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Motivation

At the SIC in Lille (2024) and at CT (2024), I presented:

Theorem [CRVdL25]
Let C be a semi-abelian category with enough projectives that satisfy
Condition (P). Let E be a semi-abelian category,
and let F : C → E be a protoadditive functor (i.e. it preserves split short
exact sequences) that preserves binary coproducts and proper morphisms
(i.e. the cokerel-kernel factorization).
Then the left-derived functors of F are defined as in the abelian context.

Plan of today
Recall some intuition for this theorem;
Give an example: XMod(V) where V is a semi-abelian variety
satisfying (P).
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Classical left derived functor
In the usual abelian context, if we consider F : C → E an additive functor
between two abelian categories with C has enough projectives, then for any
n ∈ Z, we can define the n-th left derived functor of F by setting

Ln(F )(X ) := Hn(F (CX ))

for all object X ∈ C and where CX is a projective resolution of the object X .
In such a context, we can encode the difference of two parallel morphisms
via

0 ,2 X � ,2(1X ,−1X ),2

f−g
�'

X ⊕ X
⟨1X ,1X ⟩� ,2

⟨f ,g⟩

��

Xlr
ι1

lr ,2 0

Y

This is important to define the notion of homotopy between chain
morphisms. Indeed, we can always see the usual equations with only
differences of parallel morphisms.
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First step to non-additive version

In a pointed category C with kernels and binary coproducts, the previous
diagram can be reformulated as

0 ,2 D(X ) � ,2
δX ,2

f−g
�(

X + X
⟨1X ,1X ⟩ ,2,2

⟨f ,g⟩

��

Xlr
ι1

lr

Y

By setting, if we let f − g := ⟨f , g⟩δX : D(X ) → Y .

Observation
If X is a projective object, then X + X is as well. We also want that D(X )
(the kernel part of this split short exact sequence) to be projective!
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Second step - (P)
Definition [CRVdL25]
We say that a pointed category satisfies Condition (P) when the class of
projective objects is closed under protosplit subobjects: given K ≤ X a
kernel of a split epimorphism with domain X , if X is projective, then K is
projective.

K � ,2 k ,2 X
f ,2,2 Ylr
s

lr

Some examples
Any abelian category since X ∼= K ⊕ Y ;
Any Schreier variety (e.g. Gp, Ab, ModR if R is P.I.D.,
LieK if K a field);
Not abelian and not Schreier: LieK where K is a commutative ring,
XMod(Gp), XMod(V) for a semi-abelian variety of algebras V
satisfying itself Condition (P) [CRVdL25, Cul25]
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Why (P) is important?

A priori, the condition (P) seems too strong ... However, we can say:
a homological category with binary coproducts satisfies (P) if and only
if the “Half Horseshoe Lemma” holds;
as a consequence of the previous point: with (P), we can expect a
long exact sequence in homology relating the derived functors of the
objects in a given short exact sequence;
with the assumption of the previous theorem (i.e. including (P)). Let
X ∈ dom(F ), C (X ) a chain resolution and S(X ) a simplicial resolution

Hn(F (C (X ))) = Hn(F (N(S(X )))) = Hn(N(F (S(X ))))

where N is the Moore normalization functor.
Moreover, suppose we deal with varieties of algebras. In that case, we
have an isomorphism with Hn+1(−,F )G the (n + 1)st simplicially
derived functor of F in the sense of Barr–Beck [BB69, EVdL04].
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Crossed modules over groups - XMod
J.H.C. Whitehead introduced the notion of crossed module (1949):

Definition
A crossed module (X ,A, ∂) consists of a homomorphism of the group
∂ : X → A (the boundary map), together with a group action of A on X
(denoted ax) satisfying

∂(ax) = a∂(x)a−1 (precrossed module condition);
∂(x)y = xyx−1 (Peiffer condition)

for all y , x ∈ X and a ∈ A.

