in XS) is exactly the language of the set of all S-adic words.

4

3 Main result

3.1 Teaser

Given a set S of substitutions, we want to answer the questions:

1. Are the imbalances of words in XS bounded?

2. If they are, give an upper bound.

3. If they are not, for an arbitrary d ∈ N, exhibit a word in XS whose imbalance is greater than
d.

Theorem A. Let S denote a finite set of nonerasing substitutions over a common alphabet A, and
assume that all letters in A belong to the language of XS. If DS denotes the quantity (possibly
infinite):

DS = sup
w∈XS

imb(w),

then a breadth first search in the automaton of imbalances, from its initial states, outputs, for any
d ≤ DS, a finite sequence of substitutions (σi)i∈{1,...,n} in S such that the imbalance of any word in
XS, whose directive sequence starts with (σi)i∈{1,...,n}, is larger than d.

Remark 7. We will see (Proposition 13) that the automaton of imbalances has:

� an infinite number of states;

� a bounded number of transitions from any state;

� a finite number of initial states, which only depends on the alphabet A;

so its breadth first traversal is possible (but would, of course, never end).

Corollary 8 (immediate). Let d ∈ N. The question ”does there exists a word in XS with imbalance
greater than d?” is semi-decidable.

3.2 Description of the automaton of imbalances

This subsection is devoted to the harsh (but complete) description of the automaton of imbalances.
It is written for readers willing to program it. To understand its construction, it may be preferable
to read Section 4 or to consider the Thue-Morse example, in Subsection 3.4.

Definition 9. Let S be a finite set of nonerasing substitutions defined over a common alphabet
A. Let (l1, l2, l3, l4) ∈ (A ∪ {ε})4 and (xa)a∈A ∈ ZA; (δ1, δ2, δ3, δ4) ∈ N4 and σ ∈ S. We say that

δ1
δ3
σδ2δ4 is a substitute and cut operation allowed on X :=

((
l1 l2
l3 l4

)
, (xa)a∈A

)
if it satisfies the two

conditions:

1.


(δ1, δ2) = (0, 0) if (l1, l2) = (ε, ε),
δ1 < |σ(l1)|, δ2 < |σ(l1)| and δ1 + δ2 < |σ(l1)| if (l1, l2) ∈ A× {ε},
δ1 < |σ(l1)| and δ2 < |σ(l2)| if (l1, l2) ∈ A2;

2.


(δ3, δ4) = (0, 0) if (l3, l4) = (ε, ε),
δ3 < |σ(l3)|, δ4 < |σ(l3)| and δ3 + δ4 < |σ(l3)| if (l3, l4) ∈ A× {ε},
δ3 < |σ(l3)| and δ4 < |σ(l4)| if (l3, l4) ∈ A2.

5

In this case, the image of X by the substitute and cut operation δ1
δ3
σδ2δ4 is well defined and equals:((

m1 m2

m3 m4

)
, (ya)a∈A

)
,

where m1,m2,m3,m4 and (ya)a∈A are given by:

� m1 = σ(l1)[δ1];

�

{
m2 = σ(l1)[−δ2 − 1] if l2 = ε,

m2 = σ(l2)[−δ2 − 1] otherwise;

� m3 = σ(l3)[δ3];

�

{
m4 = σ(l3)[−δ4 − 1] if l4 = ε,

m4 = σ(l4)[−δ4 − 1] otherwise;

where, following Python, u[k] denotes the (k + 1)-th letter of u and u[−k] its k-th letter, reading
backwards;

�


(ya) = (xa)Mσ − ab(pδ1(σ(l1)))− ab(sδ2(σ(l1))) + ab(pδ3(σ(l3))) + ab(sδ4(σ(l3))) if (l2, l4) = (ε, ε)

(ya) = (xa)Mσ − ab(pδ1(σ(l1)))− ab(sδ2(σ(l1))) + ab(pδ3(σ(l3))) + ab(sδ4(σ(l4))) if (l2, l4) ∈ {ε} ×A
(ya) = (xa)Mσ − ab(pδ1(σ(l1)))− ab(sδ2(σ(l2))) + ab(pδ3(σ(l3))) + ab(sδ4(σ(l3))) if (l2, l4) ∈ A× {ε}
(ya) = (xa)Mσ − ab(pδ1(σ(l1)))− ab(sδ2(σ(l2))) + ab(pδ3(σ(l3))) + ab(sδ4(σ(l4))) otherwise.

In the last point, (xa) and (ya) are line vectors indexed by A, and Mσ denotes the incidence
matrix of the substitution σ, indexed by A×A.

Notation 10. Let α and ω be the functions defined by:

α : A∗ → A ∪ {ε} ω : A∗ → A ∪ {ε}

u 7→

{
u[0] if |u| ≥ 1

ε otherwise;
u 7→

{
u[−1] if |u| ≥ 2

ε otherwise.

They are constructed so as to output the extremal letters of a word (when this makes sense), but
never point to the same letter. For instance, α(examples) = e, ω(examples) = s, α(a) = a,
ω(a) = ε, α(ε) = ω(ε) = ε.

Definition 11. Let S be a finite set of nonerasing substitutions defined over a common alphabet A.
Assume that each letter in A appears in a S-adic word (not necessarily the same for all letters). The
automaton of imbalances of the S-adic system XS is the infinite oriented graph G whose vertices
are:

V =
⋃

w∈XS

{((
α(u) ω(u)
α(v) ω(v)

)
, ab(u)− ab(v)

)
| u, v ∈ F(w)

}
,

and whose edges map vertices to each of their images by all allowed substitute and cut operations
δ1
δ3
σδ2δ4 , with σ ∈ S.

A vertex X =

((
l1 l2
l3 l4

)
, (xa)a∈A

)
is a final state if

∑
a∈A xa = 0. The set of final states of G

is denoted by F.
The set of initial states of G is:

I := V ∩

{
{((εε εε), (0)a∈A)} ∪

⋃
a∈A
{((aε εε), ab(a)); ((εa

ε
ε),−ab(a)); ((aa

ε
ε), (0)a∈A)}

}
.

6

Remark 12. Contrary to what its name suggests, the automaton of imbalances is not an automaton.
Indeed, it has a infinite number of vertices (see Proposition 13 hereafter). Nonetheless, since we
are interested in the labeling of the paths between a particular finite class of vertices (the ”initial
states”) and another subclass -possibly infinite- (the ”final states”), we choose to keep the name
”automaton”.

