Projective crossed modules in semi-abelian categories

Maxime Culot

Université catholique de Louvain (Belgium)

September 2025

Dédié à l'occasion des "nonante" et des "quatre-vingt-dix" ans de Mme Andrée Ehresmann

Motivation

At the SIC in Lille (2024) and at CT (2024), I presented:

Theorem [CRVdL25]

Let $\mathcal C$ be a semi-abelian category with enough projectives that satisfy **Condition** (P). Let $\mathcal E$ be a semi-abelian category,

and let $F:\mathcal{C}\to\mathcal{E}$ be a protoadditive functor (i.e. it preserves split short exact sequences) that preserves binary coproducts and proper morphisms (i.e. the cokerel-kernel factorization).

Then the left-derived functors of F are defined as in the abelian context.

Motivation

At the SIC in Lille (2024) and at CT (2024), I presented:

Theorem [CRVdL25]

Let $\mathcal C$ be a semi-abelian category with enough projectives that satisfy Condition (P). Let $\mathcal E$ be a semi-abelian category,

and let $F: \mathcal{C} \to \mathcal{E}$ be a protoadditive functor (i.e. it preserves split short exact sequences) that preserves binary coproducts and proper morphisms (i.e. the cokerel-kernel factorization).

Then the left-derived functors of F are defined as in the abelian context.

Plan of today

- Recall some intuition for this theorem;
- Give an example: $\mathsf{XMod}(\mathcal{V})$ where \mathcal{V} is a semi-abelian variety satisfying (P).

Table of contents

- Non-additive dervied functor
- $oldsymbol{2}$ Crossed modules and (P)
 - Definitions
 - How to construct a particular projective crossed module?
 - Free crossed modules
 - Coming back to (P)
- Example of non-additive derived functor
- Mew open questions

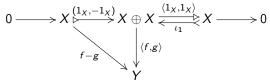
- Non-additive dervied functor
- $oxed{2}$ Crossed modules and (P)
- Example of non-additive derived functor
- 4 New open questions

Classical left derived functor

In the usual abelian context, if we consider $F:\mathcal{C}\to\mathcal{E}$ an additive functor between two abelian categories with \mathcal{C} has enough projectives, then for any $n\in\mathbb{Z}$, we can define the n-th left derived functor of F by setting

$$L_n(F)(X) := H_n(F(C_X))$$

for all object $X \in \mathcal{C}$ and where \mathcal{C}_X is a projective resolution of the object X. In such a context, we can encode the difference of two parallel morphisms via



This is important to define the notion of **homotopy** between chain morphisms. Indeed, we can always see the usual equations with only differences of parallel morphisms.

First step to non-additive version

In a pointed category $\ensuremath{\mathcal{C}}$ with kernels and binary coproducts, the previous diagram can be reformulated as

$$0 \longrightarrow D(X) \triangleright \xrightarrow{\delta_X} X + X \xrightarrow{\langle 1_X, 1_X \rangle} X$$

$$\downarrow^{\langle f, g \rangle} \qquad \downarrow^{\langle f, g \rangle} \qquad \qquad \downarrow^{\langle f, g \rangle}$$

By setting, if we let $f - g := \langle f, g \rangle \delta_X \colon D(X) \to Y$.

Observation

If X is a projective object, then X+X is as well. We also want that D(X) (the kernel part of this split short exact sequence) to be projective!

Second step - (P)

Definition [CRVdL25]

We say that a pointed category satisfies **Condition** (P) when the class of projective objects is closed under protosplit subobjects: given $K \leq X$ a kernel of a split epimorphism with domain X, if X is projective, then K is projective.

$$K \rightarrowtail X \xrightarrow{f} Y$$

Some examples

- Any abelian category since $X \cong K \oplus Y$;
- Any Schreier variety (e.g. Gp, Ab, Mod_R if R is P.I.D., Lie_K if K a field);
- Not abelian and not Schreier: Lie $_{\mathbb{K}}$ where \mathbb{K} is a commutative ring, XMod(Gp), XMod(\mathcal{V}) for a semi-abelian variety of algebras \mathcal{V} satisfying itself Condition (P) [CRVdL25, Cul25]

Why (P) is important?

