Between graph theory and
 differential equations : the \star product.

Manon Ryckebusch
ULCO LMPA
11/05/2023

Introduction.

$$
(f \star g)(x, y)=\int_{-\infty}^{+\infty} f(x, \tau) g(\tau, y) d \tau
$$

Introduction.

$$
\left.\left.\begin{array}{l}
\left\{\begin{array}{l}
\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \\
U(0,0)=I d
\end{array}\right. \\
G=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) H\left(t^{\prime}-t\right) \Leftrightarrow G-1_{\star}=M H \star G
\end{array}\right\} \begin{array}{l}
t^{\prime} \geq t
\end{array}\right\}
$$

Introduction.

$$
\begin{cases}\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) & (f \star g)(x, y)=\int_{-\infty}^{+\infty} f(x, \tau) g(\tau, y) d \tau \\ U(0,0)=I d & \end{cases}
$$

$$
M(t)=\left(\begin{array}{cc}
a(t) & b(t) \\
c(t) & 0
\end{array}\right) \xrightarrow{\substack{\text { Adjacency } \\
\text { matrix }}} \quad a(t) \subset(2)
$$

Replace \times by \star

$$
\left(I d_{\star}-z M\right)^{\star-1}
$$

Summary

1 Between physics and graph theory.

- The method of path sum.
- Solving a differential equation with the method of path sum.

2 Distributions.

- Distribution reminders.
- Products between distributions.

3 Compact \star-product on D.

- A regular product.
- A remark on the \star-product on \mathbb{R}.
- Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

4 What's next ?

- \boldsymbol{t}-inverses and algebraic structure.

Between physics and graph theory.

 The method of path sum.$$
M=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \xrightarrow{\substack{\text { Adjacency } \\
\text { matrix }}} 1 \bigcirc
$$

Method of path sum

$$
(I d-z M)^{-1}
$$

Between physics and graph theory. The method of path sum.

Adjacency matrix

$A^{n} \quad$| The element |
| :--- |
| to vertex j. |

$(I d-A)^{-1}$

Between physics and graph theory.

 The method of path sum.Going from 1 to 1

$$
\left((I d-z M)^{-1}\right)_{11}=\frac{1}{1-z-z^{2}}
$$

Between physics and graph theory.

 The method of path sum.Going from 2 to 2

$$
\left((I d-z M)^{-1}\right)_{22}=\frac{1}{1-z^{2} \times \frac{1}{1-z}}
$$

Between physics and graph theory.

 The method of path sum.Going from 1 to 2

$$
1 \times \quad \times \quad \times\left((I d-z M)^{-1}\right)_{11}
$$

Between physics and graph theory.

The method of path sum.

Going from 1 to 2

$$
\left((I d-z M)^{-1}\right)_{12}=\frac{z}{1-z-z^{2}}
$$

Between physics and graph theory.

 The method of path sum.Going from 2 to 1

$$
\frac{1}{1-z} \times \quad \times \quad \times\left((I d-z M)^{-1}\right)_{22}
$$

Between physics and graph theory.

 The method of path sum.Going from 2 to 1

$$
\left((I d-z M)^{-1}\right)_{21}=\frac{z}{1-z-z^{2}}
$$

Between physics and graph theory.

 The method of path sum.What if there are weights?

$$
M=\left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right)
$$

Between physics and graph theory.

The method of path sum.

$$
\left((I d-z M)^{-1}\right)_{11}=\frac{1}{1-a z-b c z^{2}}
$$

$$
\left((I d-z M)^{-1}\right)_{22}=\frac{1}{1-c b z^{2} \times \frac{1}{1-a z}}
$$

Between physics and graph theory.

 The method of path sum.What if there are time depending weights?

$$
M(t)=\left(\begin{array}{cc}
a(t) & b(t) \\
c(t) & 0
\end{array}\right)
$$

Between physics and graph theory.

The method of path sum.

$$
\begin{aligned}
& a(t) \text { C-} \\
& 1 \rightarrow 1 \text { : } \\
& 2 \rightarrow 2: \\
& \left(I d-z a(t)-z^{2} b(t) c(t)\right)^{-1} \quad\left(I d-z^{2} c(t)(I d-z a(t))^{-1} b(t)\right)^{-1} \\
& 1 \rightarrow 2: \quad z \times\left(I d-z a(t)-z^{2} b(t) c(t)\right)^{-1} \\
& 2 \rightarrow 1: \quad(I d-z a(t))^{-1} \times z \times\left(I d-z^{2} c(t)(I d-z a(t))^{-1} b(t)\right)^{-1}
\end{aligned}
$$

Between physics and graph theory.