3.3 Properties and consequences

Proposition 13. Let S be a finite set of nonerasing substitutions over a common alphabet A.
Denote by G the automaton of imbalances of XS. If XS is empty, so is G. Otherwise:

1. there are infinitely many vertices in G;

2. there exists N ∈ N such that all vertices have less than N outgoing edges;

3. there are exactly 3card(A) + 1 initial states.

Proof. (1) Assume that XS is nonempty and pick w ∈ XS . Then for all integers n ≥ 2,

Xn :=

((
w[0] w[n− 1]
ε ε

)
, ab(pn(w))

)
,

is a vertex of G, corresponding to the pair of factors of w: (pn(w), ε). Furthermore, since the sum
of the coordinates of the vector ab(pn(w)) is equal to n (the length of pn(w)), the vertices Xn, for
n in N, are pairwise distinct. Therefore, G contains an infinite number of vertices.
(2) Let l = max{|σ(a)| for a ∈ A, σ ∈ S}. Then for all i ∈ {1, 2, 3, 4}, δi < l; so the number of
outgoing edges from any vertex is bounded above by card(S)× l4.
(3) Immediate.

Proposition 14. Let (l1, l2, l3, l4) ∈ (A ∪ {ε})4 and (xa)a∈A ∈ ZA; (δ1, δ2, δ3, δ4) ∈ N4 and σ ∈ S

such that the substitute and cut operation δ1
δ3
σδ2δ4 is allowed on X =

((
l1 l2
l3 l4

)
, (xa)a∈A

)
and has

image Y =

((
m1 m2

m3 m4

)
, (ya)a∈A

)
.

Then for all ũ, ṽ ∈ A∗ such that:

1. (α(ũ), ω(ũ), α(ṽ), ω(ṽ)) = (l1, l2, l3, l4),

2. ab(ũ)− ab(ṽ) = (xa)a∈A,

the truncations u and v of σ(ũ) and σ(ṽ) defined by:{
pδ1(σ(ũ)) · u · sδ2(σ(ũ)) = σ(ũ),

pδ3(σ(ṽ)) · v · sδ4(σ(ṽ)) = σ(ṽ);

satisfy:

1. (α(u), ω(u), α(v), ω(v)) = (m1,m2,m3,m4),

2. ab(u)− ab(v) = (ya)a∈A.

Proposition 14 rules the construction of the automaton of imbalances, as detailed in Section 4.

7

3.4 Example: the imbalance automaton of the Thue-Morse subshift

Consider XS the S-adic system for S = {σ}, where σ is the Thue-Morse substitution:

σ : a 7→ ab
b 7→ ba.

Observe that:
i) the substitution σ is nonerasing;
ii) the set S generates two S-adic words (described in Example 2);
iii) the letters a and b both appear in these words.

In what follows, we are going to breadth first traverse the automaton of imbalances of XS , from its
initial states. In order to reduce the growth of the tree (strictly, it is a forest with one main tree),
we will:

– consider vertices up to some symmetries (see Lemma 16);
– trim the branches that will never lead to a final state (see Lemma 15).

We will obtain a finite graph (see Figure 1), on which we will read the maximal imbalance of words
in Xw: 2, thus retrieving a well-known result.

Denote by G = (V, I, F) the automaton of imbalances of XS . It has 7 initial states, namely:(
ε ε
ε ε

)(
0
0

)
,

(
a ε
ε ε

)(
1
0

)
,

(
ε ε
a ε

)(
−1
0

) (
a ε
a ε

)(
0
0

)
,

(
b ε
ε ε

)(
0
1

)
,

(
ε ε
b ε

)(
0
−1

)
and

(
b ε
b ε

)(
0
0

)
.

(In this subsection, it will be more convenient to represent the second vector as a column instead
of a line.) Each vertex in V admits at most 16 outgoing edges, among:{

δ1
δ3
σδ2δ4 , for (δ1, δ2, δ3, δ4) ∈ {0, 1}4

}
.

We recall that a vertex Y is accessible from a vertex X if there exists a sequence of edges in G which
leads from X to Y - or, in other words, if Y is the image of X by a finite composition of substitute
and cut operations.

Lemma 15. No vertex in F is accessible from a vertex of the form(
l1 l2
l3 l4

)(
xa
xb

)
with |xa + xb| ≥ 2.

Therefore, during the breadth first traversal of G, we ignore all vertices such that |xa + xb| ≥ 2:
Lemma 15 guarantees that we miss no finite state.

Proof of Lemma 15. Let X =

((
l1 l2
l3 l4

)
,

(
xa
xb

))
be a vertex in V, δ1

δ3
σδ2δ4 a substitute and cut

operation allowed from X, and denote by Y =

((
m1 m2

m3 m4

)
,

(
ya
yb

))
its image. We are going to

prove that |ya + yb| ≥ 2. This first implies that Y /∈ F (remind that a state is final if an only if it

8

satisfies ya + yb = 0), and, iteratively, that no final state is the image of X by a finite composition
of substitute and cut operations.

Let ũ, ṽ ∈ {a, b}∗ such that (α(ũ), ω(ũ), α(ṽ), ω(ṽ)) = (l1, l2, l3, l4) and ab(ũ)− ab(ṽ) = (xa, xb).
We have ||ũ| − |ṽ|| = |xa + xb| ≥ 2; without loss of generality, assume that |ũ| − |ṽ| ≥ 2. Then we
have |σ(ũ)| − |σ(ṽ)| ≥ 4. Denote by u and v the truncations of σ(ũ) and σ(ṽ) given by:{

pδ1(σ(ũ)) · u · sδ2(σ(ũ)) = σ(ũ),

pδ3(σ(ṽ)) · v · sδ4(σ(ṽ)) = σ(ṽ).

Then, by Proposition 14, we have ab(u)− ab(v) = (ya, yb), from which we deduce that |ya + yb| =
|u|− |v|. Finally, observing that (δ1, δ2, δ3, δ4) ∈ {0, 1}4 for the Thue-Morse substitution, we deduce
that: |u| − |v| ≥ 2; this concludes the proof.