A priori, the condition (P) seems too strong ... However, we can say:

- a homological category with binary coproducts satisfies (P) if and only if the "Half Horseshoe Lemma" holds;
- ullet as a consequence of the previous point: with (P), we can expect a long exact sequence in homology relating the derived functors of the objects in a given short exact sequence;
- with the assumption of the previous theorem (i.e. including (P)). Let $X \in \text{dom}(F)$, C(X) a chain resolution and $\mathbb{S}(X)$ a simplicial resolution

$$H_n(F(C(X))) = H_n(F(N(S(X)))) = H_n(N(F(S(X))))$$

where N is the Moore normalization functor.

Moreover, suppose we deal with varieties of algebras. In that case, we have an isomorphism with $H_{n+1}(-,F)_{\mathbb{G}}$ the (n+1)st simplicially derived functor of F in the sense of Barr–Beck [BB69, EVdL04].

- Non-additive dervied functor
- Crossed modules and (P)
 - Definitions
 - How to construct a particular projective crossed module?
 - Free crossed modules
 - Coming back to (P)
- 3 Example of non-additive derived functor
- Mew open questions

Crossed modules over groups - XMod

J.H.C. Whitehead introduced the notion of crossed module (1949):

Definition

A **crossed module** (X, A, ∂) consists of a homomorphism of the group $\partial \colon X \to A$ (the **boundary map**), together with a group action of A on X (denoted $^a x$) satisfying

- $\partial(^ax) = a\partial(x)a^{-1}$ (precrossed module condition);
- $\partial(x)y = xyx^{-1}$ (Peiffer condition)

for all $y, x \in X$ and $a \in A$.

Definition

A crossed module morphism $f = (f_X, f_A) \colon (X, A, \partial) \to (X', A', \partial')$ is a pair of group homomorphism $f_X \colon X \to X'$ and $f_A \colon A \to A'$, such that

- $\partial' f_X = f_A \partial$ ("compatibility condition w.r.t. the boundary maps");
- for all $a \in A$ and $x \in X$: $f_X(ax) = f_A(a) f_X(x)$ ("compatibility condition w.r.t. the actions").

Classical internal actions and equivalences of categories

Let $A, X \in \mathcal{C}$ (a semi-abelian category), an internal action of A on X is defined as an algebra over a monad $A \triangleright X := \operatorname{Ker} (\langle 1_A, 0 \rangle A + X \to A)$.

Motivation for the next definitions

$$\begin{split} \mathsf{SSES}(\mathcal{C}) &\longleftarrow \mathsf{RG}(\mathcal{C}) &\longleftarrow \mathsf{Grpd}(\mathcal{C}) \\ & \downarrow^\cong & \downarrow^\cong & \downarrow^\cong \\ \mathsf{Act}(\mathcal{C}) &\longleftarrow \mathsf{PXMod}(\mathcal{C}) &\longleftarrow \mathsf{XMod}(\mathcal{C}) \end{split}$$

Classical internal actions and equivalences of categories

Let $A, X \in \mathcal{C}$ (a semi-abelian category), an internal action of A on X is defined as an algebra over a monad $A \triangleright X := \operatorname{Ker} (\langle 1_A, 0 \rangle A + X \to A)$.

Motivation for the next definitions

$$SSES(\mathcal{C}) \longleftrightarrow RG(\mathcal{C}) \longleftrightarrow Grpd(\mathcal{C})$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

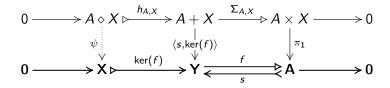
$$Act(\mathcal{C}) \longleftrightarrow PXMod(\mathcal{C}) \longleftrightarrow XMod(\mathcal{C})$$

$$0 \longrightarrow X \bowtie^{k} E \xrightarrow[c]{d} A \longrightarrow 0$$

- $(X, E, A, k, d, \iota) \in SSES(\mathcal{C})$ when $k = \ker(d)$ and $d\iota = 1_A$;
- $(X, E, A, k, d, c, \iota) \in RG(\mathcal{C})$ when $(X, E, A, k, d, \iota) \in SSES(\mathcal{C})$ and $c\iota = 1_A$;
- $(X, E, A, k, d, c, \iota) \in \mathsf{Grpd}(\mathcal{C})$ when the reflexive graph associated admits an internal groupoid structure.