Definition
A crossed module morphism f = (fX , fA) : (X ,A, ∂) → (X ′,A′, ∂′) is a
pair of group homomorphism fX : X → X ′ and fA : A → A′, such that

∂′fX = fA∂ ("compatibility condition w.r.t. the boundary maps");
for all a ∈ A and x ∈ X : fX (

ax) =fA(a) fX (x) ("compatibility condition
w.r.t. the actions").
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Classical internal actions and equivalences of categories
Let A,X ∈ C (a semi-abelian category), an internal action of A on X is
defined as an algebra over a monad A♭X := Ker (⟨1A, 0⟩A+ X → A).

Motivation for the next definitions

SSES(C)
∼=��

RG(C)? _lr
∼=��

Grpd(C)? _lr
∼=��

Act(C) PXMod(C)? _lr XMod(C)? _lr

0 ,2 X � ,2 k ,2 E
d � ,2

c
� ,2 A ,2lrιlr 0

(X ,E ,A, k , d , ι) ∈ SSES(C) when k = ker(d) and dι = 1A;
(X ,E ,A, k , d , c , ι) ∈ RG(C) when (X ,E ,A, k , d , ι) ∈ SSES(C) and
cι = 1A;
(X ,E ,A, k , d , c , ι) ∈ Grpd(C) when the reflexive graph associated
admits an internal groupoid structure.
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Internal action core

In this talk, I will not use the “classical internal action” (i.e. A♭X ). Today,
we can see an action as the (bold) bottom split short exact sequence

0 ,2 A ⋄ X
ψ

��

� ,2
hA,X ,2 A+ X

⟨s,ker(f )⟩
��

ΣA,X � ,2 A× X ,2

π1
��

0

0 ,2,2,2 X � ,2 ,2� ,2 ,2� ,2 ker(f ) ,2 Y
f � ,2� ,2� ,2 A ,2,2,2lrlr lrlr lr
s

lr 0

where A ⋄ X is called the binary cosmash product of A and X .

The original definition of internal crossed modules (G. Janelidze [Jan03])
is expressed in terms of an algebra over the monad A♭−.
Today, I make use of “ψ” (which codifies the above split short exact
sequence via a semi-direct product construction), which leads to an
alternative characterization (M. Hartl and T. Van der Linden [HVdL13]).
This approach leads to shorter proofs.
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Definition of crossed modules

Definition
A internal crossed module is given by
(X ∈ C,A ∈ C, ∂ : X → A, ψ : A ⋄ X → X ) where ψ is an action core
and where ∂ is called the boundary morphism, satisfying three conditions:

A ⋄ X 1A⋄∂ ,2

ψ
��

A ⋄ A
χA

��

X ⋄ X ∂⋄1X ,2

χX

��

A ⋄ X
ψ
��

A ⋄ X ⋄ X
ψA,X

1,2 ,2

1A⋄∂⋄1X
��

X

1X
��

X
∂

,2 A X
1X

,2 X A ⋄ A ⋄ X
ψA,X

2,1

,2 X

where χA := ⟨1A, 1A⟩hA,A is the conjugation action core, ψA,X
1,2 := ψSA,X

1,2

and ψA,X
2,1 := ψSA,X

2,1 .
The diagrams are called, respectively, the precrossed module, the Peiffer
condition and the ternary commutator condition.
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Projective crossed modules
Proposition [CCRG02]
In XMod(Gp), if P is a projective group and Q is a projective P-group then
the inclusion morphism Q → Q ⋊ P is a projective crossed module.

Theorem [Cul25]
If P is a projective object in C and if the split extension

0 ,2 Q � ,2 ∂
′
,2 Z

p � ,2 P ,2lr
s

lr 0

is a projective object in the category of split extensions of P ,
then the kernel ∂′, viewed as an internal crossed module,
is a projective object in XMod(C).

Any kernel can be endowed with a (unique) crossed module structure: the
action is the conjugation action core (denoted χ), and the boundary
map is the inclusion ∂′.

