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Classical commutativity

f : X → Y and g : B → Y commute/cooperate (Bourn, Huq)
whenever they admit a cooperator φf ,g : X × B → Y .

X X × B B

Y

(1X ,0)

f
φf ,g

(0,1B)

g

The commutator of f and g (Mantovani, Metere, Higgins) is
constructed as the image below.

0 X ⋄ B X + B X × B

[f , g ] Y

ιX ,B ⟨(1X ,0),(0,1B)⟩

⟨f ,g⟩
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Relative commutativity

f and g commute relatively to a cospan X A Bk s

whenever they admit a (k , s)-cooperator φf ,g : A → Y .

X A B

Y

k

f
φf ,g

s

g

The (k , s)-commutator of f and g is constructed as the image
below.

0 X ⋄k,s B X + B A

[f , g ]k,s Y

ιk,s ⟨k,s⟩

⟨f ,g⟩
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Internal actions

In a semi-abelian category, an internal action ξ : B♭X → X can
be seen as a split short exact sequence (SSES)

0 X X ⋊ξ B B 0k
p

s

where X ⋊ξ B is the semi-direct product of X by B (relatively to
the action ξ).
In particular, the trivial action can be represented by the SSES

0 X X × B B 0
(1X ,0) π2

(0,1B)
.
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Link between commutators and commutativity

Theorem

Two arrows f : X → Y and g : B → Y commute relatively to an

extremally epic cospan X A Bk s if and only if their
(k, s)-commutator [f , g ]k,s is trivial.

Proof.

0 X ⋄k,s B X + B A 0

[f , g ]k,s Y

ιk,s ⟨k,s⟩

⟨f ,g⟩
φf ,g
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Composition properties

Proposition

If f and g (k , s)-commute, then so do h ◦ f and h ◦ g.
Moreover, the converse holds if h is monic and the cospan
(k, s) is extremally epic.

[h ◦ f , h ◦ g ]k,s = h([f , g ]k,s).

Proof.

X A B X ⋄k,s B X + B

Y [f , g ]k,s Y

Z h([f , g ]k,s) Z

k

f

h◦f

s

g

h◦g

⟨f ,g⟩

h h
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Composition properties

Proposition

If k ◦ x and s ◦ y (k ′, s ′)-commute and f and g (k, s)-commute,
then so do f ◦ x and g ◦ y.

X ′ A′ B ′

X A B

Y

k ′

x

s′

y

k

f

s

g
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Twisted commutativity and equivariance

Proposition

Let ξ, ξ′ be two actions and (k , s), (k ′, s ′) be their associated
cospans.

f and g commute with respect to ξ if and only if they are
equivariant with respect to ξ and the conjugation action cY ,Y

of Y on itself.

f and g are equivariant with respect to two actions ξ and ξ′

if and only if k ′ ◦ f and s ′ ◦ g commute with respect to ξ.

0 X X ⋊ξ B B 0 X X ⋊ξ B B

0 Y Y × Y Y 0 X ′ ⋊ξ′ B
′

k

f

p

s

g

k

k ′◦f

s

s′◦g

(1Y ,0)

π2

∆Y
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Definition

A precrossed module is a couple (∂, ξ), where ∂ : X → B is an
arrow and ξ is an action of B on X with induced SSES

0 X X ⋊ξ B B 0k d

e
, such that there exists an arrow

c : X ⋊ξ B → B satisfying the equations c ◦ e = 1B and c ◦ k = ∂.

0 X X ⋊ξ B B 0k

∂

d

c
e

Since k can be recovered as a kernel of d , a precrossed module is
essentially just a reflexive graph.

A crossed module is a precrossed module whose corresponding
reflexive graph admits a groupoid structure.
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Characterisation

Theorem (Reformulation of results of [MM10b])

(∂, ξ) is a precrossed module if and only if it satisfies the
Precrossed Module Condition (PCM) [∂, 1B ]ξ = 0.

X X ⋊ξ B B

B

k

∂
c

e

1B

Under (SH), (∂, ξ) is a crossed module if and only if it also
satisfies the Peiffer Condition (PFF) [k , e ◦ ∂]cX ,X = 0.

X X × X X X ♭X X

X ⋊ξ B B♭X X

(1X ,0)

k

∆X

e◦∂

cX ,X

∂♭1X 1X

ξ
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Monic ∂

If ∂ is monic, then (∂, ξ) is a precrossed module if and only if ∂ is
the inclusion of a normal subobject and ξ is the action of
conjugation of B on X .

B♭X X

B♭B B

ξ

B♭∂ ∂

cB,B

Moreover, when this is the case, (PFF) automatically holds so
(∂, ξ) is even a crossed module.
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Regularly epic ∂

If ∂ is regularly epic, then (∂, ξ) is a crossed module if and only if
∂ is a central extension, i.e. a regular epimorphism that is central.

Lemma

If (∂, ξ) satisfies (PFF), then ∂ is central, i.e. its kernel and its
domain commute.

For the other implication, we can show that there exists an action
such that (PFF) is satisfied and, once we have this action, (PCM)
comes for free.

X ♭X X

B♭X X

cX ,X

∂♭1X 1X

ξ
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