The method of path sum.

$$
\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Or

$$
\left(\begin{array}{ll}
A & B \\
C & 0
\end{array}\right) \longrightarrow \mathrm{ACP}
$$

$$
\left(\begin{array}{cc|c}
0 & -\omega & u(t) \\
\omega & 0 & -v(t)
\end{array}\right)
$$

Between physics and graph theory.

Solving a differential equation with the method of path sum.

$$
\left\{\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \longleftarrow t^{\prime} \geq t\right.
$$

$$
\begin{aligned}
G=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\left(H\left(t^{\prime}-t\right)\right.\right. & \Longleftrightarrow G=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) \times H\left(t^{\prime}-t\right)+U\left(t^{\prime}, t\right) \times \frac{d}{d t^{\prime}} H\left(t^{\prime}-t\right) \\
H(t)=\left\{\begin{array}{l}
1 \text { if } t^{\prime} \geq t \\
0 \text { neither }
\end{array}\right. & \Longleftrightarrow G=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) \times H\left(t^{\prime}-t\right)+U(0,0) \times \delta\left(t^{\prime}-t\right)
\end{aligned}
$$

$$
\Longleftrightarrow G-1_{\star}=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) \times H\left(t^{\prime}-t\right)
$$

Between physics and graph theory.

Solving a differential equation with the method of path sum.

$$
\left\{\begin{array}{l}
\frac{d}{d t} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \\
U(0,0)=I d
\end{array} \quad(f \star g)\left(t^{\prime}, t\right)=\int_{-\infty}^{+\infty} f\left(t^{\prime}, \tau\right) g(\tau, t) d \tau\right.
$$

$$
\begin{aligned}
(M H \star G)\left(t^{\prime}, t\right) & =\int_{-\infty}^{+\infty} M\left(t^{\prime}\right) H\left(t^{\prime}-\tau\right) G(\tau, t) d \tau \\
& =M\left(t^{\prime}\right) \times(H \star G)\left(t^{\prime}, t\right) \\
& =M\left(t^{\prime}\right) \times U\left(t^{\prime}, t\right) \times H\left(t^{\prime}-t\right)
\end{aligned}
$$

Between physics and graph theory.

Solving a differential equation with the method of path sum.

$$
\left\{\begin{array}{l}
\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \\
U(0,0)=I d
\end{array}\right.
$$

$$
\begin{aligned}
G=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) H\left(t^{\prime}-t\right) & \Longleftrightarrow G=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) \times H\left(t^{\prime}-t\right)+U\left(t^{\prime}, t\right) \times \frac{d}{d t^{\prime}} H\left(t^{\prime}-t\right) \\
& \Longleftrightarrow G=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) \times H\left(t^{\prime}-t\right)+U(0,0) \times \delta\left(t^{\prime}-t\right) \\
& \Longleftrightarrow G-1_{\star}=\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right) \times H\left(t^{\prime}-t\right) \\
& \Longleftrightarrow G-1_{\star}=M H \star G \\
& \Longleftrightarrow G=\left(1_{\star}-M H\right)^{\star-1}
\end{aligned}
$$

Summary

1 Between physics and graph theory.

- The method of path sum.
- Solving a differential equation with the method of path sum.

2 Distributions.

- Distribution reminders.
- Products between distributions.

3 Compact \star-product on D.

- A regular product.
- A remark on the \star-product on \mathbb{R}.
- Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

4 What's next ?

- \star-inverses and algebraic structure.

Distributions.
 Distribution reminders.

Definition :

A distribution on an open set Ω is a continuous linear form $T: \mathcal{C}_{c}^{\infty}(\Omega) \rightarrow \mathbb{C}$.
$\longrightarrow \mathcal{D}^{\prime}(\Omega)$, topological dual space of $\mathcal{C}_{c}^{\infty}(\Omega)$.
\longrightarrow Duality bracket $\left\langle T_{f}, \varphi\right\rangle=\int_{-\infty}^{+\infty} f(x) \varphi(x) d x$

Distributions.

Distribution reminders.

Heaviside Theta function.

$$
\left\langle H_{a}, \varphi\right\rangle=\int_{-\infty}^{+\infty} H(x-a) \varphi(x) d x=\int_{a}^{+\infty} \varphi(x) d x
$$

Dirac Delta.

$$
\left\langle\delta_{a}, \varphi\right\rangle=\int_{-\infty}^{+\infty} \delta(x-a) \varphi(x) d x=\varphi(a)
$$

Dirac Delta derivatives.

$$
\left\langle\delta_{a}^{(n)}, \varphi\right\rangle=(-1)^{n} \times \varphi^{(n)}(a)
$$

Distributions.