M. Culot (UCLouvain) Projective crossed modules September 2025 14 / 25



Projective crossed modules
Proposition [CCRG02]
In XMod(Gp), if P is a projective group and Q is a projective P-group then
the inclusion morphism Q → Q ⋊ P is a projective crossed module.

Theorem [Cul25]
If P is a projective object in C and if the split extension

0 ,2 Q � ,2 ∂
′
,2 Z

p � ,2 P ,2lr
s

lr 0

is a projective object in the category of split extensions of P ,
then the kernel ∂′, viewed as an internal crossed module,
is a projective object in XMod(C).

Any kernel can be endowed with a (unique) crossed module structure: the
action is the conjugation action core (denoted χ), and the boundary
map is the inclusion ∂′.

M. Culot (UCLouvain) Projective crossed modules September 2025 14 / 25



Sketch of the proof
What are the morphisms in XMod(C)?
An internal crossed module morphism
(fX , fA) : (X ,A, ψ, ∂) → (X ′,A′, ψ′, ∂′) is a pair of morphisms
fX : X → X ′, fA : A → A′ in C compatible with the action cores and with
the boundary morphisms.

Consider a regular epimorphism (fX , fA) : (X ,A, ϕ, ∂) → (Q,Z , χ, ∂′) in
XMod(C):

X
∂ ,2

fX
����

A

fA
����

Q � ,2
∂′

,2

gX

U_

Z
p � ,2

gA

?I

Plr
s

lr

g
jq

1 Lifting of s along fA (P is projective);
2 A section of fX (the bottom is projective object in SSESP(C));
3 A section of fA (the construction of Z ∼= Q ⋊ψ P);
4 The pair of sections is a morphism in XMod(C) (“⋄” characterization).
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“Size” of the proof

Figure: Proof in XMod

Figure: Proof in XMod(C) - 5 pages

A comment
In Gp, the proof is shorter since it satisfies Smith is Huq (i.e. a commutator
condition). In a category satisfying (SH), some “internal structures” behave
better.
Moreover, with (SH), we can “drop” the ternary commutator condition in
the previous definition.
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Free crossed modules in variety V
Consider a semi-abelian variety of algebras V with Fr : Set → V the
associated free functor. All free internal crossed modules are of the form

(Fr (S)♭Fr (S),Fr (S) + Fr (S), χ, κFr (S),Fr (S))

where κFr (S),Fr (S) : Fr (S)♭Fr (S) → Fr (S) + Fr (S), for some S ∈ Set.

Corollary [Cul25]
For any non-trivial semi-abelian variety V, the variety XMod(V) is not a
Schreier variety (free objects are not stable under subobjects).

Sketch of the proof
Consider two different projectives objects P and X in V, then

0 ,2 P♭X � ,2
κP,X ,2 P + X

⟨1P ,0⟩� ,2 P ,2lr
ι1
lr 0

the kernel part is projective in XMod(V) but not free since P ̸= X .

M. Culot (UCLouvain) Projective crossed modules September 2025 17 / 25



Free crossed modules in variety V
Consider a semi-abelian variety of algebras V with Fr : Set → V the
associated free functor. All free internal crossed modules are of the form

(Fr (S)♭Fr (S),Fr (S) + Fr (S), χ, κFr (S),Fr (S))

where κFr (S),Fr (S) : Fr (S)♭Fr (S) → Fr (S) + Fr (S), for some S ∈ Set.

Corollary [Cul25]
For any non-trivial semi-abelian variety V, the variety XMod(V) is not a
Schreier variety (free objects are not stable under subobjects).

Sketch of the proof
Consider two different projectives objects P and X in V, then

0 ,2 P♭X � ,2
κP,X ,2 P + X

⟨1P ,0⟩� ,2 P ,2lr
ι1
lr 0

the kernel part is projective in XMod(V) but not free since P ̸= X .