Internal action core

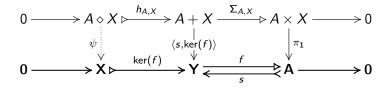
In this talk, I will not use the "classical internal action" (i.e. $A \triangleright X$). Today, we can see an action as the **(bold)** bottom split short exact sequence



where $A \diamond X$ is called the binary cosmash product of A and X.

Internal action core

In this talk, I will not use the "classical internal action" (i.e. $A \triangleright X$). Today, we can see an action as the (**bold**) bottom split short exact sequence



where $A\diamond X$ is called the binary cosmash product of A and X. The original definition of internal crossed modules (G. Janelidze [Jan03]) is expressed in terms of an algebra over the monad $A\flat-$. Today, I make use of " ψ " (which codifies the above split short exact sequence via a semi-direct product construction), which leads to an alternative characterization (M. Hartl and T. Van der Linden [HVdL13]). This approach leads to shorter proofs.

Definition of crossed modules

Definition

A internal crossed module is given by

 $(X \in \mathcal{C}, A \in \mathcal{C}, \partial \colon X \to A, \psi \colon A \diamond X \to X)$ where ψ is an action core and where ∂ is called the **boundary morphism**, satisfying three conditions:

where $\overline{\chi_A} := \langle 1_A, 1_A \rangle h_{A,A}$ is the conjugation action core, $\psi_{1,2}^{A,X} := \psi S_{1,2}^{A,X}$ and $\psi_{2,1}^{A,X} := \psi S_{2,1}^{A,X}$.

The diagrams are called, respectively, the precrossed module, the Peiffer condition and the ternary commutator condition.

Projective crossed modules

Proposition [CCRG02]

In XMod(Gp), if P is a projective group and Q is a projective P-group then the inclusion morphism $Q \to Q \rtimes P$ is a projective crossed module.

Projective crossed modules

Proposition [CCRG02]

In XMod(Gp), if P is a projective group and Q is a projective P-group then the inclusion morphism $Q \to Q \rtimes P$ is a projective crossed module.

Theorem [Cul25]

If P is a projective object in $\mathcal C$ and if the split extension

$$0 \longrightarrow Q \triangleright \xrightarrow{\partial'} Z \xrightarrow{p} P \longrightarrow 0$$

is a projective object in the category of split extensions of P, then the kernel ∂' , viewed as an internal crossed module, is a projective object in $\mathsf{XMod}(\mathcal{C})$.

Any kernel can be endowed with a (unique) crossed module structure: the action is the **conjugation action core** (denoted $\overline{\chi}$), and the boundary map is the **inclusion** ∂' .

Sketch of the proof

What are the morphisms in XMod(C)?

An internal crossed module morphism

 (f_X, f_A) : $(X, A, \psi, \partial) \to (X', A', \psi', \partial')$ is a pair of morphisms $f_X \colon X \to X'$, $f_A \colon A \to A'$ in $\mathcal C$ compatible with the action cores and with the boundary morphisms.

Consider a regular epimorphism (f_X, f_A) : $(X, A, \phi, \partial) \rightarrow (Q, Z, \overline{\chi}, \partial')$ in XMod(C):

$$X \xrightarrow{\partial} A \leqslant g$$

$$f_{X} \downarrow f_{X} \downarrow f_{A} \downarrow f_{A}$$

- Lifting of s along f_A (P is projective);
- ② A section of f_X (the bottom is projective object in $SSES_P(C)$);
- **3** A section of f_A (the construction of $Z \cong Q \rtimes_{\psi} P$);
- The pair of sections is a morphism in XMod(C) ("⊗" characterization).

"Size" of the proof

P. Carrasco et al. | Journal of Pure and Applied Algebra 168 (2002) 147-176

153

In the following proposition we give a family of projective crossed modules that contains members not isomorphic to any value of \mathscr{F} , contrary to what happens in the category of groups where projective and free groups concide.

Proposition 5. If P is a free group and Q is a free P-group, then the inclusion map into the semidirect product $Q \stackrel{\text{in}}{\sim} Q \bowtie P$, defines a projective crossed module.