Lemma 16 (Symmetries). Let

((
l1 l2
l3 l4

)
,

(
xa
xb

))
∈ V. Then the vertices

(
l3 l4
l1 l2

)(
−xa
−xb

)
,

(
¬l1 ¬l2
¬l3 ¬l4

)(
xb
xa

)
and



(
l2 l1

l4 l3

)(
xa

xb

)
if (l2, l4) 6= (ε, ε),(

l2 l1

l3 l4

)(
xa

xb

)
if l2 6= ε and l4 = ε,(

l1 l2

l4 l3

)(
xa

xb

)
if l2 = ε and l4 6= ε.

where ¬a = b and ¬b = a, also belong to V.

Proof. Let w ∈ XS and (u, v) ∈ F(w)2 such that (α(u), ω(u), α(v), ω(v)) = (l1, l2, l3, l4) and ab(u)−
ab(v) = (xa, xb). We immediately see that the pair (v, u) also belong to F(w)2, which proves that
the first symmetric vertex is also in V. One easily checks from Example 2 that if w ∈ XS , then ¬w
also belongs to XS . Since the pair (¬u,¬v) belongs to F(¬w), the second symmetric vertex is also
in V. At last, the Thue-Morse subshift is such that if u ∈ F(w), then rev(u), where rev(u) denotes
the word u written backwards, is a factor of w too; we deduce that the third symmetric vertices
belong to V.

Below, we draw the forest obtained after a breadth first traversal of G, from its initial states.
This forest is simplified by:

- considering the vertices up to the symmetries of Lemma 16 (as a consequence, there remain
only three initial states);

- deleting all vertices such that |xa + xb| ≥ 2 (see Lemma 15).

9

In red: final states.

(
a ε
a ε

)(
0
0

)

(
a ε
a b

)(
0
−1

)

(
a b
a b

)(
0
0

)

(
a ε
b ε

)(
1
−1

) (
a b
b a

)(
0
0

)

(
a a
b b

)(
0
0

)

(
b a
b b

)(
−1
0

)
(
b a
a b

)(
−1
1

)

(
a b
a b

)(
−1
1

)

(
b b
b a

)(
−2
1

)

(
b b
a a

)(
−2
2

)
(
b b
a b

)(
−1
0

)

(
a b
a a

)(
−1
0

)
(
a a
a a

)(
0
0

)

(
a a
a a

)(
−1
0

) (
a a
b b

)(
0
−1

)
(
a a
b b

)(
1
−1

)

(
b ε
b b

)(
0
−1

)

(
a b
b a

)(
0
−1

)(
a b
b b

)(
1
−1

)

(
a ε
b b

)(
1
−2

)

(
a b
a b

)(
0
−1

)

(
b b
a a

)(
−2
1

)
(
a a
a a

)(
0
1

)

(
b a
b b

)(
0
0

)

(
a a
a a

)(
−1
1

)
(
a a
b a

)(
−1
0

)

(
b a
a a

)(
−2
1

)

(
ε ε
ε ε

)(
0
0

) (
a ε
ε ε

)(
1
0

)

0
0σ

1
0

0
1σ

1
0

0
0σ

0
0

0
1σ

1
1

0
0σ

0
1

0
1σ

0
0

0
1σ

0
1

1
1σ

0
1

0
0σ

0
0

1
0σ

0
0

1
0σ

1
0

1
0σ

1
1

0
1σ

1
0

0
0σ

0
1 0

1σ
0
0

0
0σ

0
0

1
0σ

0
0

0
1σ

0
0

0
1σ

1
0

1
0σ

1
1

1
1σ

1
1

0
1σ

0
1

0
0σ

0
1

1
1σ

0
1

1
0σ

0
1

0
1σ

1
0

0
1σ

0
0

Figure 1: The forest obtained after a breadth first traversal of G for the Thue-Morse subshift.

10

The maximal imbalance found is 2 and corresponds to the vertex (ba
b
a)(
−2
2).

4 Proof

In this Section, we describe step by step the construction of the automaton of imbalances.

4.1 General idea

Let S be a finite set of nonerasing substitutions over a common alphabet A. We consider the set of
all imbalance vectors of words in XS :

F3 :=
⋃

w∈XS

{ab(u)− ab(v) |u, v ∈ F(w) and |u| = |v|} ⊂ ZA.

Proposition 17 (immediate). The set F3 is finite if and only if there exists D ∈ N such that for
all w ∈ XS, imb(w) ≤ D.

So we want to explore the set F3. To do so, we need to understand where do the imbalance
vectors come from. A classic idea, in the substitutive framework, and we extend to S-adic systems,
consists in tracking backwards the history of factors by successive desubstitutions. This is why we
introduce the underlying set:

F2 :=
⋃

w∈XS

{(u, v) |u, v ∈ F(w) and |u| = |v|},

that we will explore through a (huge) graph G2, whose automaton of imbalances G is a quotient
graph, obtained after partial abelianization.

4.2 Desubstitution

Let u, ũ ∈ A∗ and σ a substitution over A. We say that ũ is a predecessor of u by σ if there exists a
pair p, s ∈ A∗ such that pus = σ(ũ). We denote by Pσ(u) the set of all predecessors of u by σ, that
we endow with the relation:

ũ1 ≤ ũ2 if and only if ũ1 ∈ F(ũ2).

The set Pσ(u) is not totally ordered: for instance 1 and 22 are two incomparable predecessors
of 2 for the Thue-Morse substitution σTM (defined in Example 2). However, the partial order is
well-founded: all nonempty subset of Pσ(u) admit minimal elements. Desubstituting u by σ consists
in returning one of its minimal predecessors.

Example 18. The set of all predecessors of 2 by σTM is {1, 2}∗\{ε}; its minimal predecessors are
1 and 2. The word 222 has no predecessor by σTM , therefore, it can not be desubstituted.

Observe that we always have Pσ(ε) = A∗, and that the only minimal predecessor of ε is itself.

Proposition 19. Let u ∈ A∗\{ε} and ũ ∈ Pσ(u). Then ũ is nonempty. It is furthermore minimal
if and only if all pairs (p, s) ∈ A∗ such that pus = σ(ũ) satisfy |p| < |σ(ũ[0])| and |s| < |σ(ũ[−1])|
(?). Remainder: ũ[0] and ũ[−1] denote the first and last (possibly same) letter of ũ.

11

Proof. We immediately see that if u is nonempty, then ũ is also nonempty. We now prove both
implications by contraposition.

Assume that ũ is not minimal. There exists ṽ ∈ Pσ(u) and a, b ∈ A∗ non both empty (say,
without loss of generality, a 6= ε), such that ũ = aṽb. Then, by writing σ(ṽ) = pus, we obtain:
σ(ũ) = σ(a)p · u · sσ(b), with |σ(a)p| ≥ |σ(a)| ≥ |σ(ũ[0])|, since a 6= ε.