M. Culot (UCLouvain) Projective crossed modules September 2025 17 / 25



XMod(V) satisfied (P) as soon as V does

Proposition [CRVdL25]
Let V be a pointed Mal’tsev variety of algebras, with forgetful functor
U : V → Set and its left adjoint G : Set → V. The variety V satisfies (P) if
and only if the kernel of G (f ) (for f : X → Y a split epimorphism of sets)
is a projective object in V.

In our situation, let f : X → Y a split epimorphism of sets with its section s

0

��

0

��

0

��
0 ,2 P � ,2 ,2

��

Fr (X )♭Fr (X )
Fr (f )♭Fr (f ) � ,2

_��

��

Fr (Y )♭Fr (Y ) ,2lr
Fr (s)♭Fr (s)

lr
_��

��

0

0 ,2 Q � ,2 ,2

��

Fr (X ) + Fr (X )
Fr (f )+Fr (f ) � ,2

⟨1Fr (X ),0⟩_��

Fr (Y ) + Fr (Y ) ,2lr
Fr (s)+Fr (s)
lr

⟨1Fr (X ),0⟩_��

0

0 ,2 Z � ,2 ,2

LR

��

Fr (X )

LR
ι1

LR

Fr (f ) � ,2

��

Fr (Y )

LR
ι1

LR

,2lr
Fr (s)

lr

��

0

0 0 0
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Sketch of the proof
the middle vertical sequence and the right vertical sequence are,
respectively, the free object on the set X and Y , and there are (split)
short exact sequences by construction;
the morphisms in the left-hand vertical sequence are restrictions to the
kernels;
the free objects Fr (X ) and Fr (Y ) are projective in V, and therefore
Fr (X ) + Fr (X ) and Fr (Y ) + Fr (Y ) are projective as well;
since V satisfies (P), we have respectively that

▶ the kernels Fr (X )♭Fr (X ) and Fr (Y )♭Fr (Y ) of the solid vertical split
short exact sequences are also projective;

▶ the object Z := ker(Fr (f )) is projective in V;
▶ the object Q := ker(Fr (f ) + Fr (f )) is projective in V;
▶ the object P := ker(Fr (f )♭Fr (f )) is projective in V;

the left-hand vertical sequence with the dashed arrows is also a (split)
short exact sequence.

We can prove that the internal crossed module (P,Q, χ, k) is projective as
a retract of a projective internal crossed module.
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Non-additive derived functor of π0
For the moment, what do we know:

we consider a semi-abelian variety V;
then XMod(V) is a semi-abelian category and it is a variety of algebras
(and as a result has enough projectives);
if V satisfies (P) then XMod(V) as well.

Considering now the functor π0 : XMod(V) → V defines as

π0(X ,A, ∂, ψ) := Coker(∂).

Assumptions on π0

protoadditive functor: done in [EG10] since V is semi-abelian;
preserves binary coproducts: it is a left-adjoint functor;
preserves proper morphisms: it is a reflector from a variety to a
subvariety.
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then XMod(V) is a semi-abelian category and it is a variety of algebras
(and as a result has enough projectives);
if V satisfies (P) then XMod(V) as well.

Considering now the functor π0 : XMod(V) → V defines as

π0(X ,A, ∂, ψ) := Coker(∂).
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Open questions/problems

Today, we see the implication: V satisfies (P) =⇒ XMod(V) as well.
Actually, the converse also holds.

This brings me to this question: is
the condition (P) stable under Birkhoff’s subvarieties? Do we need a
protoadditive reflector?
Could we do the same for PXMod(V) with the same assumptions on
V?
My understanding of today:

▶ with the same definition, we have the functor π0 : PXMod(V) → V and
it is still protoadditive;

▶ π0 is also a left adjoint (so preserves binary coproducts) and also it still
preserves proper morphisms;

▶ the construction of the free internal crossed module is actually the
construction of the free internal (pre)crossed module;

▶ PROBLEM: the proof for the particular projective internal crossed
module is impossible in PXMod(V). Why? In the proof, we need the
Peiffer condition to prove that the pair (gX , gA) is compatible with the
actions.
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Thank you!

Questions? Or comments?
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