Proof. It is enough to see that any regular epimorphism over (Q,Q > P, lm), say $(f,f_p) : \Gamma(G,Q) \rightarrow (Q,Q > P, lm)$, is a returnion. Since P is free, there exists a homomorphism $h_1 : P \rightarrow G$ with $f_G h_1(x) = (1,x) \in Q > P$, for all $x \in P$. Then, T is a P-group via h_1 and, since Q is a free p-group, there exists a P-group bomomorphism $h_1 : Q \rightarrow T$ so that $f_1 f_1 = l_0 Q$. We then have a homomorphism $h_1 : Q \rightarrow P \rightarrow G$ by $h_G(y,x) = (h_1(y))h_1(x)$, and a crossed module homomorphism $(h_T,h_G) : (Q,Q > P, lm) \rightarrow (T,G,G)$ satisfying $(f_T,G,h_T,h_G) = (l_0,Q,e_{P,R}) \square$

Figure: Proof in XMod

"Size" of the proof

P. Carrasco et al. | Journal of Pure and Applied Algebra 168 (2002) 147-176

153

In the following proposition we give a family of projective crossed modules that contains members not isomorphic to any value of \mathcal{F} , contrary to what happens in the category of groups where projective and free groups concide.

Proposition 5. If P is a free group and Q is a free P-group, then the inclusion map into the semidirect product $Q \stackrel{\text{in}}{\hookrightarrow} Q \bowtie P$, defines a projective crossed module.

Proof. It is enough to see that any regular epimorphism over (Q,Q > P, lm), say $(f,f_p) : \Gamma(G,Q) \rightarrow (Q,Q > P, lm)$, is a returnion. Since P is free, there exists a homomorphism $h_1 : P \rightarrow G$ with $f_G h_1(x) = (1,x) \in Q > P$, for all $x \in P$. Then, T is a P-group via h_1 and, since Q is a free p-group, there exists a P-group bomomorphism $h_1 : Q \rightarrow T$ so that $f_1 f_1 = l_0 Q$. We then have a homomorphism $h_1 : Q \rightarrow P \rightarrow G$ by $h_G(y,x) = (h_1(y))h_1(x)$, and a crossed module homomorphism $(h_T,h_G) : (Q,Q > P, lm) \rightarrow (T,G,G)$ satisfying $(f_T,G,h_T,h_G) = (l_0,Q,e_{P,R}) \square$

Figure: Proof in XMod

Figure: Proof in XMod(C) - 5 pages

"Size" of the proof

P. Carrasco et al. | Journal of Pure and Applied Algebra 168 (2002) 147-176

In the following proposition we give a family of projective crossed modules that contains members not isomorphic to any value of \mathcal{F} , contrary to what happens in the category of grouns where projective and free grouns concide.

Proposition 5. If P is a free group and Q is a free P-group, then the inclusion map into the semidirect product $O \stackrel{\text{in}}{\longrightarrow} O > P$, defines a projective crossed module.

Proof. It is enough to see that any regular epimorphism over (Q, Q > P, lm), set $(P, f_{i}) > (T, G_{i}) > (P, Q > P, lm)$, set $(P, f_{i}) > (P, G_{i}) >$

Figure: Proof in XMod

Figure: Proof in XMod(C) - 5 pages

A comment

In Gp, the proof is shorter since it satisfies *Smith is Huq* (i.e. a commutator condition). In a category satisfying (SH), some "internal structures" behave better.

Moreover, with (SH), we can "drop" the *ternary commutator condition* in the previous definition.

Free crossed modules in variety ${\cal V}$

Consider a semi-abelian variety of algebras V with F_r : Set $\to V$ the associated free functor. All free internal crossed modules are of the form

$$(F_r(S)\flat F_r(S),F_r(S)+F_r(S),\overline{\chi},\kappa_{F_r(S),F_r(S)})$$

where $\kappa_{F_r(S),F_r(S)} \colon F_r(S) \triangleright F_r(S) \to F_r(S) + F_r(S)$, for some $S \in \text{Set}$.