Conversely, assume that there exists a pair p, s ∈ A∗ which does not satisfy (?) (say, without
loss of generality, |p| ≥ |σ(ũ[0])|). One easily checks that the suffix of length |ũ| − 1 of ũ is still a
predecessor of u, which implies that ũ is not minimal.

Counterintuitively, the existence of one pair satisfying (?) is not sufficient to guarantee the
minimality of a predecessor.

Example 20. Consider the substitution σcex defined by σcex(0) = 10 and σcex(1) = 1010. Denote
ũ = 101, u = 0101, p = 101 and s = 010. Observe that:

σcex(ũ) = 1010101010 = pus

|p| < σ(ũ[0])

|s| < σ(ũ[−1])

and, yet, ũ is not minimal since its strict factor 10 is also a predecessor of u:

σcex(10) = 101010 = 1u0.

Corollary 21. Let σ be a substitution and u ∈ F(σ(w))\{ε}, where w is a finite or infinite word.
Then there exist ũ ∈ F(w)\{ε} together with a pair p, s of finite words satisfying (?) such that
pus = σ(ũ).

Proof. The set Pσ(u) is nonempty (indeed, it contains w if w is finite, or one of its factors otherwise),
so it admits minimal elements. We conclude with Proposition 19.

Finally, if u and v are two factors of a S-adic word w = limn→∞ d0 ◦ ... ◦ dn−1(a), we can
simultaneously desubstitute u and v by d0; unfortunately, there is no guarantee that, among the
pairs of minimal predecessors (ũ, ṽ), there is one at least which satisfies ũ = ṽ, or equivalently,
which still belongs to F2. So we introduce the larger set:

V2 =
⋃

w∈XS

{(u, v) |u, v ∈ F(w)} ⊂ A∗ ×A∗,

that will be the vertices of the (huge) graph we construct.

4.3 An inverse to desubstitution: the substitute and cut operation

In order to explore the set of factors in a constructive way, we choose for transition not the desubsti-
tution, but its ”inverse”, which consists in substituting and cropping the image according to some
rules.

In the sequel, we refer to the functions α and ω defined in Notation 10.

Definition 22. Let u and ũ in A∗. A substitute and cut operation from ũ to u is a triplet (σ, δ1, δ2),
where σ is a substitution and δ1,δ2 two nonnegative integers such that:

1. pδ1(σ(ũ)) · u · sδ2(σ(ũ)) = σ(ũ).

12

2.


δ1 = δ2 = 0 if ũ = ε,
δ1 < |σ(ũ)|, δ2 < |σ(ũ)| and δ1 + δ2 < |σ(ũ)| if |ũ| = 1,
δ1 < |σ(α(ũ))| and δ2 < |σ(ω(ũ))| otherwise.

We denote it by:
δ1σδ2(ũ) = u.

Proposition - definition 23. Let ũ ∈ A∗, σ a substitution defined over A, and δ1, δ2 ∈ N. The
two assertions are equivalent:

1. ũ, σ, δ1 and δ2 satisfy Condition (2) of Definition 22;

2. there exists u ∈ A∗ such that u = δ1σδ2(ũ).

When these assertions are satisfied, we say that (σ, δ1, δ2) is a substitute and cut operation allowed
from ũ.

Proof. Since (2) trivially implies (1), we just need to check that (1)⇒(2). Let us assume that ũ, σ,
δ1 and δ2 satisfy Condition (2) of Definition 22. If ũ = ε, it suffices to take u = ε. Otherwise, the
bounds on δ1 and δ2 ensure that the equation: pδ1(σ(ũ)) ·u · sδ2(σ(ũ)) = σ(ũ) defines a (unique and
nonempty) word u.

This definition is consistent with Definition 9, as we see later.

Example 24. One easily checks that:

1. the triplet (σTM , 1, 1) (with σTM the Thue-Morse substitution defined in Subsection 2.1) is a
substitute and cut operation from 21 to 11;

2. the triplet (σcex, 3, 3) (where σcex is the substitution defined in Example 20) is a substitute and
cut operation from 101 to 0101.

Example 24(2) shows that a finite word is not always a minimal predecessor of its substitute
and cut image. Nonetheless:

Lemma 25. Let u ∈ A∗ and σ a substitution over A. The set of all preimages of u by allowed
substitute and cut operations built over σ is finite and contains all minimal predecessors of u by σ.

Proof. Let u ∈ A∗, σ a substitution and (δ1, δ2) a pair of integer such that (σ, δ1, δ2) is a substitute
and cut operation allowed on ũ. Then we must have δ1, δ2 ≤ maxa∈A |σ(a)|; hence the finiteness of
the set. Now, if ũ is a minimal predecessor of u by σ, either u = ũ = ε and we have 0σ0(ε) = ε, or
u 6= ε and we know from Proposition 19 that all pairs of words p, s such that σ(ũ) = pus will satisfy
Condition (2), so we can write u = |p|σ|s|(ũ).

4.4 Aside: the graph of all factors of a S-adic system

Let S be a set of substitutions defined over a common alphabet A. Denote by V1 the set of all
factors of the S-adic system XS :

V1 :=
⋃

w∈XS

F(w) =
⋃

w S-adique

F(w) (see Lemma 6).

We consider the oriented graph G1 whose set of vertices is V1, and whose edges map vertices to their
images by all allowed substitute and cut operations (σ, δ1, δ2), with σ ∈ S.

13

Remark 26. In the particular case S = {σ}, with σ a primitive substitution, the subgraph of G1

restricted to the vertices of length 1 (i.e. letters in A) is the automaton of prefixes-suffixes, with
reversed edges, defined in [CS01].

Lemma 27 (immediate). (i) If it is not empty, the graph G1 has infinitely many vertices.
(ii) The number of outgoing edges of any vertex is bounded above by card(S) × l2, where l =
maxσ∈S,a∈A |σ(a)|.

We say that a factor v ∈ V1 is accessible from a factor u ∈ V if there exists a finite path in G

which goes from u to v.

Proposition 28. If A ⊂ V1, then any nonempty factor in V1 is accessible from a letter in A.