Products between distributions.

Product with a smooth compactly supported function.

$$
\begin{aligned}
\left\langle a \times T_{f}, \varphi\right\rangle & =\int_{-\infty}^{+\infty}(a(x) f(x)) \varphi(x) d x \\
& =\int_{-\infty}^{+\infty} f(x)(a(x) \varphi(x)) d x \\
& =\left\langle T_{f}, a \times \varphi\right\rangle
\end{aligned}
$$

Generally: Usual product betwen distributions.

Distributions.

Products between distributions.

Tensor product of two distributions.

$$
\begin{aligned}
\left\langle T_{f} \otimes T_{g}, \varphi\right\rangle & =\int_{-\infty}^{+\infty} f(x)\left(\int_{-\infty}^{+\infty} g(y) \varphi(x, y) d y\right) d x \\
& =\left\langle T_{f},\left\langle T_{g}, \varphi(x, \cdot)\right\rangle\right\rangle \\
& =\int_{-\infty}^{+\infty} g(y)\left(\int_{-\infty}^{+\infty} f(x) \varphi(x, y) d x\right) d y \\
& =\left\langle T_{g},\left\langle T_{f}, \varphi(\cdot, y)\right\rangle\right\rangle
\end{aligned}
$$

Convolution product of two distributions.

$$
\left\langle T_{f} * T_{g}, \varphi\right\rangle=\left\langle T_{g} \otimes T_{f}, \varphi(x+y)\right\rangle
$$

Distributions.

Products between distributions : convolution vs $\boldsymbol{\lambda}$-product.

Convolution product.

$$
(f * g)(x)=\int_{-\infty}^{+\infty} f(x-\tau) g(\tau) d \tau
$$

-product.

$$
(f \star g)(x, y)=\int_{-\infty}^{+\infty} f(x, \tau) g(\tau, y) d \tau
$$

Dependance on the difference $x-y$ only.

$$
(f \star g)(x, y)=\int_{-\infty}^{+\infty} f(x-\tau) g(\tau-y) d \tau
$$

Summary

1 Between physics and graph theory.

- The method of path sum.
- Solving a differential equation with the method of path sum.

2 Distributions.

- Distribution reminders.
- Products between distributions.

3 Compact $\boldsymbol{\star}$-product on D.

- A regular product.
- A remark on the \star-product on \mathbb{R}.
- Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

4 What's next ?

- - -inverses and algebraic structure.

Compact \star-product on D.

A regular product.

Compact \star-product on D.
 A regular product.

Definition :

Let I be a real compact interval. The compact \star-product is defined as follows:

$$
\left\{\begin{aligned}
\mathcal{C}^{\infty}\left(I^{2}\right) \times \mathcal{C}^{\infty}\left(I^{2}\right) & \rightarrow \mathcal{C}^{\infty}\left(I^{2}\right) \\
(f, \varphi) & \mapsto \int_{I} f(x, \tau) \varphi(\tau, y) d \tau
\end{aligned}\right.
$$

Main idea : Extend this product thanks to sequences to a larger set, which must contain D, to be able to make this product between distributions.

Compact \star-product on D. A regular product.

Heaviside theta :

Compact \star-product on D.
 A regular product.

Dirac delta :

Compact \star-product on D.
 A regular product.

Theorem :

The compact \star-product can be extended to the set D .

Proof :

\checkmark Use the sequential approach and show that the compact star-product respects the convergence, ie is a regular product.
\checkmark Show that the obtained limit is unique.
\checkmark Obtain elements of D as a limit of smooth sequences.

Compact \star-product on D.

A remark on the \star-product on \mathbb{R}.

Corollary :

The \star-product on \mathbb{R} is well defined for elements of D.

Proof :

\checkmark Use the notion of compactly supported distributions.
\checkmark Adapt it to the \star-product on \mathbb{R}.
\checkmark Define the \star-product on \mathbb{R} for elements of D.

Compact \star-product on D.

A remark on the \star-product on \mathbb{R}.

Properties.

$$
(f \star g)(x, y)=\int_{-\infty}^{+\infty} f(x, \tau) g(\tau, y) d \tau
$$

\checkmark Continuous matrix multiplication $\longrightarrow \sum_{k=1}^{n} a_{i, k} b_{k, j}$
\checkmark Generalizes convolution $\longrightarrow(f * g)(x)=\int_{-\infty}^{+\infty} f(x-\tau) g(\tau) d \tau$
\checkmark Generalizes Volterra's compositions

\checkmark Induces Schwartz bracket $\longrightarrow\left\langle T_{f}, \varphi\right\rangle=\int_{-\infty}^{+\infty} f(x) \varphi(x) d x$

Compact \star-product on D.

Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

Definition :

$$
f \in \mathrm{D} \Longleftrightarrow f(x, y)=g(x, y) H(x-y)+\sum_{n=0}^{+\infty} g_{i}(x, y) \delta^{(i)}(x-y)
$$

Compact \star-product on D.

Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

Calculate the \star-product between two elements of D .

$$
\begin{aligned}
\langle H \star \delta, \varphi\rangle & =\int_{\mathbb{R}^{2}}\left(\int_{-\infty}^{+\infty} H(x-\tau) \delta(\tau-y) d \tau\right) \varphi(x, y) d(x, y) \\
& =\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} H(x-\tau) \varphi(x, y) d x\right) \delta(\tau-y) d y\right) d \tau \\
& =\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} H(x-\tau)\left(\int_{-\infty}^{+\infty} \delta(\tau-y) \varphi(x, y) d y\right) d x\right) d \tau \\
& =\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} H(x-\tau) \varphi(x, \tau) d x\right) d \tau \\
& =\langle H, \varphi\rangle
\end{aligned}
$$

$$
H \star \delta=H
$$

Compact \star-product on D.

Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

$$
\begin{cases}\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \\ U(0,0)=I d & (f \star g)(x, y)=\int_{-\infty}^{+\infty} f(x, \tau) g(\tau, y) d \tau\end{cases}
$$

$$
M(t)=\left(\begin{array}{cc}
a(t) & b(t) \\
c(t) & 0
\end{array}\right) \xrightarrow{\begin{array}{c}
\text { Adjacency } \\
\text { matrix }
\end{array}} a(t)<\underbrace{(2)}_{\mathrm{b}(\mathrm{t})}
$$ Replace \times by \star

$$
\left(I d_{\star}-M H\right)^{\star-1}
$$

Compact \star-product on D.

Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

$$
\begin{aligned}
& \left(I d_{\star}-a(t)-b(t) \star c(t)\right)^{\star-1} \\
& 1 \rightarrow 2: \quad\left(I d \star-c(t) \star\left(I d_{\star}-a(t)\right)^{\star-1} \star b(t)\right)^{\star-1} \\
& 2 \rightarrow 1: \quad\left(I d_{\star}-a(t)\right)^{\star-1} \star\left(I d_{\star}-c(t) \star\left(I d_{\star}-a(t)\right)^{\star-1} \star b(t)\right)^{\star-1}
\end{aligned}
$$

Summary

1 Between physics and graph theory.

- The method of path sum.
- Solving a differential equation with the method of path sum.

2 Distributions.

- Distribution reminders.
- Products between distributions.

3 Compact \star-product on D.

- A regular product.
- A remark on the \star-product on \mathbb{R}.
- Schwartz point of view : Action on $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.

4 What's next ?

- \star-inverses and algebraic structure.

What's next?
 \star-inverses and algebraic structures.

$$
\left\{\begin{array}{l}
\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \\
U(0,0)=I d
\end{array} \longrightarrow\left(I d_{\star}-M H\right)^{\star-1}\right.
$$

What we know :

\checkmark The inverse does not exist everytime, but the resolvent does.
\checkmark How to calculate \star-inverses for elements in a particular subset of D.
\checkmark Calculate some \star-inverses with numerical methods.

What's next?

\star-inverses and algebraic structures.
$\left\{\begin{array}{l}\frac{d}{d d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \\ U(0,0)=I d\end{array} \longrightarrow\left(I d_{\star}-M H\right)^{\star-1} ?\right.$

What we know :

\checkmark There is a dense set inside of $D \star$-invertible.
\checkmark This set is a group of distribution with the \star-product.

What's next?

\star-inverses and algebraic structures.

$$
\left\{\begin{array}{l}
\frac{d}{d t^{\prime}} U\left(t^{\prime}, t\right)=M\left(t^{\prime}\right) U\left(t^{\prime}, t\right) \\
U(0,0)=I d
\end{array} \longrightarrow\left(I d_{\star}-M H\right)^{\star-1}\right. \text { ? }
$$

What we know :

$\checkmark(\mathcal{D}, \star)$ is a subgroup of the infinite-dimensional Frechet Lie group $\left(\operatorname{Aut}\left(\mathcal{C}^{\infty}\left(I^{2}, \mathbb{C}\right)\right), \star\right)$.

Thank you !