Free crossed modules in variety ${\cal V}$

Consider a semi-abelian variety of algebras $\mathcal V$ with $F_r\colon \mathsf{Set} \to \mathcal V$ the associated free functor. All free internal crossed modules are of the form

$$(F_r(S)\flat F_r(S),F_r(S)+F_r(S),\overline{\chi},\kappa_{F_r(S),F_r(S)})$$

where $\kappa_{F_r(S),F_r(S)} \colon F_r(S) \triangleright F_r(S) \to F_r(S) + F_r(S)$, for some $S \in \text{Set}$.

Corollary [Cul25]

For any non-trivial semi-abelian variety V, the variety XMod(V) is not a Schreier variety (free objects are not stable under subobjects).

Sketch of the proof

Consider two different projectives objects P and X in V, then

$$0 \longrightarrow P \flat X \triangleright \stackrel{\kappa_{P,X}}{\longrightarrow} P + X \stackrel{\langle 1_{P}, 0 \rangle}{\longleftarrow} P \longrightarrow 0$$

the kernel part is projective in $\mathsf{XMod}(\mathcal{V})$ but not free since $P \neq X$.

 $\mathsf{XMod}(\mathcal{V})$ satisfied (P) as soon as \mathcal{V} does

$\mathsf{XMod}(\mathcal{V})$ satisfied (P) as soon as \mathcal{V} does

Proposition [CRVdL25]

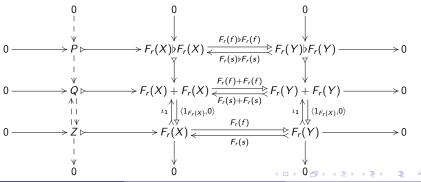
Let $\mathcal V$ be a pointed Mal'tsev variety of algebras, with forgetful functor $U\colon \mathcal V\to \mathsf{Set}$ and its left adjoint $G\colon \mathsf{Set}\to \mathcal V$. The variety $\mathcal V$ satisfies (P) if and only if the kernel of G(f) (for $f\colon X\to Y$ a split epimorphism of sets) is a projective object in $\mathcal V$.

$\mathsf{XMod}(\mathcal{V})$ satisfied (P) as soon as \mathcal{V} does

Proposition [CRVdL25]

Let $\mathcal V$ be a pointed Mal'tsev variety of algebras, with forgetful functor $\mathcal U\colon \mathcal V\to \mathsf{Set}$ and its left adjoint $G\colon \mathsf{Set}\to \mathcal V$. The variety $\mathcal V$ satisfies (P) if and only if the kernel of G(f) (for $f\colon X\to Y$ a split epimorphism of sets) is a projective object in $\mathcal V$.

In our situation, let $f: X \to Y$ a split epimorphism of sets with its section s



Sketch of the proof

- the middle vertical sequence and the right vertical sequence are, respectively, the free object on the set X and Y, and there are (split) short exact sequences by construction;
- the morphisms in the left-hand vertical sequence are restrictions to the kernels;
- the free objects $F_r(X)$ and $F_r(Y)$ are projective in \mathcal{V} , and therefore $F_r(X) + F_r(X)$ and $F_r(Y) + F_r(Y)$ are projective as well;
- ullet since ${\mathcal V}$ satisfies (P), we have respectively that
 - ▶ the kernels $F_r(X) \flat F_r(X)$ and $F_r(Y) \flat F_r(Y)$ of the solid vertical split short exact sequences are also projective;
 - ▶ the object $Z := \ker(F_r(f))$ is projective in V;
 - ▶ the object $Q := \ker(F_r(f) + F_r(f))$ is projective in V;
 - ▶ the object $P := \ker(F_r(f) \triangleright F_r(f))$ is projective in V;
- the left-hand vertical sequence with the dashed arrows is also a (split) short exact sequence.

We can prove that the internal crossed module $(P, Q, \overline{\chi}, k)$ is projective as a retract of a projective internal crossed module.

- Non-additive dervied functor
- 2 Crossed modules and (P)
- 3 Example of non-additive derived functor
- 4 New open questions

For the moment, what do we know:

- ullet we consider a semi-abelian variety ${\cal V}$;
- then $\mathsf{XMod}(\mathcal{V})$ is a semi-abelian category and it is a variety of algebras (and as a result has enough projectives);
- if ${\mathcal V}$ satisfies (P) then $\mathsf{XMod}({\mathcal V})$ as well.