Proof. Assume that A ⊂ V1 and pick a nonempty factor u in V1. By definition, there exists a letter
a ∈ A and a directive sequence (dn)n∈N ∈ SN such that u ∈ F(w) with w = limn d0 ◦ ... ◦ dn−1(a).
Thus, there exists a [finite] prefix v of w such that u ∈ F(v); and, by definition of the convergence
(see Subsection 2.1), there exists a rank n0 ∈ N such that v is also a prefix of the finite words
d0 ◦ ... ◦ dn−1(a) for all n larger than n0.

Now, we recursively construct three finite sequences: (uk)k∈{0,...,n0} ∈ Vn0+1, (βk)k∈{0,...,n0−1}
and (γk)k∈{0,...,n0−1} ∈ Nn0 :

� u0 = u,

� for k ∈ {0, ..., n0 − 1}, we denote by (p, ũ, s) the triplet of words given by the application of
Corollary 21 to the substitution dk and the word uk ∈ F(dk(wk+1)), with wk+1 := dk+1 ◦ ... ◦
dn0−1(a); we then set uk+1 = ũ, βk = |p| and γk = |s|.

Thus, the sequences (uk)k∈{0,...,n0}, (βk)k∈{0,...,n0−1} and (γk)k∈{0,...,n0−1} are such that for all k ∈
{0, ..., n0 − 1}, uk is the image of uk+1 by the allowed substitute and cut operation (dk, βk, γk).
Furthermore, Corollary 21 ensures that at each step of the recursion, uk ∈ F(dk ◦ ...◦dn0−1(a))\{ε};
so in particular un0 ∈ F(a)\{ε}, which implies un0 = a.

Finally, we exhibited a finite path in G, which goes from a ∈ A ⊂ V1 to u; this concludes the
proof.

This result suggests that we could obtain all factors in V1 by simple knowledge of the alphabet.
Hence the question: are all words obtained after a finite composition of allowed substitute and cut
operations still in V1?

Proposition 29. If A ⊂ V1 and if u is the image of a letter by a finite composition of allowed
substitute and cut operations, then u ∈ V1.

Proof. Let a ∈ A and (σk, βk, γk)k∈{0,...,n−1} ∈ (S × N2)n such that for all k ∈ {0, ..., n0 − 1}, the

substitute and cut operation (σk, βkγk) is allowed on the word βk−1σk−1
γk−1 ◦ ... ◦ β0σγ00 (a). Denote

u := βn−1σn−1
γn−1 ◦ ... ◦ β0σγ00 (a) ∈ A∗; we want to prove that u ∈ V1. Since a ∈ A ⊂ V1, there

exists w a S-adic word such that a ∈ F(w). But then, the infinite word w′ := σn−1 ◦ ... ◦ σ0(w) is
also S-adic, and we immediately have u ∈ F(w′), hence u ∈ V1.

The assumption A ⊂ V1 is essential.

Example 30. Consider S = {σ}, where the substitution σ is defined by σ(a) = baa and σ(b) = bb.
One easily checks that the S-adic system XS contains a unique word, which is:

w = bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb...

14

Therefore:
V1 = {ε, b, bb, bbb, bbbb, bbbbb, ...}

and yet, the words a, baa, baaba, etc, can be obtained from letters by finite compositions of allowed
substitute and cut operations.

4.5 The graph of all pairs of factors of S-adic words

4.5.1 Simultaneous substitute and cut operations

In order to study the imbalances of S-adic words, we do not want to reconstruct all pairs of factors
in XS , but all pairs of words (u, v) in which u and v are simultaneous factors of a S-adic word.

Definition 31. Let u, v, ũ and ṽ in A∗. A [simultaneous] substitute and cut operation from the
pair (ũ, ṽ) to the pair (u, v) is a quintuplet (σ, δ1, δ2, δ3, δ4) such that:

� (σ, δ1, δ2) is a substitute and cut operation from ũ to u,

� (σ, δ3, δ4) is a substitute and cut operation from ṽ to v.

We denote it by:
δ1
δ3
σδ2δ4 (ũ, ṽ) = (u, v).

A quintuplet (σ, δ1, δ2, δ3, δ4) ∈ S × N4 is an allowed substitute and cut operation from (ũ, ṽ) if
there exists a pair (u, v) ∈ (A∗)2 such that (u, v) = δ1

δ3
σδ2δ4 (ũ, ṽ).

The crucial point in Definition 31 is that we run the same substitution on both words, but we
crop their images independently- these variations will generate imbalance.

Lemma 32. Let (σ, δ1, δ2, δ3, δ4) ∈ S ×N4 and (ũ, ṽ) ∈ (A∗)2. The following assertions are equiva-
lent:

1. the quintuplet (σ, δ1, δ2, δ3, δ4) is an allowed substitute and cut operation from (ũ, ṽ) ∈ (A∗)2;

2. the triplets (σ, δ1, δ2) and (σ, δ3, δ4) are allowed on ũ and ṽ respectively;

3. both triplets (σ, δ1, δ2) and (σ, δ3, δ4) satisfy Condition (2) in Definition 22.

Proof. This comes immediately from Proposition-definition 23.

Example 33. We consider the set C = {c1, c2} of Cassaigne-Selmer substitutions, defined in
Example-Definition 4. Let (ũ, ṽ) = (23, 33).
There are exactly four substitute and cut operations allowed from the pair (ũ, ṽ):

0
0c1

0
0 , 1

0c1
0
0 , 0

0c2
0
0 and 1

0c2
0
0.

Their respective images are: (132, 22), (32, 22),(133, 33) and (33, 33).

15

4.5.2 The graph of all pairs of factors of S-adic words

Let G2 be the oriented graph whose set of vertices is

V2 :=
⋃

w∈XS

{(u, v) |u, v ∈ F(w)} =
⋃

w S-adique

{(u, v) |u, v ∈ F(w)}

and whose edges map vertices to their images by all allowed [simultaneous] substitute and cut
operations.

We consider two remarkable subsets of V2:

I2 := V2 ∩ ({(ε, ε)} ∪ ∪a∈A{(a, ε), (ε, a), (a, a)}) , called initial states;

F2 :=
⋃

w S-adique

{(u, v) |u, v ∈ F(w) and |u| = |v|}, called finite states.

Finite states corresponds to the pairs of factors we are interested in when studying the imbalances
of infinite words in a S-adic system. To access them, Proposition 34 (below) suggests to traverse
the graph G from its initial states.

Proposition 34. 1. If G2 is nonempty, then it has infinitely many vertices.

