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In a finitely complete category E, a monomorphism u : U � X is
normal to an internal equivalence relation R on X when we get
u−1R = ∇U (the undiscrete equivalence relation) and when
moreover, in the induced diagram:

U × U

pU
0 ��

pU
1��

//ū // R

dR
0 ��

dR
1��

U

OO

//
u
// X

OO

the square indexed by 0 (or equivalently by 1) is a pullback
(= we have a discrete fibration).

I In any protomodular category, a monomorphism u is normal to at
most one equivalence relation, as it is the case in the category
Gp of groups.

I See also B+Metere (2021) for many other aspects of normal
subobjects in any category E.

I In any variety V, U normal to R is equivalent to:
∀(v , t) ∈ U × X , [t ∈ U ⇐⇒ tRv ]



In a finitely complete category E, a monomorphism u : U � X is
normal to an internal equivalence relation R on X when we get
u−1R = ∇U (the undiscrete equivalence relation) and when
moreover, in the induced diagram:

U × U

pU
0 ��

pU
1��

//ū // R

dR
0 ��

dR
1��

U

OO

//
u
// X

OO

the square indexed by 0 (or equivalently by 1) is a pullback
(= we have a discrete fibration).

I In any protomodular category, a monomorphism u is normal to at
most one equivalence relation, as it is the case in the category
Gp of groups.

I See also B+Metere (2021) for many other aspects of normal
subobjects in any category E.

I In any variety V, U normal to R is equivalent to:
∀(v , t) ∈ U × X , [t ∈ U ⇐⇒ tRv ]



In a finitely complete category E, a monomorphism u : U � X is
normal to an internal equivalence relation R on X when we get
u−1R = ∇U (the undiscrete equivalence relation) and when
moreover, in the induced diagram:

U × U

pU
0 ��

pU
1��
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In this talk, normal will mean ”normal to some R”, and we shall be
interested in their caracterizations without any mention of R.

I Well known: in Gp of groups, we have: u : U � X normal
if and only if: ∀(v , t) ∈ U × X , tvt−1 ∈ U.

I Less known: in Mon of monoids, we have: u : U � X normal
if and only if: ∀(v , x , y) ∈ U ×M ×M, xvy ∈ U ⇐⇒ xy ∈ U.

I Proof.
if U is normal to some R, we get [v ∈ U ⇐⇒ vR1], whence
∀(v , x , y) ∈ U ×M ×M:
xvyRxy , and [xvy ∈ U ⇐⇒ xy ∈ U].

I As for the converse, we need an extra ingredient: the notion of
syntactic equivalence relation (Schützenberger, 1956!)
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Let M be a monoid and W any non-empty part of M.

Definition
Call syntactic relation associated with W the relation RW defined by:
mRW n ⇐⇒ ∀(x , y) ∈ M ×M, [xmy ∈W ⇐⇒ xny ∈W ]

I Proposition
Given any non-empty W, the relation RW is an internal equivalence
relation in Mon whose class of the unit 1 is the monoid W defined by:
W = {m ∈ M/∀(x , y) ∈ M ×M, xmy ∈W ⇐⇒ xy ∈W}

I When 1 ∈W , we get W̄ ⊂W .

I Then we get W̄ = W , when
∀(v , x , y) ∈W ×M ×M; xmy ∈W ⇐⇒ xy ∈W .

I Accordingly, in Mon, any normal submonoid u : U � M (as
described above) is normal to RU .
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Corollary
Let G be a group and u : U � G a normal submonoid.
Then G is a subgroup.
In other words, Gp is stable in Mon under normal submoids.

I Proof.
If 1 ∈ U and U normal, then
1 = v−1.v .1 ∈ U ⇐⇒ v−1.1 = v−1 ∈ U.

I Now, if u : U � X is normal submonoid, then certainly the
syntactic equivalence relation RU must have an extremal position
among the equivalence relations R to which U is normal:

I Theorem
Let U be a normal submonoid of M. Then the syntactic equivalence
relation RU is the largest equivalence relation S on M in Mon to which
U is normal.
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However we have not reached the strongest universal property of the
syntactic equivalence relation RU ; for that we need the notion of
saturated monomorphism between equivalence relations.

I Definition
A monomorphism u : U � X is said to be saturated w.r. to an
equivalence relation R on X when the cartesian map above u with
codomain R:

u−1R // ũ //

pU
0 ��

pU
1��

R

dR
0 ��

dR
1��

U //
u

//

sU
0

OO

X

sR
0

OO

is fibrant i.e. a discrete fibration.

I In set-theoretical terms, this means that u−1R, when it is
non-empty, is a union of equivalence classes.