For the moment, what do we know:

- we consider a semi-abelian variety V;
- then $\mathsf{XMod}(\mathcal{V})$ is a semi-abelian category and it is a variety of algebras (and as a result has enough projectives);
- if V satisfies (P) then $\mathsf{XMod}(V)$ as well.

Considering now the functor π_0 : XMod $(V) \to V$ defines as

$$\pi_0(X, A, \partial, \psi) := \mathsf{Coker}(\partial).$$

For the moment, what do we know:

- ullet we consider a semi-abelian variety ${\cal V}$;
- then $\mathsf{XMod}(\mathcal{V})$ is a semi-abelian category and it is a variety of algebras (and as a result has enough projectives);
- if $\mathcal V$ satisfies (P) then $\mathsf{XMod}(\mathcal V)$ as well.

Considering now the functor $\pi_0 \colon \mathsf{XMod}(\mathcal{V}) \to \mathcal{V}$ defines as

$$\pi_0(X, A, \partial, \psi) := \mathsf{Coker}(\partial).$$

Assumptions on π_0

protoadditive functor

For the moment, what do we know:

- ullet we consider a semi-abelian variety ${\cal V}$;
- then $\mathsf{XMod}(\mathcal{V})$ is a semi-abelian category and it is a variety of algebras (and as a result has enough projectives);
- if V satisfies (P) then $\mathsf{XMod}(V)$ as well.

Considering now the functor $\pi_0 \colon \mathsf{XMod}(\mathcal{V}) \to \mathcal{V}$ defines as

$$\pi_0(X, A, \partial, \psi) := \mathsf{Coker}(\partial).$$

Assumptions on π_0

- ullet protoadditive functor: done in [EG10] since ${\cal V}$ is semi-abelian;
- preserves binary coproducts:

For the moment, what do we know:

- ullet we consider a semi-abelian variety ${\cal V}$;
- then $\mathsf{XMod}(\mathcal{V})$ is a semi-abelian category and it is a variety of algebras (and as a result has enough projectives);
- if $\mathcal V$ satisfies (P) then $\mathsf{XMod}(\mathcal V)$ as well.

Considering now the functor $\pi_0 \colon \mathsf{XMod}(\mathcal{V}) \to \mathcal{V}$ defines as

$$\pi_0(X, A, \partial, \psi) := \mathsf{Coker}(\partial).$$

Assumptions on π_0

- ullet protoadditive functor: done in [EG10] since ${\cal V}$ is semi-abelian;
- preserves binary coproducts: it is a left-adjoint functor;
- preserves proper morphisms:

For the moment, what do we know:

- ullet we consider a semi-abelian variety ${\cal V}$;
- then $\mathsf{XMod}(\mathcal{V})$ is a semi-abelian category and it is a variety of algebras (and as a result has enough projectives);
- if $\mathcal V$ satisfies (P) then $\mathsf{XMod}(\mathcal V)$ as well.

Considering now the functor $\pi_0 \colon \mathsf{XMod}(\mathcal{V}) \to \mathcal{V}$ defines as

$$\pi_0(X, A, \partial, \psi) := \mathsf{Coker}(\partial).$$

Assumptions on π_0

- ullet protoadditive functor: done in [EG10] since ${\cal V}$ is semi-abelian;
- preserves binary coproducts: it is a left-adjoint functor;
- preserves proper morphisms: it is a reflector from a variety to a subvariety.

- Non-additive dervied functor
- $oxed{2}$ Crossed modules and (P)
- Example of non-additive derived functor
- 4 New open questions

• Today, we see the implication: $\mathcal V$ satisfies $(P)\Longrightarrow \mathsf{XMod}(\mathcal V)$ as well. Actually, the converse also holds.

- Today, we see the implication: $\mathcal V$ satisfies $(P)\Longrightarrow \mathsf{XMod}(\mathcal V)$ as well. Actually, the converse also holds. This brings me to this question: is the condition (P) stable under Birkhoff's subvarieties? Do we need a protoadditive reflector?
- Could we do the same for $\mathsf{PXMod}(\mathcal{V})$ with the same assumptions on \mathcal{V} ?