2. The number of outgoing edges from any vertex is bounded above by card(S) × l4, where l =
maxσ∈S,a∈A |σ(a)|.

3. If A ⊂ V2, then any pair of nonempty words in V2 is accessible from an initial state.

4. If A ⊂ V2 and if (u, v) is the image of an initial state by a finite composition of allowed
[simultaneous] substitute and cut operations, then (u, v) ∈ V2.

Proof. Assertions (1) and (2) are immediate adaptations of Lemma 27.
Assertions (3) and (4) are easy adaptations of Propositions 28 and 29 respectively. The key point
is to remember that (u, v) ∈ V2 means that u and v are factors of the same S-adic word w, so they
can be simultaneously desubstituted by the first substitution of its directive sequence; conversely,
the image of a pair in V2 by an allowed simultaneous substitute and cut operation is still made of
factors of a same S-adic word.

4.5.3 A semi-algorithm to detect imbalances in a S-adic system

Below, we explicitly describe a semi-algorithm to detect high imbalances in XS .

Algorithm 35. .
INPUTS:
- a finite set of substitutions S over a common alphabet A
- a nonnegative integer d

ALGORITHM
V ← I2 (initialization)
V’ ← empty set
for (ũ, ṽ) in V:

for (σ, δ1, δ2, δ3, δ4) substitute and cut operation allowed on (u,v):
(u,v) ← image of (ũ, ṽ) by the substitute and cut operation
if (u,v) has not yet appeared in the processing:

16

if |u| = |v| and imb(u, v) ≥ d:
return true

otherwise:
put (u,v) in V’

V ← V’
V’ ← empty set

Corollary 36 (immediate consequence of Proposition 34). Let S be a finite set of nonerasing
substitutions defined over a common alphabet A. Assume furthermore that A ⊂ V2(S). Then for all
d ≤ supw∈XS

imb(w), Algorithm 35, run on the entry (S, d), will finish.

Remark 37. If at each first visit of a pair (u, v), we record the preimage and the substitute and cut
operation which gave (u, v), then we are able to retrace a shortest [finite] sequence of substitute and
cut operations which lead from one of the initial states to the intended imbalance. Thus, if we denote
by (σ0, ..., σn−1) the substitutions appearing in the labels of this path, and by τ := σn−1 ◦ ... ◦ σ0 the
substitution obtained by backwards composition of them, then for all S-adic word w containing the
letter a, where a is the letter appearing in the first [initial] state of the path, the imbalance of the
S-adic word τ(w) is larger or equal than d.

Remark 38. By contrast, if d > supw∈XS
imb(w), the algorithm will indefinitely keep running on

the entry (S, d), hence the terminology ”semi-algorithm”.

4.6 Construction of the automaton of imbalances

However, to study the imbalance of a S-adic word, it is not necessary to fully describe its factors:
the simple knowledge of their abelianized vectors is sufficient. Put in another way, the graph G2

contains much more information than what is actually needed.
The aim of this subsection is to simplify it. This simplication (and some others...) will make its

computation possible (see Section 5).

4.6.1 Obstructions to the abelianization of G2

We consider the binary relation Rab defined over pairs of finite words:

(u, v)Rab (u′, v′) if and only if ab(u)− ab(v) = ab(u′)− ab(v′),

which partitions V2 into equivalence classes:

V3 := V2/Rab =
⋃

w S-adic

{ab(u)− ab(v) | u, v ∈ F(w)}.

Unfortunately, this partition is not compatible with the substitute and cut operation. Indeed, a
same vector x ∈ V3 may represent two pairs of factors (u, v) and (u′, v′) for which the sets of allowed
substitute and cut operations (and the results they give) are different (see Example 39 below).

Example 39. We consider the set C of Cassaigne-Selmer substitutions, defined in Example-
Definition 4. The two pairs (u, v) = (132, 132) and (u′, v′) = (ε, ε) in V2 both belong to the equivalence
class x = (0, 0, 0) ∈ V3. However:
- there are exactly eight substitute and cut operations allowed from the pair (u, v):

0
0c1

0
0 , 0

0c1
1
0 , 0

0c1
0
1 , 0

0c1
1
1

0
0c2

0
0 , 0

0c2
1
0 , 0

0c2
0
1 and 0

0c2
1
1;

- only the first and the fifth ones are also allowed on (u′, v′).

17

Fundamentally, a vector x ∈ V3 contains no information on the initial and final letters of the
pairs of factors it represents. This information is yet essential when applying Condition (2) of
Definition 22.

4.6.2 Towards a partial abelianization of G2

This is why we consider a finer partition of V2. Let Rpab be the binary relation defined on pairs of
finite words by:

(u, v)Rpab (u′, v′) if and only if


(α(u), ω(u), α(v), ω(v) = α(u′), ω(u′), α(v′), ω(v′))

and

ab(u)− ab(v) = ab(u′)− ab(v′).

We recall

Notation 10. The functions α and ω are defined by:

α : A∗ → A ∪ {ε} ω : A∗ → A ∪ {ε}

u 7→

{
u[0] if |u| ≥ 1

ε otherwise;
u 7→

{
u[−1] if |u| ≥ 2

ε otherwise;

where, following Python, u[0] and u[−1] respectively denote the first and last letters of u.
For instance, α(examples) = e, ω(examples) = s, α(a) = a, ω(a) = ε, α(ε) = ω(ε) = ε.

The functions α and ω are constructed so as to save all the information necessary to apply
substitute and cut operations.

Notation 40. Let (u, v) ∈ (A∗)2. The 2× 2 table

Mu,v :=

(
α(u) ω(u)
α(v) ω(v)

)
is called matrix of extremities of the pair (u, v).

Example 41. Let A = {a, b, c}.

The pairs of words (acb, cc) and (acab, cac) both belong to the equivalence class

((
a b
c c

)
, (1, 1,−1)

)
.

The pair of words (a, cc) belongs to the class

((
a ε
c c

)
, (1, 0,−2)

)
.

The pair of words (acb, acb) belongs to the class

((
a b
a b

)
, (0, 0, 0)

)
, whereas the pair (ε, ε) belongs

to the class

((
ε ε
ε ε

)
, (0, 0, 0)

)
. ‘

Let V denote the quotient set:

V := V2/Rpab =
⋃

w S-adic

{(Mu,v, ab(u)− ab(v)) |u, v ∈ F(w)} .

The [simultaneous] substitute and cut operation is compatible with the relation Rpab.