I A normal monomorphism is then a special case of saturated
monomorphism.
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Saturation has a very strong property:

Lemma
Given any category E and any monormorphism u : U � X,
1) if u is saturated w.r. to R, then u is saturated w.r. to any
equivalence relation S ⊂ R;
2) if u is normal to R, then u is saturated w.r. to any equivalence
relation S ⊂ R.

I Theorem
When U is a submonoid of M, the syntactic equivalence relation RU
on M is such that:
1) the inclusion u : U � M is saturated w.r. to RU ;
2) it is the largest internal equivalence relation in Mon satisfying the
saturation property above the inclusion u.
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Actually the definition of a syntactic equivalence relation with its
characteristic universal property can be extended to any variety V,
see Almeida (Finite semigroups and Universal Algebra, 1994).

I Definition
Given any algebra A ∈ V and any non-empty subset L, call syntactic
relation associated with L the relation RL defined by mRLn when:
for any (a1, · · · ,an) ∈ An and any term τ(x0, x1, · · · , xn) of V, we get:
τ(m,a1, · · · ,an) ∈ L ⇐⇒ τ(n,a1, · · · ,an) ∈ L.

I Theorem
When L is a subalgebra of A, the relation RL is a congruence on A in
V is such that:
1) the inclusion l : L � A is saturated w.r. to RL;
2) it is the largest congruence in V with the saturation property w.r. to
the subset L.
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Semi-rings
As for monoids, the definition of the synctatic relation can be reduced:

Proposition
Let (A,+, .) be a semi-ring. The syntactic relation associated with a
subset W is the relation defined by: mRW n if and only if the following
conditions hold:
1) ∀x ∈ A, [x + m ∈W ⇐⇒ x + n ∈W ];
2) ∀(x , y) ∈ A× A, [x + my ∈W ⇐⇒ x + ny ∈W ];
3) ∀(x , y) ∈ A× A, [x + ym ∈W ⇐⇒ x + yn ∈W ];
4) ∀(x , y , z) ∈ A× A× A, [x + ymz ∈W ⇐⇒ x + ynz ∈W ].

I Proposition
A subsemiring W of A is normal if and only if for any v ∈W, the
following conditions hold:
1) ∀x ∈ A, [x + v ∈W ⇐⇒ x ∈W ];
2) ∀x ∈ A, vx ∈W and xv ∈W.



Semi-rings
As for monoids, the definition of the synctatic relation can be reduced:

Proposition
Let (A,+, .) be a semi-ring. The syntactic relation associated with a
subset W is the relation defined by: mRW n if and only if the following
conditions hold:
1) ∀x ∈ A, [x + m ∈W ⇐⇒ x + n ∈W ];
2) ∀(x , y) ∈ A× A, [x + my ∈W ⇐⇒ x + ny ∈W ];
3) ∀(x , y) ∈ A× A, [x + ym ∈W ⇐⇒ x + yn ∈W ];
4) ∀(x , y , z) ∈ A× A× A, [x + ymz ∈W ⇐⇒ x + ynz ∈W ].

I Proposition
A subsemiring W of A is normal if and only if for any v ∈W, the
following conditions hold:
1) ∀x ∈ A, [x + v ∈W ⇐⇒ x ∈W ];
2) ∀x ∈ A, vx ∈W and xv ∈W.



Skew braces

Braces are algebraic structures which were introduced by Rump
(2007) as producing set-theoretical solutions of the Yang-Baxter
equation in response to a general incitement of Drinfeld to investigate
this equation from a set-theoretical perspective.

I i.e. a pair (X , r) of a set X and an application r : X ×X → X ×X ,
such that:

(r × 1X ).(1X × r).(r × 1X ) = (1X × r).(r × 1X ).(1X × r)
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Later on, Guarnieri and Vendramin (2017) generalized this notion with
the structure of left skew brace which again generates solutions of
the Yang-Baxter equations.

I Definition A left skew brace is a set X endowed with two group
structures (X , ∗, ◦) subject to a unique axiom:
a ◦ (b ∗ c) = (a ◦ b) ∗ a−∗ ∗ (a ◦ c) (1)
where a−∗ denotes the inverse for the law ∗.

I The simplest examples are the following ones: starting with any
group (G, ∗), then (G, ∗, ∗) and (G, ∗, ∗op) are left skew braces.

I We denote by SkB the category of left skew braces which is
obviously a variety in the sense of Universal Algebra.
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group (G, ∗), then (G, ∗, ∗) and (G, ∗, ∗op) are left skew braces.

I We denote by SkB the category of left skew braces which is
obviously a variety in the sense of Universal Algebra.



Proposition (B+Facchini+Pompili, 2023)
SKB is a protomodular category, since it is a full subcategory of DiGp
(digroups).