- Today, we see the implication: $\mathcal V$ satisfies $(P)\Longrightarrow \mathsf{XMod}(\mathcal V)$ as well. Actually, the converse also holds. This brings me to this question: is the condition (P) stable under Birkhoff's subvarieties? Do we need a protoadditive reflector?
- Could we do the same for PXMod(V) with the same assumptions on V?

 My understanding of today:

- Today, we see the implication: $\mathcal V$ satisfies $(P)\Longrightarrow \mathsf{XMod}(\mathcal V)$ as well. Actually, the converse also holds. This brings me to this question: is the condition (P) stable under Birkhoff's subvarieties? Do we need a protoadditive reflector?
- Could we do the same for $\mathsf{PXMod}(\mathcal{V})$ with the same assumptions on \mathcal{V} ?

My understanding of today:

- with the same definition, we have the functor π_0 : PXMod(\mathcal{V}) $\to \mathcal{V}$ and it is still protoadditive;
- \blacktriangleright π_0 is also a left adjoint (so preserves binary coproducts) and also it still preserves proper morphisms;

- Today, we see the implication: $\mathcal V$ satisfies $(P)\Longrightarrow \mathsf{XMod}(\mathcal V)$ as well. Actually, the converse also holds. This brings me to this question: is the condition (P) stable under Birkhoff's subvarieties? Do we need a protoadditive reflector?
- Could we do the same for $\mathsf{PXMod}(\mathcal{V})$ with the same assumptions on \mathcal{V} ?

My understanding of today:

- with the same definition, we have the functor $\pi_0 \colon \mathsf{PXMod}(\mathcal{V}) \to \mathcal{V}$ and it is still protoadditive;
- \blacktriangleright π_0 is also a left adjoint (so preserves binary coproducts) and also it still preserves proper morphisms;
- the construction of the free internal crossed module is actually the construction of the free internal (pre)crossed module;

- Today, we see the implication: \mathcal{V} satisfies $(P) \Longrightarrow \mathsf{XMod}(\mathcal{V})$ as well. Actually, the converse also holds. This brings me to this question: is the condition (P) stable under Birkhoff's subvarieties? Do we need a protoadditive reflector?
- Could we do the same for $PXMod(\mathcal{V})$ with the same assumptions on ν ?

My understanding of today:

- with the same definition, we have the functor π_0 : PXMod(\mathcal{V}) $\to \mathcal{V}$ and it is still protoadditive;
- \triangleright π_0 is also a left adjoint (so preserves binary coproducts) and also it still preserves proper morphisms;
- the construction of the free internal crossed module is actually the construction of the free internal (pre)crossed module;
- ▶ **PROBLEM**: the proof for the particular projective internal crossed module is impossible in $PXMod(\mathcal{V})$. Why? In the proof, we need the Peiffer condition to prove that the pair (g_X, g_A) is compatible with the actions.

Thank you!

Questions? Or comments?

References

- [BB69] M. Barr and J. Beck. Homology and standard constructions. volume 80 of *Lecture Notes in Math.* Springer, 1969.
- [CCRG02] P. Carrasco, A. M. Cegarra, and A. R.-Grandjeán. (Co)Homology of crossed modules. *J. Pure Appl. Algebra*, 168(2-3), 2002.
- [CRVdL25] M. Culot, F. Renaud, and T. Van der Linden. Non-additive derived functors via chain resolutions. Glasgow Math. J., 67(3), 2025.
 - [Cul25] M. Culot. Projective crossed modules in semi-abelian categories. Appl. Categ. Structures, 2025. to appear.
 - [EG10] T. Everaert and M. Gran. Homology of *n*-fold groupoids. *Theory Appl. Categ.*, 23(2), 2010.
 - [EVdL04] T. Everaert and T. Van der Linden. Baer invariants in semi-abelian categories II: Homology. Theory Appl. Categ., 12(4), 2004.
 - [HVdL13] M. Hartl and T. Van der Linden. The ternary commutator obstruction for internal crossed modules. Adv. Math., 232(1), 2013.
 - [Jan03] G. Janelidze. Internal crossed modules. *Georgian Math. J.*, 10(1), 2003.