Proposition 42. Let S be a finite set of nonerasing substitutions defined over a common alphabet
A. Let X ∈ V. Let (u, v) and (u′, v′) be two pairs of words in the equivalence class X.

18

i) A substitute and cut operation (σ, δ1, δ2, δ3, δ4) ∈ S × N4 is allowed from (u, v) if and only if
it is allowed from (u′, v′); in that case, we simply say that (σ, δ1, δ2, δ3, δ4) is allowed from X.

ii) Furthermore, the images of (u, v) and (u′, v′) by such a substitute and cut operation belong to
a same equivalence class modulo Rpab.

At last, the set of all allowed substitute and cut operations from X, as well as the equivalence
classes of their images, can be computed from the simple knowledge of X.

It is essential for the substitutions to be non erasing.

Example 43. Let σ be the [erasing] substitution:

σ a 7→ acb
b 7→ b
c 7→ ε.

We consider the two pairs of words (ũ, ṽ) = (cbab, ε) and (ũ′, ṽ′) = (cabb, ε), which belong to the
same equivalence class modulo Rpab, given by:((

c b
ε ε

)
(1, 2, 1)

)
.

Their respective images by the allowed substitute and cut operation 0
0σ

0
0 are (u, v) = (bacbb, ε) and

(u′, v′) = (acbbb, ε), which do not have the same matrix of extremities.

Proof of Proposition 42. i) Observe that the knowledge of α(u) and ω(u) in Condition (2) of Defi-
nition 22 is sufficient to determine the set of substitute and cut operations which are allowed from a
word u. Therefore, the knowledge of Mu,v is sufficient to determine the set of allowed simultaneous
substitute and cut operations from a pair (u, v). Therefore, two pairs of words equal modulo Rpab
must have the same set of allowed substitute and cut operations.

ii) Let (σ, δ1, δ2) be an allowed substitute and cut operation from a word ũ. Denote u = δ1σδ2 . We
first show that the knowledge of α(ũ) and ω(ũ) is sufficient to determine α(u) and ω(u).
- If ω(ũ) = ε, then ũ ∈ A ∪ {ε}, and the knowledge of α(ũ) = ũ is sufficient to determine the whole
image u = δ1σδ2(ũ), so in particular α(u) and ω(u).
- Otherwise, we know that |ũ| ≥ 2. In this case, l1 = α(ũ) and l2 = ω(ũ) are respectively the first
and last letter of ũ. Since σ is nonerasing, we have |σ(l1)| ≥ 1 and |σ(l2)| ≥ 1; since furthermore
δ1 < |σ(l1)| and δ2 < |σ(l2)|, the words δ1σ0(l1) and 0σδ2(l2) are nonempty. These two words are
respectively prefix and suffix of u, with moreover |u| ≥ 2, so we explicitly know the first and last
letters of u. Finally, in this case too, the knowledge of α(ũ) and ω(ũ) is sufficient to determine α(u)
and ω(u).
Now, we show that the knowledge of α(ũ), ω(ũ) and ab(ũ) is sufficient to compute ab(u). Indeed,
if Mσ denotes the incidence matrix of σ, we have:

ab(u) = ab(ũ)Mσ − ab(pδ1(σ(ũ)))− ab(sδ2(σ(ũ)))
= ab(ũ)Mσ − ab(pδ1(σ(α(ũ))))− ab(sδ2(σ(ω(ũ)))).

When applied to pairs of words, this says that the knowledge of Mũ,ṽ and ab(ũ)− ab(ṽ) (we use
here the linearity of the matrix product in the expression above) is sufficient to determine Mu,v and
ab(u)− ab(v), where (u, v) is the image of (ũ, ṽ) by a substitute and cut operation (σ, δ1, δ2, δ3, δ4).
In particular, the images, by an allowed substitute and cut operation, of two pairs of words which
equal modulo Rpab are still equal modulo Rpab.

19

Proposition 42 enable us to define the substitute and cut operations over the quotient set V =
V2/Rpab. This is detailed in Definition 9.

Example 44. We consider the set C := {c1, c2} of Cassaigne-Selmer substitutions (which are
nonerasing). We set X =

(
(2
3

3
3), (0, 1,−1)

)
. There are exactly four substitute and cut operations

allowed from X:

0
0c1

0
0 , 1

0c1
0
0 , 0

0c2
0
0 and 1

0c2
0
0 ;

which respectively give:(
(1
2

2
2), (1,−1, 1)

)
,
(
(3
2

2
2), (0,−1, 1)

)
,
(
(1
3

3
3), (1, 0, 0)

)
and

(
(3
3

3
3), (0, 0, 0)

)
.

One immediately checks that the pairs of images obtained in Example 33 belong to these equivalence
classes.

4.6.3 The automaton of imbalances

As a consequence, we can factorize the graph G2 by Rpab. The quotient graph we obtain is the
graph G described in Section 3.2, that we call automaton of imbalances.

Its set of vertices is V; its edges map vertices to their respective images by allowed substitute
and cut operations. Among its vertices, we are interested in the subclasses:

� I := I2/Rpab = V ∩
{
{((εε εε), (0)a∈A)} ∪

⋃
a∈A {((aε εε), ab(a)); ((εa

ε
ε),−ab(a)); ((aa

ε
ε), (0)a∈A)}

}
,

� F := F2/Rpab =
⋃
w S-adic {(Mu,v, ab(u)− ab(v)) |u, v ∈ F(w) and |u| = |v|};

respectively called initial and final states of G.
The quotient graph G inherits from the properties of accessibility of the graph G2.

Proposition 45. Let S be a finite set of nonerasing substitutions defined over a common alphabet
A.

1. If G is nonempty, then it has infinitely many vertices.

2. The number of outgoing edges from any vertex is bounded above by card(S) × l4, where l =
maxσ∈S,a∈A |σ(a)|.

3. If each letter in A appears in a S-adic word (not necessarily the same), then any vertex in V

is accessible from a vertex in I.

4. If each letter in A appears in a S-adic word and if X is the image of an element in I by a
finite composition of allowed substitute and cut operations, then X ∈ V.

Proof. Assertions (1) and (2) are proved in Proposition 13. One easily checks that Assertions (3)
and (4) are inherited from similar properties in the graph of pairs of factors G2, namely Assertions
(3) and (4) in Proposition 34.