I As any variety, SkB allows the definition of the syntactic
equivalence relation and the characterization of normal
monomorphisms, even though, in this case, the list of its axioms
defining it does not seem to be reductible to a finite one.

I However, we have a finite list to characterize normal
monomorphism:

Proposition
A subobject u : (U, ∗, ◦) � (X , ∗, ◦) is normal in the category SkB if
and only if the three following conditions hold:
(1) u : (U, ∗) � (X , ∗) is normal in Gp,
(2) u : (U, ◦) � (X , ◦) is normal in Gp,
(3) for all (x , y) ∈ X × X, x−∗ ∗ y ∈ U if and only if x−◦ ◦ y ∈ U.
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The idea here will be to refined the definition of the syntactic relation:

Definition
Given any algebra A in a variety V, any subalgebra L and any
congruence S on L, call generalized syntactic relation associated with
the pair (L,S) the relation RS

L on A defined by mRS
L n when:

for any (a1, · · · ,an) ∈ An and any term τ(x0, x1, · · · , xn) of V, we get:

[τ(m,a1, · · · ,an) ∈ L ⇐⇒ τ(n,a1, · · · ,an) ∈ L]

I and moreover: τ(m,a1, · · · ,an)Sτ(n,a1, · · · ,an).
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Proposition
If U is a subalgebra of A in a variety V and S a congruence on U,
the relation RS

U is a congruence on A in V such that:
1) the inclusion u : U � A is saturated w.r. to RS

U ;
2) it is the largest congruence T on A in V w.r. to which u is saturated
and such that u−1T ⊂ S.

I Whence the following

Definition
A category E is said to be Equ-saturating when, given any pair (u,S)
of a monomorphism u : U � X and an internal equivalence relation
S on U, the set of saturated monomorphisms above u with a domain
smaller than S has a supremum. We shall denote the codomain of
this supremum by ∀uS and call it the saturating equivalence relation
associated with S.

I and result:

Proposition
Any variety V is Equ-saturating.
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Drawing the property:
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where the horizontal monomorphism of equivalence relations is
saturated.
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Proposition
Let E be a Equ-saturating category and u : U � X any mono.
Then an equivalence R on U is the domain of a saturated subobject
above u if and only if R = u−1(∀uR). Then ∀uR is the largest
saturated equivalence relation on X above u with domain R.

I Corollary
Let E be a Equ-saturating category and u : U � X any mono.
If u is normal in E, the set of equivalence relations S on X w.r. to
which u is normal has a supremum.

Proof.
Apply the previous proposition to R = ∇U

I Theorem
Let E be a Equ-saturating category and u : R � S any
monomorphism in EquE above u : U � X. Then S = S ∩ (∀uR) is
the largest of the equivalence relations T on X such that u is
saturated w.r. to T , such that u−1(T ) ⊂ R and T ⊂ S.

.
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The Equ-saturating axiom has very good stability properties:

Proposition
Let E be a Equ-saturating category.
Then any slice category E/Y, any coslice category Y/E is
Equ-saturating as well.
Accordingly any fiber PtYE of split epimorphisms above Y and any
fiber RGhYE of reflexive graphs on the object Y is Equ-saturating.
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Recall that a (finitely complete category) E is protomodular when,
given any pair of commutative squares of vertical split epimorphisms:

•

��

// •

��

// •

��
•
OO

OO

// • //
OO

OO

•
OO

OO

the right hand side square is a pullback as soon as so are the left
hand side one and the whole rectangle.

I Any protomodular category is a Mal’tsev one; so there is a notion
of centralization of pairs (R,S) of equivalence relations
([R,S] = 0) on an object X .

I Recall that in a protomodular category E, any fibrant morphism
of equivalence relations f : S → R is cocartesian (B+Gran 2002,
B+Metere 2021).
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Proposition
Let E be a protomodular category, and (R,S) a pair of equivalence
relations on X. Then [R,S] = 0 if and only if S is the domain of a
saturated monomorphism above sR

0 .

I Proof.
Suppose [R,S] = 0. Then, any square in the here below left hand
side diagram being a pullback, the morphism sR

0 : S � W is fibrant.

W

pR
0
��

pR
1
��

pS
0

//

pS
1 //

S

dS
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oo

R
dR

0
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dR
1 //

OO

X

OO

sR
0

oo R
dR

0

//

dR
1 //

OO

X

OO

sR
0

oo

Conversely, when the morphism sR
0 : S � W is cocartesian, it

induces the morphisms dR
i : W → S which are fibrant as well, since E

is proto.
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Theorem
In any Equ-saturating protomodular category E, any equivalence
relation R has a centralizer. So, it is the case for any protomodular
variety V.