Therefore, similarly to G2, the graph G can be breadth first traversed. Algorithm 46 (below) is
an easy adaptation of Algorithm 35; it yet requires the substitutions in S to be nonerasing (remind
of Example 43).

20

Algorithm 46. .
INPUTS:
- a finite set of nonerasing substitutions S over a common alphabet A
- a nonnegative integer d

ALGORITHM
V ← I (initialization)
V’ ← empty set
for X in V:

for (σ, δ1, δ2, δ3, δ4) substitute and cut operation allowed on X:
Y ← image of X by the substitute and cut operation
if Y has not yet appeared in the processing:

(M, (xa)a∈A)← Y
if
∑

a∈A xa = 0 and maxa∈A |xa| ≥ d:
return true

otherwise:
put Y in V’

V ← V’
V’ ← empty set

Theorem A. Let S denote a finite set of nonerasing substitutions over a common alphabet A, and
assume that all letters in A appear in some S-adic word (not necessarily the same). If DS denotes
the quantity (possibly infinite):

DS = sup
w∈XS

imb(w),

then a breadth first search in the automaton of imbalances (viz. Algorithm 46), from its initial
states, outputs, for any d ≤ DS, a finite sequence of substitutions (σi)i∈{1,...,n} ∈ S∗ such that the
imbalance of any word in XS, whose directive sequence starts with (σi)i∈{1,...,n}, is larger than d.

Proof. This comes from Corollary 36 and Remark 37 that hold for Algorithm 35.

At last, observe that, like Algorithm 35, Algorithm 46 indefinitely keeps running for any instance
(S, d) with d > supw∈XS

imb(w).

5 Discussion on the implementation of the semi-algorithm

We saw that, as soon as it is nonempty, the automaton of imbalances has infinitely many vertices
(Proposition 13). We implemented its breadth first traversal (Algorithm 46) for the S-adic systems
associated with Arnoux-Rauzy (see Example-Definition 5) and Cassaigne-Selmer (see Example-
Definition 4) substitutions. In both cases, the exponential growth of the spanning forest is an
obstacle to the manifestation of non-trivial properties.

To slow it down, one needs to consider all the opportunities to spare calculations. In particular,
we have to take advantage of all the symmetries enjoyed by the language of the system, and find tight
sufficient conditions to kill as many unfruitful branches as possible in the trees. This approach is
illustrated in Section 3.4 on the (easy) example of the Thue-Morse subshift. Despite such efforts (the
symmetries and trim conditions are specific to the studied S-adic system), for interesting systems,
the growth remains strong, as illustrated in Figures 2 and 3.

21

Figure 2: Number of vertices of the spanning forest of the Cassaigne-Selmer system, in function of
exploration’s depth. We already took advantage of symmetries.

Figure 3: Number of vertices of the spanning forest of the Cassaigne-Selmer system, in function of
exploration’s depth. Here we take advantage of symmetries, plus an ad hoc trim condition.

Here are the results obtained with our final implementation of the automaton of imbalances for
the Cassaigne-Selmer system:

� at depth 9, among 1 000 vertices, we found the first imbalance 3;

� at depth 16, among 80 000 vertices, we found the first imbalance 4; the computation (in
Python) took 20 minutes.

Surprisingly, the study of the labels of the paths leading to these four first occurrences of
imbalance turned to be sufficient to guess a general pattern. This pattern gave birth to the families

22

of C-adic words with growing imbalances described in [And18].

Figure 4: A portion of the automaton of imbalances for the Cassaigne-Selmer system.

References

[And18] Mélodie Andrieu. Autour du déséquilibre des mots C-adiques. Journées Montoises
d’informatique théorique (proceedings), pages 51–54, 2018.

[And21] Mélodie Andrieu. A Rauzy fractal unbounded in all directions of the plane. Comptes
Rendus de l’Académie des Sciences, 359(4):399–407, 2021.

[AR91] Pierre Arnoux and Gérard Rauzy. Représentation géométrique de suites de complexité
2n+1. Bulletin de la Société Mathématique de France, 119:199–215, 1991.

[AS13] Pierre Arnoux and Štěpán Starosta. The Rauzy Gasket. In Further Developments in
Fractals and Related Fields, pages 1–23. Springer, 2013.

[BD14] Valérie Berthé and Vincent Delecroix. Beyond substitutive dynamical systems: S-adic
expansions. In Lecture note ‘Kokyuroku Bessatu’, pages 81–123, 2014.

[Ber11] Valérie Berthé. Multidimensional Euclidean algorithms, numeration and substitutions.
Integers [electronic only], 2011.

23

[CFZ00] Julien Cassaigne, Sébastien Ferenczi, and Luca Q. Zamboni. Imbalances in Arnoux-Rauzy
sequences. Annales de l’Institut Fourier, 50:1265–1276, 2000.

[CLL17] Julien Cassaigne, Sébastien Labbé, and Julien Leroy. A set of sequences of complexity
2n+1. In WORDS 2017 Proceedings, pages 144–156. Springer, 2017.

[CS01] Vincent Canterini and Anne Siegel. Automate des préfixes-suffixes associé à une substi-
tution primitive. Journal de théorie des nombres de Bordeaux, 13(2):353–369, 2001.

[DHS13] Vincent Delecroix, Tomáš Hejda, and Wolfgang Steiner. Balancedness of Arnoux-Rauzy
and Brun words. In Juhani Karhumäki, Arto Lepistö, and Luca Zamboni, editors, Com-
binatorics on Words, pages 119–131. Springer Berlin Heidelberg, 2013.

[Fog02] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and combinatorics, volume 1794
of Lecture Notes in Mathematics. Springer-Verlag, 2002. Edited by V. Berthé, S. Ferenczi,
C. Mauduit and A. Siegel.

[GLR09] Amy Glen, Florence Levé, and Gwénaël Richomme. Directive words of episturmian
words: equivalences and normalization. RAIRO - Theoretical Informatics and Appli-
cations, 43(2):299–319, 2009.

24

	Motivations
	Preliminaries
	General definitions
	S-adic systems

	Main result
	Teaser
	Description of the automaton of imbalances
	Properties and consequences
	Example: the imbalance automaton of the Thue-Morse subshift

	Proof
	General idea
	Desubstitution
	An inverse to desubstitution: the substitute and cut operation
	Aside: the graph of all factors of a S-adic system
	The graph of all pairs of factors of S-adic words
	Construction of the automaton of imbalances

	Discussion on the implementation of the semi-algorithm