I Proof.
Let R be an equivalence relation on the object X , then consider the
equivalence relation ∀sR

0
∇X on R and the induced saturated

monomorphism above sR
0 :

∀sR
0
∇X

pR
0
��

pR
1
��

Σ

dΣ
0
��

dΣ
1
��

oooo

R

OO

X

OO

oosR
0

oo

According to the previous proposition, we get [R,Σ] = 0.
Now, if we have [R,S] = 0 for some S with some W as in the
previous proposition, the universal property of ∀sR

0
∇X implies the

inclusion W ⊂ ∀sR
0
∇X and thus S ⊂ Σ.
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In the pointed protomodular context, there is a direct translation of the
Equ-saturating property:

Proposition
Let E be a pointed protomodular category. It is Equ-saturating if and
only if, given any monomorphism u : U � X, any normal subobject
v : V � U determines a largest normal subobject w : W � X such
that W ⊂ V.

I

V
��

v ��

W
��
w��

oooo

U //
u
// X
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J. Gray (2014) introduces the notion of abstract normalizer of a mono
u in a pointed protomodular category, namely the largest subobject
NU of X in which u is normal:

NU
�� v
��

U
CC

ū
CC

//
u
// X

I The exact pointed protomodular context allows to compare with
precision the Equ-saturating axiom with the existence of abstract
normalizers. This comparison is of a complementary nature.
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Proposition
Let E be an exact Equ-saturating pointed protomodular category. Any
commutative square of vertical split epimorphisms with horizontal
regular epimorphisms (h, k) has a universal dotted decomposition
where the left hand side square is a pullback above a regular
epimorphism h̄, as on the following left hand side diagram:

I

X
f ��

k // //

k̄
// // X̄

f̄ ��
ǩ
// V
g
��

X ′

f ′ ��

// x //

x̄
// X̄

f̄ ��

//
x̌
// X
f ��

Y

s

OO

h
// //

h̄ // // Ȳ ȟ //
s̄

OO

W
t

OO

Y ′
′

OO

//
y

//

ȳ // Ȳ // y̌ //
s̄

OO

Y

s

OO

while the existence of normalizers is characterized by the
universal decomposition for monos between split epimorphims
as on the right hand side diagram (B 2024).
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ȳ // Ȳ // y̌ //
s̄

OO

Y

s

OO

while the existence of normalizers is characterized by the
universal decomposition for monos between split epimorphims
as on the right hand side diagram (B 2024).



In the additive context, the interest of the Equ-saturating property
vanishes since it becomes trivial.

Proposition
Any additive category E is (trivially) Equ-saturating.

I since any mono is normal, the answer is:

V
��

v ��

V
��
u.v��

oo=oo

U //
u
// X
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There are other examples of Equ-saturating categories.

Let CatE be the category of internal categories, GrdE the
subcategory of internal groupoids and ( )0 : CatE→ E the associated
fibration whose cartesian maps are the fully faithful internal functors.

We denote by CatXE and GrdXE the respective fibers. The respective
fibers above the singleton 1 are MonE and GpE. Similarly to GpE,
any fiber GrdXE is protomodular.

I Proposition
The fibers CatXE are Eq-saturating in the three following cases.
1) E = Set;
2) E is any Mal’tsev category;
3) E is a Equ-saturating Gumm category in the sense of
B+Gran,2004;
4) so in particular, when E is a congruence modular variety.
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Case 1: we mimick the varietal case:
Let γ : C � D be a bijective on objects inclusion (C0 = X = D0), and
S an internal equivalence relation on C in the fiber CatX , namely an
equivalence relation on parallel pairs of morphims. Define the
following generalized syntactic relation ∀CS on the parallel pairs
(f , f ′) : a ⇒ b of morphisms in D:
f (∀CS)f ′ when ∀(g, k) pair of maps in D with dom(g) = b and
cod(k) = a,

c k→ a ⇒ b
g→ d

we get:
[gfk ∈ C ⇐⇒ gf ′k ∈ C] and gfkSgf ′k

I then ∀CS is the saturating equivalence relation associated with S.
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Case 2: E Mal’tsev (any reflexive relation is an equivalence relation,
Carboni+Lambek+Peddichio, 1990).
Then CatXE = GrdXE is a protomodular Equ-saturating category.

I Case 3: E Equ-saturating and Gumm. Shifting Lemma:
given any triple (T ,S,R) of equivalence relations on an object X
such that R ∩ S ⊂ T , the following left hand side situation implies
the right hand side one:

x S //

T
--
R ��

y
R��

y
T

qqx ′
S
// y ′ y ′

I Then CatXE is Equ-saturating,

and GrdXE is a Equ-saturating protomodular category.
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